VETERINARY MATERIA MEDICA
and THERAPEUTICS

BY
KENELM WINSLOW
B.A.S., M.D.V., M.D. (Harv.), Major M. C., U. S. A.
FORMERLY INSTRUCTOR IN ZOOLOGY, BUSSEY (AGRICULTURAL) INSTITUTE
AND ASSISTANT PROFESSOR OF THERAPEUTICS, VETERINARY SCHOOL
(both) OF HARVARD UNIVERSITY.

AUTHOR OF "PRODUCTION AND HANDLING OF CLEAN MILK," "THE PREVEN-
TION AND TREATMENT OF THE DISEASES OF THE DOMESTIC ANIMALS," ETC.
INCLUDING A CHAPTER ON BIOLOGICAL THERAPEUTICS BY

DR. A. EICHHORN
FORMERLY CHIEF OF THE PATHOLOGICAL DIVISION, BUREAU OF ANIMAL
INDUSTRY, AND NOW DIRECTOR OF THE VETERINARY DEPARTMENT,
LEDERLE ANTITOXIN LABORATORIES, PEARL RIVER, N. Y.

EIGHTH EDITION REVISED

CHICAGO
AMERICAN VETERINARY PUBLISHING CO.
No. 9 South Clinton Street
PREFACE TO EIGHTH EDITION

The eighth edition has been wholly reprinted, revised and rewritten. It is in accord with the ninth edition of the United States Pharmacopœia. Among remedies introduced for the first time are; chenopodium, arsphenamine, Dakin's solution, chlorazene, dichloramine-T, scarlet red, methyl blue, pituitary gland, lobelia, lobelin and diuretin.

Articles on the thyroid and adrenal glands have been greatly modified and enlarged.

A large number of prescriptions of ascertained value have been introduced throughout the book to facilitate the practical application of drug treatment. In the sections on food and feeding, blood transfusion, and serum and vaccine therapy much new matter will be found.

The author wishes to express his grateful acknowledgment for the kindness of Dr. Maurice C. Hall, of the Bureau of Animal Industry, in revising the matter on anthelmintics, and also his appreciation of the work of Dr. A. Eichhorn in writing the section on biological therapy.

Too much appreciation cannot be accorded the publisher who, throughout the very considerable task of remaking and reprinting the work, has aided in every way with his notable energy and professional ability to produce as perfect a volume as possible in scientific value, technical accuracy, practical usefulness, and the book-making art.

Kenelm Winslow.

Seattle, Wash.,
December, 1919.
CONTENTS

PRELIMINARY CONSIDERATIONS .. 7
- Definitions ... 7
- Mode of Action of Drugs .. 7
- Absorption of Drugs ... 9
- Elimination of Drugs ... 9

CIRCUMSTANCES MODIFYING THE ACTION OF DRUGS .. 11
- Mode of Administration .. 11
- Dosage .. 11
- Anatomy and Physiology ... 14
- Time of Administration ... 15
- Habit ... 16
- Idiosyncrasy ... 16

GENERAL ACTIONS OF DRUGS 17
- Drugs Acting on the Digestive Organs 17
- Drugs Acting on the Circulation 29
- Drugs Acting on the Nervous System 34
- Drugs Acting on the Respiratory Organs 39
- Drugs Acting on the Urinary Organs 44
- Drugs Acting on the Sexual Organs 48
- Drugs Influencing Metabolism 50
- Drugs Influencing Bodily Heat 50
- Drugs Acting on the Skin .. 52
- Drugs Which Destroy Microorganisms and Parasites 56

PHARMACY .. 59

INCOMPATIBILITY .. 68

PRESCRIPTION WRITING .. 70

CLASSIFICATION ... 97

INORGANIC AGENTS ... 99

VEGETABLE DRUGS .. 264

DOSES OF DRUGS .. 464

POISONS AND ANTIDOTES 475

GENERAL THERAPEUTIC MEASURES 479
- Food and Feeding .. 479
- Counterirritants .. 491
- Cold and Heat ... 497
- Disinfectants, Antiseptics and Deodorants 505
- Venection .. 514
- Transfusion .. 517
- Saline Infusion ... 517
- Hypodermoclysis .. 519
- Enteroclysis .. 519
- Kunsel's Treatment for Milk Fever in Cows 521
Lavage ... 522
Biological Therapeutics 525
Immunity .. 525
Infectious Diseases .. 527
Diagnostic Products ... 552

EPITOME OF MODERN TREATMENT OF DISEASES OF
DOMESTIC ANIMALS 564

GENERAL INDEX .. 621

ILLUSTRATIONS

Metric Diagram .. 76
Bleeding Hyperimmunized Horse to Produce Serum 530
Sterilizing Serum by Filtration 531
Testing Serum .. 532
Filling Sterile Containers with Serum 532
Bacillus Anthracis ... 533
Intravenous Injection of Anthrax Bacilli 535
Negri Bodies .. 547
Well Defined Reaction to Tuberculin Test 554
Positive Reaction to Tuberculin Indicated by Diffused Swelling 555
Positive Reaction to Tuberculin Indicated by Circumscribed Swelling 555
Positive Reaction to Ophthalmic Test by Tuberculosis 557
Method of Applying Ophthalmic Test for Glanders with Brush 558
Method of Applying Ophthalmic Test for Glanders with Tube 559
Positive Reaction to Ophthalmic Test for Glanders 559
Ophthalmic Reaction to Mallein Test for Glanders 560
Strong Ophthalmic Reaction 561
PRELIMINARY CONSIDERATIONS.

Definitions.

Pharmacology is derived from the Greek, pharmakos, a drug, and is the sum of all exact knowledge pertaining to drugs, and therefore embraces materia medica, therapeutics, pharmacy, and pharmacology in its more recent and limited interpretation.

Materia Medica, derived from two Latin words signifying medical materials, treats of the derivation, natural history, physical and chemical properties, physiological actions, doses, and tests of purity of drugs. A special term sometimes used to describe the physical and chemical properties of drugs is pharmacognosy, while pharmacodynamics, or pharmacology (in a limited sense), refers to the action of drugs on healthy animals.

Therapeutics, derived from the Greek, therapevo, meaning to serve or attend the sick, is that branch of knowledge which treats of the application of all means—medicinal or otherwise—to the cure of disease or relief of pain. The term has been further subdivided as follows: Rational Therapeutics, which treats of the application of drugs as founded on their physiological actions; Empirical Therapeutics; the use of drugs as based on clinical evidence; and General Therapeutics, the use of remedial agents other than drugs, e. g., heat, cold, electricity, food, etc.

Pharmacy is the art of preparing, compounding, dispensing and preserving drugs.

Metrology, the science of weights and measures.

Toxicology, derived from the Greek toxikon, a poison, is that branch of knowledge which treats of the nature, actions, detection and treatment of poisons.

A medicine is an agent of animal, vegetable or mineral origin used for the cure of disease or relief of pain. The word cure, signifies literally to care for, from the Latin cura, and did not in its original sense mean to restore to health, although that is its present interpretation.

A drug, derived from the Dutch, droog, meaning dry, is now used synonymously with medicine, although originally referring to an herb or dried medicinal plant.

Mode of Action of Drugs.

Drugs act locally when they influence a part with which they come in contact, and also when they affect one organ or apparatus after absorption. The first meaning is the usual one.

Drugs act generally when they impress the body as a whole after absorption. Drugs applied to the unbroken skin usually act locally because they are commonly unabsorbed; also when drugs insoluble in the digestive tract (as charcoal and chalk), are given internally they act locally for the same reason. The local action of drugs after absorption is sometimes known as selective action, i. e., the power that most drugs
possess to influence one organ or apparatus rather than the whole system. Oftentimes this local action, in the case of secreting glands, is accomplished through stimulation of these parts during elimination of the drug. Occasionally a medicine acts both on the part with which it comes in contact and also through the circulation; e. g., tartar emetic causes emesis by local stimulation of the stomach and by stimulation of the vomiting centre after absorption. Furthermore, remedies are said to exert a primary (or immediate) and secondary (or remote) action.

The secondary effect is the result of the primary action; e. g., a saline cathartic primarily removes serous fluid from the bowels and secondarily or remotely leads to absorption of serous exudations; a counter-irritant primarily produces irritation of the skin and sensory nerve-endings, but secondarily relieves internal congestion by inducing reflex contraction of the subjacent blood vessels. Most drugs are absorbed into the blood after their ingestion and exert their action on various parts of the body through the medium of the nervous system. Some drugs, however, may directly influence muscular tissue, as is seen in the action of digitalis on the nerve-free heart’s apex; while others may immediately act on the cells of an organ, as pilocarpine on the sweat glands. As in the latter instance, it is usually impossible to determine whether medicines affect the cells of an organ or nerve-endings in the organ. The action of most vegetable drugs is thought to arise from the chemical affinity of their active principles for the part or parts acted upon.

Thus the selective action of strychnine depends upon its forming a chemical compound with the protoplasm of the cells of the spinal cord. The affinity of certain cells of the tissues and micro-organisms for specific substances is shown in the staining of the nervous system alone by intravenous injection of methylene blue. It is, in fact, the basis of all bacteriological stains, of Ehrlich’s theory of immunity, and of his wonderful discovery of specifics for nagana, syphilis and relapsing fever.

All substances are divided into electrolytes and non-electrolytes. Electrolytes are capable of decomposition into ions. The action of electrolytes, when used as medicines, is that of their ions. An ion is an electrified molecule or a molecule of a substance having a charge of positive or negative electricity.

The action of most salts, acids, and bases depends on their being in great part dissociated in the weak solutions found in the tissues into electrically positive (cation) and negative (anion) ions. Nor does the action of an ion represent the chemical action of the atom, as when KCl is dissociated into a positive K ion and a negative Cl ion. The action of the ion is a physical or electrical action. Sometimes one ion is inert, as the Cl ion in KCl. Sometimes one is inert and the other very toxic, as KCN, where the positive or K ion is practically without action (see action of ions under special salts). In organic drugs the action of one ion is usually so powerful that the other may be neglected, as morphine sulphate. In case the ions of inorganic salts are inactive their medicinal effect may be due wholly to what is technically termed “salt action.”
Salt action is dependent on osmosis. Concentrated salt solutions (hypertonic) draw water from the tissues and red blood cells; weak salt solutions (hypotonic) lose water to the red corpuscles and tissues; salt solutions of the same osmotic tension as the blood (isotonic) and tissues maintain an equilibrium as regards the water content of these. The principle of salt action depends upon the fact that if two solutions are brought in contact through a membrane (or cell wall) they tend to equalize in concentration. If cells are placed in dilute salt solution they swell because the solution passes into them until it is of like concentration to the dilute solution outside the cell. If cells are put into a concentrated salt solution they shrink because water passes out until the solutions within and without the cell are of equal strength. The same so-called salt action occurs with most solutions of soluble substances—alkalies, acids and sugar. Catharsis from salts and diuresis are due to salt action. Salt solutions in the bowels absorb water from the tissues and flush them out; salt solutions absorbed into the blood withdraw water from the tissues and hydremia of the blood leads to diuresis. Any non-toxic salt (crystalloid) in the blood increases its concentration and leads to a flow of water into it from the surrounding tissues, increases its mass, and pressure, and thus acts as a diuretic.

No hypothesis can be formulated which will satisfactorily account for the curative action of all medicines in all diseases, and systems of medicine, as allopathy and homeopathy, founded on such hypotheses, are valueless.

Absorption of Drugs.

Drugs are absorbed most rapidly in solution (especially in alcohol) and when the circulation is active. Absorption from the digestive tract is poor when the circulation is depressed or in congested states; also from the subcutaneous tissues in similar conditions, more particularly in edema of these parts. Absorption from the stomach and bowels of healthy animals is chiefly influenced by the quantity of food in them. When these organs are empty, absorption is rapid; but when full, it is slow. For this reason absorption is markedly tardy and imperfect in ruminants. In these animals there is a comparatively impervious skin-like mucous membrane and lack of vascularity in the first three gastric compartments; while a large amount of food is always to be found in the first and third stomachs; all of which tends to delay absorption and lessen the action of medicines given by the mouth.

If drugs are irritating, they should be given to animals on the food, or after feeding, in order that they be sufficiently diluted.

Elimination of Drugs.

A drug is as much outside the body when within the digestive tube—as far as any action it may have on the body (unless an irritant)—as if it were on the skin. When absorbed, a medicine passes into the blood vessels or lymphatics and thence into the general circulation. That portion which enters the portal circulation reaches the liver and may be destroyed in part (some alkaloids) by this organ. After entering the
blood the drug may form unknown combinations with the tissues for which it has an affinity—thereby exerting its remedial effect—and is oxidized or decomposed, or rarely accumulates in the body, but usually is eliminated either unchanged or as decomposition-products in the breath, or by the excretions or secretions of the kidneys, bowels, liver, sudoriparous, salivary and mammary glands, and mucous membranes. The urine is the most frequent channel of elimination for soluble drugs. The bowels constitute the next more common pathway of elimination. Volatile drugs (chloroform, ether) are eliminated very rapidly, usually, in the breath. If a drug is eliminated slowly the duration of its action is correspondingly long, and vice versa. This fact will guide us in the frequency of administration of medicines, since if a drug which is tardily eliminated be given at frequent intervals it may be absorbed faster than it is excreted and so accumulate in the body and cause poisoning. The so-called Cumulative Action of a drug refers to the occurrence of a sudden and violent effect during its medicinal administration. This may be due (1) to delayed elimination followed by rapid absorption; or (2) to slow—or sudden arrest of—elimination. The salts of the heavy metals, as lead, mercury, etc., and arsenical preparations are eliminated slowly. Digitalis and strychnine are said to be especially prone to produce a cumulative action. Strychnine may, however, be given subcutaneously in gradually increasing doses without the likelihood of poisoning. Digitalis may cause a cumulative effect in being slowly oxidized in the body or in leading to contraction of the renal vessels and suppression of urine-elimination. The drugs likely to cause a cumulative action must be administered infrequently, once, twice, or thrice daily; whereas medicines which are rapidly decomposed and eliminated (alcohol, nitrites, etc.) may be given at very frequent intervals if desirable. The term excretion is often used synonymously with elimination, but, strictly speaking, a drug is not eliminated unless it has been first absorbed. On the other hand, an insoluble drug passing unabsorbed through the alimentary canal is said properly, to be excreted in the feces.
CIRCUMSTANCES MODIFYING THE ACTION OF DRUGS.

Mode of Administration.

The following table gives the various methods of administering drugs in order of their rapidity of absorption, beginning with the method by which absorption is most rapid, and following with those by which absorption is less and finally least rapid:

1. Intravenous, by injection into the veins.
2. By inhalation (volatile drugs).
3. Subcutaneous, or intramuscular, by injection into subcutaneous tissue, or deep into a muscle.
4. Intratracheal, by injection into the trachea.
5. Oral, by the mouth.
6. Rectal, by the rectum.
7. Inunction, by the skin.
8. Intramammary injection.

1. Injection into the veins (usually into the jugular) is not so commonly practiced as the subcutaneous method, as there is a certain minute danger of inducing phlebitis, embolism and thrombosis. The danger is more theoretical than real, however, as we have frequently thrown from $\frac{5}{5}$ (150 mils) to $6\frac{1}{2}\frac{5}{5}$ (200 mils) of fluidextract of cannabis indica into the jugular, and even chloral hydrate, a most irritating and caustic drug, in the dose of $1\frac{1}{5}$ (30 mils) dissolved in $8\frac{3}{5}$ (240 mils) of water, without producing any untoward symptoms. No method of administration can secure more rapid absorption, since intravenous injection is absorption. This has constituted one of the theoretical objections to the method, that the sudden entrance of a drug might create shock. Injection into the jugular is useful when very rapid and effective action is imperative, as in causing immediate catharsis in colic and intestinal obstruction of horses. In such cases barium chloride and eserine sulphate are employed intravenously. The jugular is occluded with the hand and the injection is made with the same care described below in reference to the subcutaneous method. The intravenous use of warm normal salt solution is frequently valuable in hemorrhage, shock and poisoning (see p. 517).

2. Volatile drugs are absorbed with great rapidity and effect owing to the enormous vascular surface of the lungs in contact with the inhaled vapor. Ether, chloroform, ammonia and amyl-nitrite are given by this method. Inhalation of medicated steam and sprays, used mainly for their local action on the respiratory tract, are also absorbed to some extent by the bronchial mucous membrane and lungs. This is a convenient and effective mode of applying local medication to horses in inflammatory troubles of the upper air passages, including the bronchial tubes, and in many cases may effect a cure without the use of internal remedies.

3. Subcutaneous or hypodermatic injection is suitable for soluble, non-irritating drugs of small bulk, when a sure and rapid action is de-
sired. The medicinal solution should be free from solid particles and microorganisms. If the solution is not clean, or is irritating, abscess may occur. The syringe and needle must also be absolutely clean. Solutions made by dropping tablets in pure drinking water will rarely cause abscess, and the syringe may be made aseptic by filling it with alcohol (70 per cent.) and wiping the needle with the same, previous to their employment. Solutions may be preserved for hypodermic use with boric acid (1 per cent.), but soluble tablets are more convenient.

In practising this method the hair should be removed from the seat of injection—preferably the thin skin underlaid by connective tissue behind the elbow or on the abdomen—and the part washed with water followed by alcohol; then a loose fold of skin is picked up and held firmly between the thumb and forefinger of the left hand, while the needle is thrust under the skin, but not into a vein. The syringe is slowly emptied and the needle withdrawn, keeping slight pressure over the point of injection with the thumb for a few seconds. The use of irritating drugs—permissible in emergencies—as ether and ammonia, is less apt to be followed by abscess if injected deeply into the muscular substance, and absorption is more rapid and painless, than when given subcutaneously. To avoid getting air in the veins, all the air is removed from the syringe before using, by holding it, needle upwards, and pushing in the plunger till a few drops of the solution are forced out of the needle. The danger of introducing air into the blood stream is greatly exaggerated, however, as the writer has proved by forcing vast quantities of air into the jugular vein of a horse without producing any untoward symptoms. The proper quantity of a solution for subcutaneous use is 5-30 minims for dogs; 1-2 drams for horses, although large amounts of salt solution may be injected into the subcutaneous tissue or muscles (hypodermolysis) with great benefit in hemorrhage, etc. (See p. 519.)

The minimum doses of drugs should be employed by the subcutaneous method.

The indications for subcutaneous injection are:

(a) To secure a rapid action as, in relieving intense pain or motor excitement; and to support a failing heart, respiration and vascular tone in severe operations, anesthesia, or other poisoning.

(b) When administration of drugs by the mouth is inadvisable or impossible, as in unconsciousness, dysphagia, convulsions or vomiting.

(c) When a local as well as general action is beneficial, e.g., the use of strychnine in roaring and other local paralyses; atropine in local muscular spasms; veratrine in muscular rheumatism; intraneural injections of alcohol for neuralgia.

4. Intratracheal injection is a strictly veterinary procedure. The skin is incised aseptically with a sharp scalpel midway in the neck, and a stout needle (attached to a syringe) is thrust between the rings into the trachea. Larger quantities \[H., \text{3i-ii (30-60 mils)}\] and more irritating drugs are given in this way than by the subcutaneous method, and absorption is about as rapid; the dose is the same. There is undoubtedly
danger, however, in giving irritant drugs by this method, especially chloral, and several cases of foreign-body pneumonia have come under our notice as the result of this mode of administration. It is a method of benumbing or killing the parasites (S. filaria and miocrurus) infesting the trachea and bronchi, and has been employed to influence the mucous membrane of the larynx and trachea in certain inflammatory conditions.

5. Drugs are usually given by the mouth and are absorbed from the stomach and intestines. Many non-irritating and not unpleasant drugs are taken voluntarily in the food, gruel, milk or drinking water by animals. Cats and dogs will often swallow medicine enclosed in a piece of meat. Absorption is more tardy than by the subcutaneous method, more rapid when given in solution into an empty stomach than when administered in powder, pill or ball, and on a full stomach. Some drugs are probably absorbed from the stomach, only to be destroyed or stored in the liver (alkaloids and heavy metals), and do not enter the general circulation at all.

When drugs are administered for their local action on the stomach, in catarrh or ulcer, they should be given a half hour to an hour before feeding; if given for their action in or on the intestines, they should be administered two or three hours after meals.

6. Rectal injections of medicines (enemata or clysters) are practised when the use of drugs by the mouth is inadvisable or impossible, as in unconsciousness, dysphagia, convulsions; also to destroy parasites (pinworms) in the rectum, to influence an inflamed or ulcerated rectal mucous membrane, and to remove intestinal contents (oil and glycerin).

The dose of drugs by this method is generally twice that by the mouth, and absorption is slower and more imperfect. The drug should be non-irritating, soluble, and not too bulky, since a small amount is necessary (5i-5i dogs; 5ii-5viiii horses); to avoid tenesmus and expulsion. Warm starch solution (made by boiling) or linseed tea with a little laudanum is a good vehicle for medicinal enemata, and retention of enemata is facilitated by pressure on the anus with a towel for some minutes after the injection is given.

Solids are sometimes employed by rectum in suppositories. For general use of enemata (see p. 27).

7. Drugs are absorbed very slightly by the skin, and then only when rubbed very vigorously into the epidermis (inunction) with lanolin, fat or oil of some kind. Mercury, silver and iodine are most commonly employed for absorption, but drugs are usually applied externally for their local action only and not to influence the general system through the blood.

Intramammary injections.—These are useful in acute parenchymatous mastitis. The injection is done with a Davidson syringe connected with a sterile milking tube. From one quarter to one pint is injected slowly into each teat and allowed to remain fifteen minutes and slowly withdrawn. The treatment is given twice daily in contagious mastitis and but once in the simple form.
Saturated boric acid solution is most often used, or \(\frac{1}{10} \) to \(\frac{1}{2} \) per cent. solution of sodium fluoride.

Dosage.

The study of dosage is known as Posology. The action of drugs is altered both in degree and in kind by the dose. Thus, increasing the dose would naturally lead to an increase in the intensity of a drug's action, but it frequently changes the entire character of the action as well.

Drugs, as strychnine, acting especially on the nervous system, often excite in therapeutic doses, but depress and paralyze in toxic doses. Drugs, as digitalis, stimulating the heart in medicinal doses, usually depress and paralyze the organ in poisonous doses. Many drugs promoting urinary secretion, in ordinary doses, cause inflammation and urinary depression in large doses. The best way to determine the dose of a drug is to estimate the amount required for each pound of live weight. This applies only to the same species and to animals of ordinary build. Fat is a comparatively inert tissue as far as the action of drugs is concerned, so that a very fat horse, weighing, for example, 1,200 pounds, would be affected in a more pronounced manner by a dose of medicine than would a lean horse of the same weight and taking the same dose. In the case of young animals, and of those either above or under the ordinary size of the adult of any species, the dose should be proportioned—according to weight—to the average dose for the adult animal of that species. Thus, if the average weight of a horse is 1,000 pounds, the dose of any drug for a colt weighing 500 pounds would be half the usual dose for adult horses. In a general way the dose for all animals from birth to a few weeks old (being more susceptible), is one-twentieth of that suitable for the mature animal of the same species; for yearlings, about one-third of the adult dose. The dose recommended for dogs is commonly the same as that given to man, but this rule does not apply in the case of some powerful drugs (strychnine), where the dose should be adjusted to the weight, i.e., so much per pound, live weight.

It is impossible to calculate the dose for all domestic animals as based on that for animals of one species, because the differences in anatomy and physiology modify the actions of drugs in degree and kind, but the dose for sheep is about one-fourth of that for the larger ruminants.

The repetition of a dose is determined to a considerable extent by the duration and rapidity of a drug's action. Agents used for their immediate effect, as those relieving pain and stimulating the circulation and respiration, are repeated frequently till the desired effect is attained. Medicines improving the condition of the digestion, blood and nutrition, as tonics of various kinds, require time for the accomplishment of their mission, and are usually given two or three times daily for a period of some weeks.
Anatomy and Physiology.

Certain differences in the action of medicines may be observed as occurring in the various species of animals, and in animals as contrasted in this respect with man.

Action of Drugs on Animals as Compared with That on Man.

From a comparative standpoint the action of drugs on the nervous system of animals differs from that on man. This follows according to the "law of dissolution," which teaches that the more highly developed a part of the nervous system is in the evolutionary scale, the more sensitive is it to the influence of drugs. Since the cerebrum of man is relatively larger and more highly developed, in proportion to his weight, than is the case in animals, and since the spinal cord is larger and more highly developed in proportion to the brain in animals, it happens that drugs impressing the nervous system exert less effect on the brain, and more on the spinal cord, of animals than in man.

Thus opium is more powerful in its influence on the brain of man, and strychnine is more potent in its action on the spinal cord of animals. Drugs are not absorbed so rapidly or perfectly in the enormous digestive apparatus of ruminants as in man; neither do emetics act in these animals, nor in horses; while in none of the lower animals are agents causing sweating so efficient as in man.

Action of Drugs on Horses as Compared with That on Other Animals.

Differences exist relative to the action of drugs on the horse, as compared with other animals, chiefly in respect to the digestive apparatus. Emetics do not act on the horse, as this animal does not vomit unless the stomach is greatly distended with gas which causes dilatation of the cardiac outlet. Moreover, the stomach is too small to be successfully compressed by the abdominal walls, and the great length of the esophagus between the stomach and diaphragm, together with the horseshoe-like band of fibres at its cardiac extremity, prevent the regurgitation of food. The intestines of the horse, on the other hand, are as voluminous as the stomach is greatly distended with gas which causes dilatation of the (as purgatives), although the action of cathartics is slow. The bowels of horses excrete vastly more of the fluid ingested than is the case in man or dogs—whose kidneys chiefly assume this function—and the kidneys are said to eliminate about 15 per cent. of the fluid ingesta in horses, as against 50 per cent. in man and dogs.

Action of Drugs on Ruminants as Compared with That on Other Animals.

The capacious four-fold stomach of ruminants always contains large amounts of food in the rumen and abomasum, while the impervious, poorly vascular and skin-like gastric mucous membrane renders absorption feeble and imperfect and enforces a comparatively larger dosage than is proper for horses of greater weight. Ruminants are also generally insusceptible to emetics. The skin and kidneys of ruminants are still less active than is the case in horses.
Action of Drugs on Dogs and Pigs as Compared with That on Other Animals.

The action of medicine on dogs and pigs is similar in kind to that observed in man, but the former animals are less sensitive to drugs as a rule, since the dose suitable for a man weighing 150 pounds is appropriate for a dog of 40 pounds weight. As exceptions to this rule, we find that dogs will not bear the human dose of calomel, oil of turpentine, or strychnine. In fact, the ordinary tonic dose of strychnine (gr. 1/30) for man will throw a medium sized dog into convulsions, and may kill a small animal, notwithstanding that this amount is recommended as a suitable canine dose in veterinary text books.

Contrariwise, the dog is comparatively insensitive to many drugs powerfully influencing man,—notably morphine, aloes, coloeynth and rhubarb. Most cathartics act more quickly on dogs than is the case with the other domestic animals, but saline purgatives are less appropriate in often causing vomiting, and because of their bulk.

Time of Administration.

This matter has been alluded to in speaking of the absorption of drugs. Medicines readily undergoing decomposition in the presence of other substances, as iodine and hydriodic acid, should be given on an empty stomach; and likewise all drugs, when a speedy action is desired. Irritants should be administered on a full stomach.

Habit.—This circumstance does not have the same importance in veterinary medicine which it possesses in human practice, since we control drug habits in animals. Animals usually become less susceptible to the action of drugs on their repetition, e.g., opium and cathartics. This rule does not hold in the case of drugs having a cumulative action, nor in the repeated use of irritants on the skin, for then their action is strongly intensified.

Disease.—The action of drugs is profoundly influenced by disease. It is only possible to enumerate a few examples. Pain is almost an antidote to opium, and large repeated doses of the drug, previously innocuous, may, on the sudden cessation of pain, induce poisoning. Opium is also borne in enormous doses in peritonitis. Inflammation and congestion of the digestive organs hinder the absorption of all medicines. A congested condition of the alimentary canal, and even of the respiratory tract in horses, contra-indicate the use of strong purgatives in these animals, since superpurgation may occur. A high temperature alters the action of many drugs.

Opium is not so efficient as an analgesic in fevers, while anti-pyretics will not lower the temperature in health. Stimulants are not nearly so potent in depressed bodily conditions, and counter-irritants will not produce their characteristic actions on the skin when the circulatory functions are at a low ebb.

Idiosyncrasy.—Individual susceptibility to drugs is infrequent, but unfortunately cannot be anticipated. The writer has seen simple zinc oxide (free from adulteration or impurities) cause a frenzy of irritation
when rubbed on a dog's skin, and a small dose of tartar emetic cause violent vomiting in a cow. Some animals are very susceptible to counter-irritants. Well-bred animals are commonly more responsive to drugs than others.

GENERAL ACTION OF DRUGS.

DRUGS ACTING ON THE DIGESTIVE ORGANS.

Sialagogues are agents increasing the secretion of saliva. Antisialagogues are agents diminishing salivary secretion. Among the sources of saliva—the parotid, sublingual and submaxillary glands—the latter have received most study. The chorda tympani, with its centre in the medulla, is one of the two nerves supplying the submaxillary gland. It contains two sets of fibres, the secretory and vasodilator. Hence stimulation of this nerve, or its centre, whether immediately or reflexly, leads, by means of its vasodilator fibres, to dilatation of the blood vessels and enhanced vascularity of the gland, and so indirectly to greater secretion; while, through excitation of the secretory fibres, the protoplasm of the glandular cells is influenced and secretion directly increased.

Reflexly the gland is stimulated by drugs exciting the peripheral terminations of the gustatory (lingual branch of the fifth nerve) and glossopharyngeal nerves in the mouth; the vagus endings in the stomach; by agencies sending pleasurable impressions to the brain through the medium of the eyes or nose; or by stimulation of other sensory nerves. The submaxillary gland is also supplied by a branch of the cervical sympathetic accompanying the submaxillary arteries. Stimulation of this nerve, or its centre, causes vascular constriction in the gland and inhibition of secretion.

Sialagogues are often classed under three heads. 1st, Specific Sialagogues, acting directly on the mechanism concerned with secretion, i.e., the gland cells, or nervous apparatus. Pilocarpine is the best example of the specific class. It stimulates the gland cell or peripheral nerve endings. 2nd, Reflex sialagogues; exciting sensory nerve terminations and indirectly or reflexly stimulating the nervous mechanism controlling secretion. As examples of this class may be mentioned alkalies, acids, emetics, and other agents stimulating the mucous membrane of the mouth and stomach. 3rd, Mixed sialagogues, acting both specifically and reflexly. Phystostigmine, nicotine or tobacco and mercury preparations may be included in this category.

Antisialagogues.—These drugs may act in various ways to lessen salivary secretion, but atropine is most notable in this regard. It acts by depressing the peripheral endings of the secretory nerves.

Uses.—Sialagogues are not of much therapeutic value. Some are added to the drinking water given to animals suffering from fever, to relieve dryness of the mouth and thirst. They are then called refrigerants; as, for example, potassium nitrate, diluted phosphoric and other acids. The sialagogues are sometimes employed to stimulate the mucous
membrane of the pharynx in sore throat and relaxed conditions; as, for example, potassium chlorate in eletuary for horses.

Excessive salivation produced by mercury salts or pilocarpine is relieved by an antisialagogue, *i. e.*, atropine.

Stomachics are drugs which, in therapeutic doses, mildly stimulate the mucous membrane of the mouth and stomach, thereby increasing the secretions and vascularity of these parts, the appetite, and gastric peristalsis. These agents also reflexly influence the intestines, but this effect will be considered under carminatives.

Stomachics may be divided into bitters, aromatics (drugs containing a volatile oil and often very pungent), and aromatic bitters (drugs containing a volatile oil and a bitter principle). While both the bitters and aromatics enhance the appetite, the action of the latter is more powerful and fleeting. Bitters act by directly stimulating the taste buds of the tongue. They act only locally (not in pills), and reflexly start digestion as the sight and smell of food do (p. 19).

Very large doses of stomachics are distinctly irritating, and cause anorexia, nausea, and vomiting in animals capable of the act.

Stomachics.

BITTERS

| Gentian | Quassia | Taraxacum |
| Calumba | Hydrastis | |

AROMATIC BITTERS

| Cascarilla | Chamomile | Serpentaria |
| | | |

AROMATIC

Coriander	Fenugreek	Peppermint
Capsicum	Anise	Alcohol
Pepper	Calamus	Ether
Ginger	Mustard	Chloroform
Cardamon	Spearmint	Alkalies (see Antacids)

| Fennel | | |

Uses.—Stomachics—particularly bitters—are serviceable in improving the appetite and gastric digestion in atonic indigestion, and in enfeebled states of the digestive organs occurring in the course of chronic diseases or during convalescence from acute disorders. The aromatics are more frequently employed for their action on the intestines, when they are called carminatives. Bitters are contra-indicated in irritable or inflamed conditions of the alimentary tract.

Antacids are drugs which are used to counteract acidity in the stomach and bowels resulting from indigestion and fermentation, or from excessive secretion of gastric juice. Some (not ammonia compounds) are also occasionally employed to alkalize the blood and urine.

Pawlow's experiments, substantiated by many others, show that alka-
lies inhibit not only the secretion of acid gastric juice, but also all the other digestive secretions, i.e., the secretions of the intestines, liver (bile), and pancreas (pancreatic juice). Antacids (as sodium bicarbonate and magnesia) are, however, indicated in gastric hypersecretion and hyperchlorhydria.

If administered several hours after eating, antacids counteract acidity due to fermentation and relieve pain caused by this condition. Since fermentation is frequently the cause of tympanites, the antacids are conjoined to advantage with carminatives (sodium bicarbonate and ginger). The alkaline carbonates allay pain by means of the carbonic dioxide set free, which is locally sedative and also stimulates peristalsis, and the antacids are also beneficial in dissolving mucus in catarrhal conditions of the alimentary canal.

The antacids are synonymous with alkalies, with the exception of the neutral vegetable salts—acetates, citrates and tartrates—of potassium and sodium, which are sometimes classed under this head. These do not alkalize the contents of the stomach, but nevertheless are broken up in the body and transformed into carbonates and thus render the urine more alkaline during their elimination. Among those included in the following list the sodium compounds are much less active in alkalizing the urine than the potassium salts. Sodium bicarbonate is in most frequent use in digestive disorders, but ammonium carbonate is particularly appropriate in flatulence, because it possesses more power in stimulating peristaltic action and expelling flatus.

ANTACIDS.

<table>
<thead>
<tr>
<th>Sodium carbonate</th>
<th>Ammonium carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium bicarbonate</td>
<td>Magnesia</td>
</tr>
<tr>
<td>Potassium carbonate</td>
<td>Magnesium carbonate</td>
</tr>
<tr>
<td>Potassium bicarbonate</td>
<td>Calcium carbonate (chalk)</td>
</tr>
<tr>
<td>Solution of potash</td>
<td>Solution of lime (lime water)</td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
</tr>
</tbody>
</table>

Acids.—Contrary to accepted ideas, Pawlow’s and Starling’s experiments show that mineral acids directly stimulate the secretion of acid in the stomach, and, indirectly, the secretions of the intestines, liver and pancreas. The first part of gastric secretion is caused by vagal stimulation through reflex action produced by the desire, sight, and smell of food, and is further increased by the taking of food. In the latter part of gastric digestion, the acid product of the first part of digestion acts on the mucosa to cause the formation of a chemical body, or hormone (Greek, to excite), known as gastrin. This is absorbed into the blood and stimulates the activity of the secretory glands of the fundus of the stomach. In the intestines, acid chyme likewise leads to the formation of another hormone, secretin, which likewise is absorbed and stimulates the secretion of the intestines, liver and pancreas.

Carminatives include the same drugs which were mentioned as stomachaches, and valerian, asafetida and the volatile oils; but the term as gen-
erally employed refers to their effect in exciting peristaltic action, and so expelling gas from the stomach and bowels. The aromatics are consider-
ably more valuable for this purpose than the bitters. Carminatives also prevent griping caused by many cathartics, aid digestion, and disguise the taste of disagreeable drugs. Capsicum and ginger are most fre-
quently prescribed in veterinary practice.

Digestives.—Pepsin is occasionally of benefit in the treatment of dogs and young animals in case of enfeebled gastric digestion resulting from acute diseases or other general causes. It should be administered directly after eating, and is prescribed to advantage with hydrochloric acid. As a general proposition it is inadvisable to give agents which merely substitute an artificial for the natural digestion, except as a tem-
porary expedient. A wiser course consists in removing the cause of indi-
gestion by proper feeding or by enforcing abstinence from food, and in the use of remedies calculated to strengthen the natural digestive func-
tions.

Pancreatin may be given during, or immediately after, eating, and will assist gastric digestion for some time before sufficient acid is se-
creted to destroy it. In fact, some authors (Hare) insist that this sub-
stance is more valuable in any case than pepsin in aiding stomach digestion, although pancreatin is more commonly given several hours after eating, to promote intestinal digestion. Papain is another agent which is employed as an artificial digestive of vegetable origin. Its value is not yet definitely determined.

Antiseptics.—These agents are sometimes used to prevent or arrest fermentation of food in the stomach and bowels. Since fermentation is primarily due to indigestion, it is essential to remove the cause by diet and other rational means rather than to combat the effects of indigestion. Large doses of antiseptics hinder the digestive processes and may endan-
ger the life of the patient, so that it is impossible to attain perfect anti-
sepsis in the alimentary canal.

Among the drugs more commonly employed for their antiseptic action on the contents of the digestive tract may be mentioned:

- Carbolic acid
- Creosote
- Creolin
- Naphtol
- Naphtalin
- Bismuth subnitrate
- Bismuth subcarbonate
- Bismuth salicylate
- Bismuth subgallate
- Sodium sulphite, bisulphite and hyposulphite
- Hydrogen dioxide

Emetics are drugs which cause vomiting. The act of vomiting pro-
ceds from irritation of the vomiting centre in the medulla, which is in close proximity to the respiratory centre. This centre is either acted upon directly by drugs circulating in the blood, or reflexly by agents stimulating sensory nerves in various parts of the body. Thus, irritation of the sensory nerve-endings of the mouth, throat, gullet, lungs, heart, stomach, bowels, biliary passages, peritoneum, uterus and kidneys, may produce vomition. Vomiting is occasioned by simultaneous contraction
of the abdominal walls and the diaphragm. In this process the stomach
is squeezed between the abdominal walls and diaphragm, and contraction
of the longitudinal fibres, radiating from the lower end of the gullet,
draws the stomach towards the diaphragm and so pulls open the cardiac
orifice, while the pylorus is firmly contracted and closed. Some pecu-
liarities may be noted in reference to vomition in the domestic animals.
Dogs, pigs and cats vomit readily and may be placed in the same category
as man in this respect. Horses rarely vomit and are not easily nauseated
by emetics. Vomiting is prevented in these animals by: 1. The small
size of the stomach, which is not readily compressed between the abdomi-
nal walls and diaphragm. 2. The length of the gullet between the
stomach and diaphragm, which form a valve-like obstruction when the
tube is shortened by contraction of the longitudinal fibres at its lower
extremity in attempts at vomition. 3. A horseshoe-like band of fibres
at the cardiac orifice, which hinders dilatation of this opening. Rumi-
nants are likewise comparatively insusceptible to emetics because of the
large size of their digestive apparatus, which is not easily compressed
between the parietes and diaphragm. Therefore the vomiting centre
remains probably in a state of non-development in the horse and rumi-
nant, by reason of non-use.

Cattle and horses do, however, occasionally vomit. Cattle at sea fre-
quently suffer from *mal de mer*, and the writer has observed actual vomi-
tion in them following the use of tartar emetic. Horses may vomit when
the stomach is greatly distended with gas.

Emetics may be classified as: 1. *Specific*, acting on the vomiting
centre through the blood. 2. *Local*, by stimulation of the sensory nerve-
endings in the mouth, throat, gullet and stomach. 3. *Mixed*, those acting
in both ways.

It is impossible, in our present state of knowledge, to apply this
classification accurately to individual drugs, but the following state-
ments may be made: If an emetic is injected into the carotid and vomi-
ting instantly occurs, the drug has probably acted upon the vomiting
centre; if some time elapses before the occurrence of vomition, it is prob-
able that the drug has acted upon the stomach during its elimination by
that organ. Contrariwise, if, after the ingestion of an emetic, a consid-
erable period intervenes before vomiting comes on, it is probable that the
agent has acted on the vomiting centre.

Again, if a larger quantity of a drug is required when injected into
the blood than when swallowed, to cause emesis, it is fair to suppose
that the agent acts on the stomach directly or during its elimination.
Finally, if an emetic is thrown into the blood after the removal of the
stomach and substitution of a bladder in its place, and vomiting does not
occur (Majendie's experiment with tartar emetic), it shows that the agent
only acts on the stomach; but if vomiting does occur, it indicates that
the agent acts on the vomiting centre and causes emesis by contraction
of the parietes and diaphragm, with this reservation, that the drug may
have been eliminated by the esophagus and intestines and have reflexly
stimulated the vomiting centre through the medium of these parts. These
remarks demonstrate the complexity of the subject.
Emetics.

Specific
- Apomorphine
- Lobeline
- Morphine
- Senega
- Squills

Mixed
- Tarter Emetic
- Copper Sulphate
- Zinc Sulphate

Local
- Tepid water
- Mustard
- Salt
- Alum
- Ammonium Carbonate

Apopomorphine is the only emetic given hypodermically. It also acts well by the mouth, but causes more nausea and allied effects than drugs acting locally. Morphine and lobeline given for other purposes frequently induce emesis also, particularly if the dose be large.

Mustard and salt, 1 teaspoonful each, in a cup of lukewarm water, form a convenient emetic for dogs. Ipecac is useful in respiratory diseases as an expectorant as well as emetic, and zinc sulphate is a prompt emetic in poisoning. The other emetics are practically unimportant.

Emetics cause, beside vomiting, several other phenomena which are sometimes utilized therapeutically. Among these may be mentioned nausea, salivation, violent respiratory efforts, compression of the abdominal glands and ducts and extrusion of their contents, passive congestion of the head, chest, and peripheral parts by reason of compression of the abdominal veins. Increased secretion of the mucous membranes of the nose, eyes, stomach, gullet and bronchial tubes follow passive congestion. Muscular relaxation always accompanies nausea, and sweating ensues from relaxation of the skin and leaking out of the secretion. The flow of bile is increased on account of pressure on the liver and gall-bladder, while the secretion is also augmented.

The pulse and respiration are more frequent during emesis, but are diminished in force and frequency afterwards. All these phenomena are more apparent after the use of specific emetics.

Uses.—These apply particularly to dogs.

1. To empty the stomach in case of poisoning, over-loading of the organ, and indigestion with convulsions in young animals:—Mustard, salt or zinc sulphate.

2. To expel foreign bodies from the fauces and gullet (apomorphine subcutaneously); or, by the forcible expiration attending vomiting, to expel excessive secretion or exudation from the air passages in laryngitis or bronchitis:—Ipecac.

3. To cure depraved appetite, pica or licking habit, where animals lick foreign bodies; as wool eating in sheep, feather plucking in fowl, etc. Here apomorphine is indicated.

4. To lower blood pressure and increase secretion in the first stage of bronchitis:—Ipecac.

5. To stop vomiting:—Ipecac in minute doses.

Contra-indications.—Pregnancy; hernia; inflammation of the stomach, brain or abdominal viscera; bleeding from the stomach, bowels or lungs; aneurism and asthenia.
Gastric sedatives and anti-emetics are agents used to relieve pain in the stomach and vomiting. These include:

- Ice
- Hot water
- Bismuth subcarbonate
- Bismuth subnitrate
- Carbon dioxide
- Hydrocyanic acid
- Morphine
- Menthol
- Carbolic acid
- Creosote
- Aconite
- Belladonna
- Hyoscyamus
- Cocaine
- Cerium oxalate
- Lime water
- Minute doses of arsenic
- Minute doses of ipecac
- Minute doses of alcohol
- Minute doses of iodine
- Minute doses of silver nitrate
- Chloroform
- Chloral
- Bromides
- Nitrites
- Brandy and champagne

Most of these agents act locally, but opium and morphine, chloral, the bromides, prussic acid and the nitrates act centrally.

Uses of Gastric Sedatives and Anti-Emetics in Canine Practice

It must be recognized that vomiting is merely a symptom. It is therefore, essential to remove the cause. This may sometimes be accomplished by starving, the use of an emetic, or tepid water. If vomiting is due to acute irritation of the stomach, as is frequently the case in dogs, ice and bismuth subnitrate (gr.x-xx), with tincture of aconite (Ml-i-ii), form suitable remedies. When vomiting arises from indigestion and fermentation, carbolic acid with bismuth often acts favorably. The vomiting following anesthesia is probably of central origin. Here enemata of laudanum (Mx-xxx) and sodium bromide (gr.xx-xxx) are beneficial. Ipecac, iodine, silver nitrate and the like are useful in vomiting dependent upon an atonic or depressed state of the stomach. When vomiting is continuous, small quantities of milk and lime water, equal parts, or peptonized milk (5ii-iv) or a dram of cracked ice with a few drops of brandy, should be given at half-hour intervals. It may be rarely necessary to resort to rectal feeding.

Purgatives or cathartics are agents which empty the bowels. They act: (1) By stimulating peristaltic action. (2) By increasing the secretions (succus entericus) of the intestinal glands and, perhaps, transudation of fluid from the blood vessels in the walls of the intestines. (3) By hindering absorption of secretions and fluids which normally occurs in the lower bowels. (4) By a combination of two or more of these methods. Purgatives may be divided into:

1. **Laxatives.**—These include such agents as:

- Olive oil
- Cottonseed oil
- Magnesia
- Sulphur
- Nux vomica
- Linseed oil | small dose.
- Castor oil | Liquid petrolatum and other mineral oils (mechanical lubricant, not absorbed)
These drugs slightly increase intestinal action, chiefly by stimulation of peristalsis.

2. *Simple Purgatives.*—These stimulate secretion and peristaltic action. Among them may be mentioned:

- Aloes
- Calomel
- Linseed oil
- Castor oil
- Rhubarb

- Senna
- Cascara sagrada
- Phenolphthalein
- Frangula
- Bryonia

3. *Drastic Purgatives.*—Drastics are essentially gastro-intestinal irritants, and in large doses cause mucous and bloody diarrhea, congestion of the mucous membrane of the alimentary canal and severe colic. They may produce death in poisonous doses with collapse by reason of gastro-enteritis. Drastics greatly increase both peristaltic action and secretion, and are contra-indicated in irritable and inflamed conditions of the digestive tract. They are, however, indicated for their revulsant or derivative effect (i.e., to dilate the blood vessels in the alimentary canal and to cause an outpouring of serum from the blood, thus relieving congestion in other parts) in some acute inflammations, as in brain diseases. Their medicinal action is often attended with considerable and irregular peristaltic contractions, so that griping occurs. The latter is prevented by suitable combination with other purgatives; with hyoscyamus and belladonna; or with carminatives, as ginger. The drastics include:

- Croton oil
- Colocynthis
- Gamboge

- Scammony
- Jalap
- Elaterium

4. *Hydragogue Purgatives.*—Hydragogues are agents which chiefly increase the fluidity of the intestinal contents. They include:

(a) *Saline Purgatives*

<table>
<thead>
<tr>
<th>Magnesium sulphate</th>
<th>Sodium phosphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium sulphate</td>
<td>Potassium bitartrate</td>
</tr>
</tbody>
</table>

(b) *Drastics*

| Jalap | Elaterium | Scammony |

Purgation by salines depends upon the absorbability of their ions. The least absorbable are the most cathartic. Among the basic ions (cations), magnesium is least absorbable, and among the acid ions (anions), the sulphates, phosphates, citrates and tartrates are absorbed with most difficulty.

The salines stimulate secretion by reason of their bitterness, and by their irritant and specific properties. They, moreover, hold on to the fluid thus secreted and hinder its absorption because of their slow diffusibility. Purgation follows, owing to the mechanical effect of the increased fluidity of the bowels, and since the augmented bulk of the intestinal contents excites peristaltic action. When it is desirable to remove fluid
from the blood the salt should be given in concentrated solution, but when a speedy purgative action only is required the saline should be administered in considerable dilution. Concentrated or hypertonic saline solutions cause copious transudation and secretion in the stomach so that they become almost isotonic with the body fluids before leaving the viscus. They irritate the stomach and retard its motor functions. Saline purgatives do not expel feces as well as others because they do not stimulate peristalsis as much and leave much of the solids behind while mostly liquid escapes. If absorbed they pass out by the kidneys and are diuretic.

The drastics included in this class of purgatives have the power of markedly increasing intestinal secretion as well as peristaltic action.

5. Cholagogue Purgatives.—Cholagogues are agents which assist in removing bile from the body. Some cholagogues are not generally considered purgatives, but it is proper to classify all of them thus, since bile stimulates peristalsis.

SUPPOSEDLY DIRECT CHOLAGOGUES.

Sodium salicylate
Podophyllum
Aloes
Rhubarb
Colchicum
Sodium sulphate

INDIRECT CHOLAGOGUES.

Calomel
Mercury
Most purgatives in a less degree.

The drugs marked with an asterisk have been found by clinical evidence most active.

The bile occurring at any time within the bowels is in part absorbed and then re-secreted. This process may be repeated indefinitely, but is prevented by purgatives, especially those increasing peristalsis in the duodenum and upper part of the jejunum (calomel), because they hurry along and expel the bile in the gut before it has time to be absorbed.

In this way calomel and purgatives are indirect cholagogues in removing bile from the body; not by stimulating its secretion, but by hastening its excretion from the bowels. The results of former experimenters have been swept aside by the more recent and thorough researches of Stadelmann, on animals, and of Pfaff, on men, with biliary fistulae.

These researches show that there is no agent which has any marked influence in increasing the secretion of bile, except bile itself.

Salicylic acid and secretin do, however, have a feeble cholagogue action. Moreover, there is no morbid condition in which increasing the flow of bile would prove remedial.

Clinically so-called cholagogues are, nevertheless, of value because they act as purgatives (calomel), or as intestinal antiseptics (calomel,
salicylic acid), expelling or inhibiting the formation of toxins or in some way improving digestion (nitrohydrochloric acid). The conditions in which they act most favorably are indigestion and constipation, with or without icterus and clay colored stools. Such conditions were formerly thought to be due primarily to disordered liver or "biliousness," but the cases amenable to treatment really arise in the beginning from functional disorder of the stomach or intestines.

General Uses of Purgatives.

1. **To empty the bowels.**—In this way are removed fecal accumulations and poisonous matters resulting from bacterial infection, and from fermentative and putrefactive changes in the intestinal contents in indigestion. Foreign bodies, bile, pathological discharges and intestinal parasites are also expelled.

 Peristaltic action is quickened in chronic constipation, while spasmodic and painful conditions (colic) are relieved by ridding the bowels of the source of irritation causing the trouble.

2. **To remove fluid from the body.**—This effect is more marked after the use of concentrated solutions of saline purgatives and other hydragogues. Concentration of the blood and resulting absorption of dropsies of renal and cardiac origin, or inflammatory effusions, may be accomplished by these agents.

3. **To revulse.**—That is, to cause dilatation of the blood vessels in the intestinal walls and so withdraw blood from remotely congested areas, as in meningitis. The drastics are appropriate for this service. Pain and nervous phenomena in other regions are sometimes benefited by the counter-irritant action of drastic cathartics.

4. **To deplete.**—Cathartics, particularly concentrated saline solutions, deplete the body both locally and generally by withdrawal of serum from the blood vessels. Purgatives tend to combat inflammation (antiphlogistic action) in this way by lowering blood tension while they also favor reduction of a febrile temperature by removal of toxins. Local depletion by salines is especially indicated in diarrhea and dysentery, in hemorrhoids (sulphur, liquid petrolatum), and in the first stages of acute inflammation of the digestive tract. Plethora and obesity are often treated by a depleting method with cathartics.

5. **To eliminate.**—Deleterious material in the blood resulting from renal insufficiency, and probably from infection in acute diseases, may be eliminated to a considerable extent by purgatives. So also may the hemic sources of puerperal eclampsia, uremia, lymphangitis and hemoglobinemia be excreted.

Contra-indications.—These refer rather to the special agent than to any disorder, for there is scarcely a condition in which some cathartic is not permissible.

Drastics are inadmissible under the following circumstances: in catarrhal conditions of the respiratory and digestive tracts, intestinal hemorrhage, collapse, anemia, hernia, prolapse of rectum, metritis, nephritis, pregnancy, general debility, and in wounds of and operations upon the pelvic or abdominal viscera.
In well-defined enteritis and peritonitis cathartics are to be avoided. In mechanical obstruction of the intestines surgical interference is indicated when practicable, but where this is impossible enemata and some purgatives may be employed. The intestines, developed to an extent disproportionate to the size of the stomach in the horse, are powerfully influenced by cathartics, so that in catarrh of the respiratory organs and influenza, metastasis, or change in the site of the inflammation, may occur, and the intestines may become involved with the occurrence of excessive purging (super-purigation) after the ingestion of any but the mildest cathartics, as linseed oil. Aloes is the purgative given horses for ordinary purposes, while Epsom and Glauber salts are suitable for ruminants and pigs, and calomel and castor oil for dogs. Water assists the action of purgatives, and its ingestion should be encouraged by supplying a liberal quantity of common salt either with the purgative or on the food, and also by sweetening the drinking water with molasses in the case of cattle. If the action of cathartics is delayed, it is usually advisable to give enemata.

Enemata, or Clysters.—These are fluid injections into the rectum and are used for the following purposes:

1. To empty the lower bowels when purgatives are inadmissible, as in intestinal obstruction, ulceration and inflammation, fecal accumulations, debilitated conditions, obstinate vomiting, unconsciousness, and in inability to swallow (sore throat and tetanus).

2. To relieve pain, spasm (of intestines and bladder), and shock, when deep, hot enemata (105°-115° F.) are used.

3. To save life. After severe hemorrhage, deep injections of hot normal salt solutions, 110° F. (Enteroclysis, see p. 519.)

4. To accelerate the action of purgatives, and as a preparation for abdominal and pelvic operations.

5. To supply food. (See Artificial Feeding, p. 490.)

6. For their local effect upon inflammation of the mucous membrane of the rectum and colon. Opium and boiled starch solution; silver nitrate and tannic acid—in diarrhea, dysentery, colitis and proctitis.

7. To kill intestinal parasites (pinworms);—solutions of quassia and common salt.

8. To administer medicines in dysphagia due to pharyngitis, tetanus, unconsciousness (apoplexy, coma and convulsions); to obstinate vomiting and other causes.

9. To reduce temperature,—cold enemata in fever.

10. To produce diuresis,—deep injections (110° F.) for retention and absorption into the blood.

11. To improve muscular tone and intestinal peristalsis in chronic constipation,—cold enemata (55°-60° F.).

12. To overcome twist and intussusception.

13. To stimulate peristalsis, relieve congestion, and increase the flow of bile in catarrhal jaundice,—cold, deep irrigations (55°-60° F.) are here indicated.

14. The stomach of dogs may be washed out by hanging them in an inverted position with the head down and allowing water (often sev-
eral gallons) to flow into the rectum from a height of 6 feet until vomiting begins. The anus should be compressed by the fingers while giving the injection to prevent escape of the water. This treatment is valuable in food or chemical poisoning, or after ingestion of foreign bodies.

Enemata are best given by allowing water to gravitate into the bowel from a height of 2 to 4 feet. The ordinary fountain syringe of human practice is suitable for the smaller animals, while for deep injections or irrigations a human rectal tube or soft catheter should be slipped over the hard rubber tube. In the case of horses or cattle, enemata may be siphoned through a rubber tube or piece of small hose. This is accomplished by filling the tube with water and compressing it at either end to prevent the escape of water, while one end is submerged in a pail or tub raised 2-4 feet above the patient, and the other end is then introduced directly within the bowel; or affixed to a rectal tube six feet long, when deep injections or irrigations are in order. A continuous flow is thus obtained. A still simpler method consists in pouring water into a funnel which has been fitted to one end of a rubber tube while the other end is passed into the rectum. That portion of the tube which is to be placed within the gut should always be lubricated with vaseline, oil or soap. Manual removal of hardened feces (scybala) must be practised in all animals before the use of enemata. The finger or blunt curette may be utilized for this purpose in small patients. The injection of linseed or cottonseed oil (H., Oi; D., 5ii) an hour before the use of larger enemata assists in softening the intestinal contents, or 1 to 2 ounces of glycerin are used, to the quart of warm water or normal saline, to soften the fecal masses.

When deep injections are indicated, the hind quarters of the animal should be raised—small animals may be partially inverted—and the fluid allowed to flow in slowly, pushing in the rectal tube as the gut distends. Such enemata are more effective whether the object be simply to unload the bowels, to cause retention and absorption of the fluid, or to wash out the intestines. One to several gallons of warm water form a suitable quantity for unloading the bowels of large animals; one-half pint to a quart, in the case of small patients. The injections should be repeated until a good evacuation is obtained. To increase the purgative effect of enemata a cup each of soft soap, salt and molasses is added to a gallon of water; or a tablespoonful of each to a pint. Equal parts of milk and molasses form one of the most efficient enemata known for causing catharsis (H., Ci; D., Oi). Linseed oil or cottonseed oil is also mixed with water. Epsom salt is still more efficacious (H., 6ii to gallon of water; D., 5ii-iv to pint); while oil of turpentine or tinc. of asafetida (H., 5ii-iv; D., 5i-iv) is very active and especially useful in colic and flatulence, mixed with the enema. When clysters are given to be absorbed they should always be injected very slowly by raising the water supply only from 4 to 7 inches above the anus. From 10 to 20 gallons of normal salt solution may be given to horses within 24 hours and several quarts to dogs—if an attendant can devote time to the purpose (p. 519). In chronic constipation and torpidity of the bowels plain cold water (55°-60° F.) injections are indicated.
Medicated irrigations are most serviceable in catarrhal disorders of the bowels (dysentery, etc.), *i.e.*, the fluid is allowed to flow in and out again till the solution returns clear.

DRUGS ACTING ON THE CIRCULATION.

I.—Acting Upon the Blood.

(a) *Blood plasma.—* The alkalinity of the blood plasma can be increased by the use of the salts of the alkaline and earth metals; *i.e.*, potassium, sodium, lithium, ammonium, magnesium and calcium compounds. This effect is of value therapeutically in rheumatism, hemoglobinemia and uric-acidemia. In the former two disorders, increasing the alkalinity of the blood plasma appears to assist in the elimination of toxic material, while in the latter condition the excretion of uric acid—existing in the blood as urates—is thought to be favored by potassium and lithium salts. These salts also alkalize the urine and increase its secretion. Drugs which remove considerable fluid from the body, as purgatives, diaphoretics and diuretics, necessarily alter the composition of the blood plasma. By removing fluid from the plasma, these agents are useful in aiding absorption of inflammatory exudations, dropsics and edemas, since the mass of fluid removed is soon replaced from that contained in the food and tissues. In the various infectious and constitutional diseases treatment is largely directed to exciting the secrections and excretions with the purpose of eliminating products of tissue waste and bacterial action from the blood, which prove detrimental to the system. This line of treatment is pursued in uremia, hemoglobinemia and lymphangitis. Venesection, saline infusions, hypodermoclysis and enteroclysis alter the character of the plasma and often have a life-saving value. (See p. 514.)

(b) *The red corpuscles.—* The so-called blood tonics, or hematinics, influence the red corpuscles, increasing their number and content of hemoglobin when there is a deficiency of either. The effect upon the augmentation of hemoglobin is more marked.

Hematinics.

Iron and its salts	Corrosive sublimate
Copper salts	Potassium permanganate
Arsenic	Manganese dioxide

The first two are immensely superior to the others in blood-making properties. Iron especially favors the formation of hemoglobin; arsenic increases the number of red corpuscles. Certain agents possess toxicological significance by destroying the composition of hemoglobin. Large doses of the coal tar products, as acetanilid, antipyrin and phenacetin, nitrites and potassium chlorate, convert hemoglobin into methemoglobin, a mixture, probably, of hematin and soluble albumin; while carbonic oxide, phosphorus, sulphur, arsenic, iodine, hydrogen sulphide and turpentine, in large doses, reduce oxyhemoglobin and prevent its combination
with oxygen. Acetanilid, potassium chlorate and amyl-nitrite destroy the red blood cells, if absorbed in considerable amount.

(c) **White corpuscles.**—It is possible experimentally to arrest purulent exudations caused by irritation and inflammation when quinine is introduced into the blood or applied locally to blood vessels. This happens because quinine and all cinchona salts, berberine sulphate and acetanilid—like other poisons to amebae—prevent the ameboid movement or migration (diapedesis) of leukocytes through the vessel walls. Unfortunately it is impossible to give large enough doses in practice to realize such favorable results in inflammatory disorders. An enormous increase of leukocytes (leukocytosis) occurs in acute diseases accompanied by a local exudation process, and also in leukemia, etc. Nucleic acid may induce leukocytosis and may be valuable in bacterial infections. Its therapeutic value is still doubtful after many years of trial. Arsenic, and in some cases quinine, appear to reduce leukocytosis, and in leukemia seem thus to aid recovery. Drugs altering the consistency of the blood are: calcium chloride and (to a less extent) other calcium salts, gelatin and potassium iodide, which increase the rate and degree of coagulation; cod-liver oil, which augments the solids in the blood; and toxic doses of mercury, which lessen the solids and coagulation and increase the fluidity of the blood.

II.—Drugs Acting on the Heart

The following includes the mechanism controlling the heart, which may also be influenced by drugs:

1. The heart muscle. This contains the sinus node, which is a part of the heart muscle of the right auricle near the superior vena cava, and is called the pacemaker of the heart because the normal rhythmic impulses start here and spread to the auricles and thence through the small muscle called the auriculoventricular bundle, situated in the septum, and by its two branches to both ventricles. This impulse normally causes the auricles to contract and then, a moment later, the ventricles.

The heart muscle is itself capable of "rhythmically creating a stimulus, of responding to a stimulus by contracting, of conveying the stimulus from muscle fibre to muscle fibre, and of maintaining its proper tone."

To bring the action of the heart into coordination with the needs of the blood vessels a nervous mechanism is essential, as follows:

2. Inhibitory apparatus, including vagus roots in the medulla, vagus nerves with terminations in ganglia in the heart, and fibres passing from the ganglia to the sinus node and junctional tissue (between the auricles and ventricles) of the auriculoventricular bundle.

3. The accelerator apparatus consisting of the accelerator or sympathetic nerves with centres (presumably) in the medulla, and in the inferior cornua of the anterior part of the spinal cord, with fibres connecting with the sympathetic thoracic ganglia whose cells send fibrils to the sinus node of the right auricle.

The essential object of the circulation, in the last analysis, is to produce an adequate flow in the capillaries. This depends upon the heart's output, the arterial resistance, and the amount and viscosity of the blood.
The heart's output is the resultant of the filling, the capacity, the rate and the strength of the ventricles. Powerful stimulation of the vagus may arrest the heart in diastole, or may impede the passage of impulses through the auriculoventricular bundle (heart block), so that the ventricles beat more slowly than the auricles. Stimulation of the vagus may cause loss of tone so that there is more relaxation in diastole and less force in systole. The coronary arteries are filled from the aorta in both systole (first part) and diastole and prolonging diastole may or may not increase the amount of blood entering them. In general, moderate slowing of the heart increases its blood supply and nutrition. The heart is influenced by drugs as follows:

1. Stimulation of the inhibitory apparatus leads to slowing or weakening of the heart-beats, or to both.
2. Depression of the inhibitory apparatus results in quickening or strengthening the heart-beats, or both.
3. Stimulation of the accelerator apparatus causes an increase in the rate or force of the heart-beats, or both.
4. Depression of the accelerator apparatus induces decrease in the rate or force of the heart-beats, or both.
5. Stimulation of the heart-muscle produces increase in the rate or force of the heart-beats, or both.
6. Depression of the heart-muscle lowers the rate or force of the heart-beats, or both.

The vagus centre is stimulated by agencies increasing blood-pressure, or causing asphyxia. On the other hand, agencies reducing blood-pressure depress the vagus, or stimulate the accelerator nerve, or both. Thus, the nitrites, as amyl nitrite, nitro-glycerin and spirit of nitrous ether, quicken the heart by lowering vascular tension. External stimuli to sensory nerves reflexly stimulate the heart, as also do many locally irritating agents taken internally; e.g., strong alcoholic or ammoniacal preparations.

Since drugs commonly influence more than one part of the mechanism controlling the heart, and since it is difficult to determine the exact physiological details in such complex actions, we shall content ourselves with tabulating the actions of drugs ordinarily employed for their influence on the heart, remembering that while moderate doses produce the effects enumerated below, poisonous doses often give rise to diametrically opposite actions.

(a) **Drugs increasing the force of the heart-beat.**

- Digitalis
- Adrenalin
- Barium salts

(b) **Drugs increasing the rate of heart-beats.**

- Belladonna
- Atropine
- Hyoscyamus

Slow the pulse

- Squill
- Prostigmine
- Do not alter rate particularly
- Camphor

Strophanthus

Spar.

Harmanium

Cocaine
(c) Drugs increasing the force and rate of heart-beats.
Alcohol
Chloroform
Ether
Ammonia
Ammonium carbonate
Strychnine
Caffeine
Quinine
Arsenic

(d) Drugs decreasing the force and rate of the heart-beats.
Aconite
Veratrum viride
Antimony salts
Prussic acid
Ergot

The drugs most frequently given to animals for their action on the heart are alcohol, ether, digitalis, strophanthus, ammonia, ammonium carbonate, camphor, caffeine, strychnine, atropine, aconite and veratrum viride. The reader is referred to special articles on these drugs for therapeutical indications and other details.

III.—Drugs Acting on the Blood Vessels.
The following table includes the mechanism regulating vascular tension:

<table>
<thead>
<tr>
<th>Smooth muscular fibres</th>
<th>Vasodilators</th>
<th>Vasoconstrictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the walls of the vessels</td>
<td>Vasodilators</td>
<td>Vasoconstrictors</td>
</tr>
<tr>
<td>Nerve supply of vessels</td>
<td>Vasoconstrictor or vasomotor centres</td>
<td>in the medulla and subsidiary centres in the spinal cord and sympathetic system, controlling the constricting nerves</td>
</tr>
<tr>
<td>Centres</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each peripheral vessel contains regulating, constrictor fibres, except, possibly, those of the heart, lungs and brain. The vascular lumen is narrowed by stimulation, and widened by inhibition, of the vasoconstrictor apparatus.

Some vessels possess dilating fibres which do not appear to be controlled by a distinct center. But we cannot discriminate between the action of a drug on the muscular fibres and the peripheral nerve endings in the vessel walls; nor can we always tell whether a drug acts to stimulate one set of peripheral fibres or depress the other.

Vascular tension is increased not only by contraction of vessels, but also by drugs which cause the heart to beat more quickly, and by those making its pulsations more forcible and complete, so that all the blood is squeezed out of the ventricle at each contraction. Contrariwise, blood pressure is diminished, not only by those drugs inducing vascular dilatation, but by those reducing the rate or force of the heart, or both.

We shall simply classify drugs influencing the vessels according as to whether they act after absorption into the blood, or only when applied locally to the vessel walls.
(a) *Drugs acting systemically to contract vessels.*

- Pituitary extract
- Adrenalin
- Cocaine
- Ergot
- Atropine
- Digitalis
- Strophanthus
- Squill
- Sparteine
- Strychnine
- Hamamelis
- Hydrastis
- Physostigmine

(b) *Drugs acting systemically to dilate vessels.*

- Amyl nitrite
- Nitroglycerin
- Spirit of nitrous ether
- Alcohol
- Salicylates
- Ether
- Chloroform
- Thyroid secretion
- Chloral
- Aconite
- Opium
- Belladonna (secondary action)
- Hyoscyamus (secondary action)
- Stramonium (secondary action)

(c) *Agents acting locally to contract vessels.*

- Secretion of the suprarenal and pituitary glands
- Cold
- Astringents

(d) *Agents acting locally to dilate vessels.*

- Heat
- Thyroid secretion
- Counter-irritants

Uses.—Drugs or agencies causing general dilatation of vessels are useful in overcoming internal congestions and colds by equalizing the circulation; that is, by causing the blood to be distributed more uniformly about the body. Some are also of benefit in morbid conditions attended with a high, vascular tension; and are serviceable in dilating peripheral vessels and in causing perspiration and loss of heat in fevers (spirit of nitrous ether and salicylates). Drugs inducing general contraction of vessels are employed in disorders characterized by loss of tone, as in shock and collapse; and in heart weakness or disease (adrenalin, digitalis and strychnine); also in internal hemorrhage and inflammations (ergot); and to aid the absorption of dropsies and edemas. The uses of drugs locally contracting vessels will be described under astringents (p. 53) and of agents locally dilating vessels under counter-irritants (p. 52).
DRUGS ACTING ON THE NERVOUS SYSTEM.

I.—Drugs Influencing the Brain.

It is impossible to classify drugs according to their action on the various centres of the brain, because our knowledge is insufficient. In a general way, drugs affecting the nervous system fall into two groups,—the excitant and depressant. But another difficulty arises in regard to classification from the fact that the same drug usually both excites and depresses. Many drugs influencing the nervous apparatus possess some exciting action, and most drugs which excite in small doses cause depression and paralysis after poisonous quantities.

Apart from a transient stimulation, alcohol, ether and chloroform are essentially cerebral depressants, contrary to accepted ideas. Belladonna and its congeners, on the other hand, only excite the brain in large amounts; while opium and cannabis indica may excite the brain in small doses, but are used for their more common depressant action. The condition of the patient has some bearing on the action of a drug influencing the brain. Thus moderate doses of alcohol depress and stupefy healthy animals while stimulating the enfeebled and ill-nourished.

The brain of the lower animals is undeveloped compared to that of man, and, in accordance with the general fact that the more highly a portion of the nervous mechanism is organized the more powerfully is it influenced by drugs, it follows that drugs acting on the brain and cord are more prone to affect the cord in veterinary patients while impressing the brain more potently in man. For this reason we notice in the horse that the primary period of excitability (sometimes seen in man) following the administration of morphine is much prolonged and not infrequently completely obliterates the somnifacient action of the drug in this animal.

We shall be content to classify drugs acting on the nervous system according to their most pronounced action in moderate doses.

(a) Cerebral Excitants.

Camphor
Caffeine
Quinine
Cocaine

Uses.—These drugs are rarely used simply to excite the brain, but for other purposes. Camphor, caffeine and quinine are employed to generally excite the nervous system in depressed condition. Camphor is perhaps the best agent we possess to stimulate the heart and vital nerve centres in emergencies. Caffeine is a valuable antidote to the depressing cerebral action of opium in poisoning and is a potent heart stimulant.

(b) Cerebral depressants.—It is fortunate that drugs progressively paralyzing the functions of the brain follow the so-called law of dissolution—i.e., paralyze the various functions of the brain in the inverse order of their evolutionary development. The centres last to be acquired are the first to be paralyzed (cerebral centres); while those of earliest origin (the respiratory, vagus and vasomotor centres) are last to succumb to the action of cerebral depressants. The cerebral depressants are used mostly to relieve pain, when they are called anodynes or anal-
gesics. Pain is due to irritation of any sensory nerve, or the sensory tract in the spinal cord, or of the sensory centres in the brain. Pain may be relieved by paralyzing any portion of this path and destroying connection with the perceptive centres in the brain.

(1) **Anodynes, by reason of their action on the brain.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Alcohol</th>
<th>Cannabis Indica</th>
<th>Chloral</th>
<th>Bromides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeine</td>
<td>Alcohol</td>
<td>Cannabis Indica</td>
<td>Chloral</td>
<td>Bromides</td>
</tr>
<tr>
<td>Morphine</td>
<td>Anesthetics</td>
<td>Gelsemium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opium</td>
<td>Chloral</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) **Narcotics.**—This term is a broad and somewhat inclusive one. Narcotics embrace drugs which depress the brain and cause sleep (hypnotics or soporifics) and stupor (some anodynes and anesthetics), and finally paralyze the respiratory and circulatory functions. The following may be included in this group:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Anesthetics</th>
<th>Cannabis Indica</th>
<th>Stramonium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium</td>
<td>Anesthetics</td>
<td>Cannabis Indica</td>
<td>Stramonium</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Chloral</td>
<td>Belladonna</td>
<td>Hyoscyamus</td>
</tr>
</tbody>
</table>

(a) **Hypnotics or Soporifics** (drugs causing sleep):

<table>
<thead>
<tr>
<th>Drug</th>
<th>Anesthetics</th>
<th>Cannabis Indica</th>
<th>Chloral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium</td>
<td>Anesthetics</td>
<td>Cannabis Indica</td>
<td>Chloral</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Chloral</td>
<td>Belladonna</td>
<td>Hyoscyamus</td>
</tr>
</tbody>
</table>

Uses.—Hypnotics are not of much value in veterinary medicine by simply promoting sleep. Their general sedative and anodyne actions are utilized in relieving motor excitement (spasms) or sensory excitement (pain).

(b) **General Anesthetics.**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Nitrous oxide</th>
<th>Methylenedichloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ether</td>
<td>Nitrous oxide</td>
<td>Methylenedichloride</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Nitrous oxide</td>
<td>Methylenedichloride</td>
</tr>
</tbody>
</table>

Anesthetics are agents which abolish sensation generally or locally. It is thought that the general anesthetics act directly on the nerve cells. Anesthetics—like narcotics generally—first stimulate and then depress the nerve centres, but depression is by far their most salient and useful effect.

Anesthetics destroy the functions of nerve centres in the cerebrum and spinal cord, and so abolish pain, sensation and reflex action. The law of dissolution is exemplified in their action. Anesthesia is commonly described in three stages. (1) The first or **stimulant stage** is exhibited by excitement and struggling, owing in part to fright and in part to irritation of the respiratory tract by concentrated vapor. There are also coughing and choking in this stage, following the local irritation of the vapor on the respiratory tract. There may be vomiting, and the circulation and respiration are reflexly stimulated. Stimulation now ceases, and depression of the cerebrum, together with the motor, sensory and reflex spinal centres, appears, and ushers in the (2) **anesthetic stage**, characterized by muscular relaxation and complete abolition of conscious-
ness, sensation and motion. Between these two stages—the stimulant and the anesthetic—there sometimes occurs a transient state in which sensation is lost before consciousness. This has been styled the \textit{anodyne stage}.

Finally, the (3) \textit{paralytic stage} ensues, accompanied by depression and then paralysis of the three great vital medullary centres controlling the circulation and respiration, together with that of the lowest reflex centres, so that involuntary micturition and defecation occurs. The animal dies of a combination of vasomotor, heart and respiratory failure. If recovery should follow the paralytic stage, the bodily functions return in the reverse order of that in which they were lost; \textit{i.e.}, the lower vital functions first appear, followed finally by the higher cerebral functions.

\textit{Uses.}—Anesthetics are employed in surgical operations to relax muscles and prevent pain and struggling; in obstetrical operations and in the reduction of fractures, dislocations and hernia, to obtain complete muscular relaxation; to overcome spasms and convulsions resulting from disease or poisons; to arrest severe pain in colic; and finally to destroy aged or sick and useless animals.

For fuller details see Anesthesia (p. 225).

(c) \textit{Drugs acting on the cortical motor centres of the brain.}

\begin{itemize}
 \item \textbf{(1) Drugs stimulating the motor centres.}
 \begin{itemize}
 \item Strychnine
 \item Atropine
 \item Physostigmine
 \end{itemize}

 \item \textbf{(2) Drugs depressing the motor centres.}
 \begin{itemize}
 \item The Bromides
 \item Chloral
 \item Alcohol
 \item Anesthetics
 \end{itemize}
\end{itemize}

The action of drugs on the cerebral cortical centres has been found by comparing the local effect of electrical stimulation before and after the internal use of drugs.

\textit{Uses.}—The drugs depressing the cortical motor area of the brain are valuable in convulsions and spasmodic disorders and in motor excitement, particularly in epileptiform convulsions of dogs.

II.—Drugs Acting on the Spinal Cord.

The functions of the cord consist in the conduction of sensory impulses forward to the brain and of motor impulses backward to the muscles; in the origination of nervous force in centres controlling certain functions (sexual, sweating, etc.); and in reflex action by which the cord transmits impulses from sensory to motor tract of the same side of the body, or laterally, from sensory to motor columns on opposite sides.

While drugs probably influence the various centres in the cord, our knowledge of their action is chiefly limited to that exerted on the motor cells of the inferior cornua.

If a drug stimulating the motor cells of the cord is given experimentally, slight peripheral irritation will reflexly cause convulsions, and, if the cord is severed from the brain, the same phenomena appear.
(A) **Drugs stimulating the motor cells of the inferior cornua.**

<table>
<thead>
<tr>
<th>Strychnine</th>
<th>Ammonia</th>
<th>Opium</th>
<th>Brucine</th>
<th>Anesthetics</th>
<th>Ergot</th>
</tr>
</thead>
</table>

Primary action

Uses.—Strychnine is employed in paraplegia resulting from diseases of the spinal cord after irritation caused by the lesion has passed away.

(B) **Drugs depressing the motor cells of the inferior cornua.**

<table>
<thead>
<tr>
<th>Physostigmine</th>
<th>Potassium</th>
<th>Alcohol</th>
<th>Bromides</th>
<th>Lithium</th>
<th>Ether</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergot</td>
<td>Salts</td>
<td>Antimony</td>
<td>Chloroform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrites</td>
<td>Zinc</td>
<td>Camphor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelsemium</td>
<td>Silver</td>
<td>Carbolic Acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emetine</td>
<td>Saponin</td>
<td>Nicotine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turpentine</td>
<td>Chloral</td>
<td>Veratrine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salts</td>
<td>Magnesium</td>
<td>Morphine</td>
<td>Mercury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>Apomorphine</td>
<td>Arsenic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uses.—Drugs depressing the motor cells of the cord are serviceable as antidotes in the treatment of poisoning by those exciting the same (chloral and bromides in strychnine poisoning), and in convulsive and spasmodic disorders, as chorea and tetanus.

III.—Drugs Acting on the Nerves.

The nerve terminations, rather than their trunks, are influenced by drugs.

(A) **Drugs influencing peripheral sensory nerve-endings.**

(1) **Stimulating sensory nerve-terminations.**—Counter-irritants.

(See p. 52.)

General Uses.—They are applied externally (mustard and heat) to stimulate the heart and respiration in heart failure, shock and collapse.

(2) **Depressing sensory nerve-terminations.**—These include local sedatives or anodynes, which lessen sensation; and local anesthetics, which abolish sensation.

LOCAL ANODYNES.

<table>
<thead>
<tr>
<th>Aconite</th>
<th>Morphine</th>
<th>Veratrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menthol</td>
<td>Chloral</td>
<td>Heat</td>
</tr>
<tr>
<td>Carbolic acid</td>
<td>Prussic acid</td>
<td>Cold</td>
</tr>
<tr>
<td>Atropine</td>
<td>Sodium bicarbonate</td>
<td></td>
</tr>
</tbody>
</table>

LOCAL ANESTHETICS.

<table>
<thead>
<tr>
<th>Cocaine</th>
<th>Stovaine</th>
<th>Holocaine</th>
<th>Ether</th>
<th>spray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucaaine</td>
<td>Novocaine</td>
<td>Cold</td>
<td>Methyl-chloride</td>
<td></td>
</tr>
</tbody>
</table>

Uses.—The local anodynes are employed to relieve pain of an inflammatory, rheumatic or neuralgic character, and itching. The local anesthetics are employel to prevent pain in surgical operations.

(B) **Drugs influencing peripheral motor nerve-endings.**

(1) **STIMULATING MOTOR NERVE-TERMINATIONS.**

<table>
<thead>
<tr>
<th>Strychnine</th>
<th>Aconite</th>
<th>Pyridine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilocarpine</td>
<td>Nicotine</td>
<td></td>
</tr>
</tbody>
</table>
(2) DEPRESSING MOTOR NERVE-TERMINATIONS.

Curare Cocaine Lobeline.
Conium Camphor Nicotine
Amyl-nitrite Prussic acid and many others

Uses.—Drugs influencing the peripheral motor nerve-endings are not of any practical therapeutical value for this purpose (except lobeline).

IV.—Drugs Acting on the Nerves of Special Sense.

(A) Drugs acting on the eye.

(1) Drugs influencing the pupil.—The mechanism controlling the pupil consists of the centres for the contraction of the pupil (in the corpora quadrigemina), the centres for the dilatation of the pupil (midbrain and lower ciliospinal), the third nerve, the cervical sympathetic and the circular and radiating (latter sometimes absent) muscular fibres of the iris. Drugs may act either centrally or locally on these structures. The pupil is dilated by drugs (1) depressing the contracting centre (oculomotor), (2) the terminations of the third nerve or (3) the circular fibres of the iris; and contrariwise, by (4) stimulating the dilating centre, (5) the terminations of the sympathetic or (6) the radial fibres of the iris; and, finally, by a combination of these actions.

Again, the pupil is contracted by drugs stimulating (1) the oculomotor centre, (2) the terminations of the third nerve or (3) circular fibres of the iris; and by depressing (4) the dilating centre, (5) the terminations of the sympathetic or (6) the radial fibres of the iris; and also by a combination of these actions. Drugs may act locally on the pupil through the medium of the circulation as well as when dropped into the eye. Furthermore, absorption and central action may occur when drugs are dropped into the eye as well as when entering the blood through the more ordinary channels.

The drugs used in the treatment of the diseases of the eye are only those acting locally. Drugs influencing the pupil are divided into two classes: (1) those that contract the pupil (myotics) and (2) those that dilate the pupil (mydriatics).

(1) Mydriatics.

(a) Acting locally.

Atropine Homatropine Hyoscyamine Hyoscine Scopolamine Gelsemine

Paralyze third nerve terminations

Cocaine stimulates sympathetic endings

(b) Acting centrally.

Anesthetics (late in their action)

The dilating centre is stimulated by carbonic dioxide in the blood, and therefore dilatation of the pupil occurs in asphyxia; also after irritation of sensory nerves, the sexual organs and digestive apparatus.
Uses.—Mydriatics are useful in dilating the pupil for examination of the eye, and to prevent adhesions of the iris in central corneal ulcers; in keratitis, to overcome photophobia and blepharospasm; and in iritis, to secure rest of the iris and ciliary muscles.

(2) Myotics

(a) Acting locally.

| Physostigmine | Stimulate third nerve endings |

(b) Acting centrally.

| Anesthetics | Opium |

Uses.—Myotics, are employed to prevent prolapse of the iris in wounds and ulcers of the cornea; to antagonize the effect of atropine; to prevent the entrance of light in painful disorders of the eye; to lessen intra-ocular tension in glaucoma*; and, in alternation with mydriatics, to break up adhesions to the iris. All the local mydriatics and myotics mentioned above act on the ciliary muscle to destroy the power of accommodation. Intra-ocular tension in glaucoma is usually increased by atropine and other mydriatics, but is diminished by eserine and pilocarpine.

(B) Drugs Acting on the Ear.

Strychnine makes the hearing (and sight) more acute; while salicylic acid, salicylates and quinine cause, in man, subjective symptoms, including fullness, roaring and buzzing noises in the ears.

DRUGS ACTING ON THE RESPIRATORY ORGANS.

It is impossible to describe under this head all the drugs influencing the respiratory tract. Thus, agents affecting the circulation exert a powerful action on the blood supply and functions of the respiratory organs. The application of counter-irritants and heat and cold externally, reflexly produce notable alterations of pulmonary conditions. Emetics are indirectly serviceable in assisting the expulsion of exudations from the upper air passages in dogs. Furthermore, medicines having a depressing action on the nervous system are of importance in respiratory disorders in relieving cough and spasm. We shall consider here those agents acting on the respiratory apparatus itself.

Drugs Acting on the Respiratory Mucous Membrane.

Errhines, or sternuatories, are drugs which are introduced into the nostrils to cause irritation, coughing and sneezing and expulsion of secretions, parasites and foreign bodies from the nasal chambers and upper air passages. They are rarely of any value, and include tobacco, ipecac, euphorbium, ammonia, chlorine and sulphurous anhydride.

*By opening up the filtration angle at the periphery of the anterior chamber and allowing drainage of lymph through the lymph spaces there into the canal of Schlemm, or to contraction of the intra-ocular vessels, so lessening secretion (Grönholm).
(A) **Drugs Acting Locally.**

Administered by inhalation (in pint of water near the boiling point; unless otherwise stated).

1. Stimulating the mucous membranes and causing vascular dilatation, increased secretion and muscular contraction of the walls.
2. Producing a sedative action.
3. Exerting an antiseptic influence.
4. Relaxing spasm.
5. Causing a local astringent action.
6. Thinning exudations.

(1) **DRUGS EXERTING STIMULANT ACTION.**

- Carbolic acid ... gr.xx
- Creosote ... ml.xx
- Oil of cubebs... 3ss
- Tincture of benzoin 3ss
- Tincture of ipecac 3ss
- Oil of turpentine 5ss-5ssi
- Oil of pine .. 5ss-5ssi

(2) **DRUGS EXERTING A SEDATIVE INFLUENCE.**

Diluted hydrocyanic acid................................. (ml.x-v in 5i cold water)

(3) **DRUGS PRODUCING AN ANTISEPTIC ACTION.**

- Thymol .. gr. vii-xii
- Carbolic acid... 3i
- Creosote ... 3ss
- Compound tincture of benzoin........................ 3ss
- Sulphurous anhydride gas
- Formaldehyd vapor
- Oil of eucalyptus ml.x-xx (in 3ii of alcohol)
- Oil of cubebs ... 3ss
- Oil of juniper ... 3ss
- Benzoic acid ... 3ix (in 3viii of alcohol)
- Tar water, undiluted
- Potassium permanganate gr.xv-5i
- Quinine hydrochlorate 5ss.

(4) **DRUGS RELAXING SPASM.**

- Amyl nitrite.. H., 5ss-i; D., ml.ii-iv, undiluted.
- Extract of belladonna gr. vii-xv
- Extract of hyoscyamus gr. ii-iv
- Extract of conium gr. viii
 (Burning stramonium leaves).

(5) **DRUGS CAUSING A LOCAL ASTRINGENT ACTION.**

- Alum .. 3ss
- Zinc sulphate .. 5ss
- Solution of ferric chloride 3i
- Silver nitrate .. 5ss
(6) DRUGS THINNING SECRETION.

Sodium bicarbonate .. 5ss.
Solution of lime, undiluted.
Ammonium chloride ... 5ss.
Vinegar .. 5ii.
Laetic acid ... 5i.

Uses.—Inhalations are often beneficial in the treatment of coryza, pharyngitis, laryngitis, tracheitis and bronchitis. In the first stage of catarrhal inflammation of the upper air passages, antiseptics may cut short the attack. Simple steaming with vinegar or sodium bicarbonate moistens and soothes the dry, irritable mucous membrane and relieves congestion by promoting secretion. In the exudative stage, agents stimulating the respiratory mucous membrane and making the secretions less viscid are in order. If the mucous or purulent discharges are excessive, astringent sprays or inhalations are useful; and if they are foul-smelling, drugs combining stimulant and antiseptic actions may be employed. Inhalations may be given by means of a bronchitis kettle, or by atomization to small animals. Care must be exercised that too large a quantity of the solution be not used lest absorption and poisoning ensue. Dogs may be placed over the perforated seat of a cane-bottomed chair with the steaming apparatus underneath.

A hot brick is sometimes employed to give inhalations to horses by dropping it into a pail containing the proper solution. The head should not usually be covered during inhalation if the breathing is embarrassed or the respiratory tract obstructed, since fresh air is imperative. Simple steaming may be conducted for an hour. Inhalations containing special drugs may be given for fifteen minutes.

(B) Drugs Acting Systemically.

Expectorants are agents which influence the bronchial mucous membrane and its secretion. They aid or hinder expectoration in man, but are much less efficient in this respect in veterinary medicine, because the act of expectoration is performed with difficulty by the lower animals. Nevertheless, expectorants are useful in altering the character of the secretion and lessening the irritation caused by dry, tenacious discharges, and in stimulating the mucous membranes and improving their circulation and nutrition. Moreover, some drugs (volatile oils) exert an antiseptic action on the bronchial mucous membrane during their elimination. Many expectorants act reflexly from an irritant action on the stomach. Thus Henderson and Taylor have shown this to be the case with ipecac, ammonium compounds, antimony and senega.

Expectorants.

(1) INCREASING SECRETION.

Apomorphine Ammonium chloride Turpentine
Potassium iodide Squill Terpin hydrate
Ipecac Camphor Terebene
Pilocarpine Balsams Volatile oils
Antimony and potassium tartrate Sulphur

Tar
(2) **DIMINISHING SECRETION.**

Belladonna Stramonium Opium
Hyoscyamus Acids

Volatile oils, and drugs containing them, first increase and then decrease bronchial secretion as a secondary effect.

(3) **ALTERING THE NUTRITION OF BRONCHIAL MUCOUS MEMBRANE.**

Potassium iodide Cod-liver oil Sulphur
Ammonium chloride

(4) **EXERTING AN ANTISEPTIC ACTION.**

Turpentine Tar Balsam of Tolu
Terebene Ammoniacum Cubebs
Terpine hydrate Balsam of Peru Copaiba

(5) **LOCALY STIMULATING AND ANTISEPTIC TO MUCOUS MEMBRANES.**

Creosote Eucalyptol Guiacol

Uses.—Expectorants are chiefly prescribed in bronchitis. In the early or dry stage drugs increasing secretion and at the same time depressing the circulation are often employed in sthenic cases. These drugs possess less value in the treatment of the horse, on account of comparative insusceptibility to them, than in the case of dogs.

If exudation is excessive, then drugs lessening secretion are indicated. When the disorder is persistent, agents altering and improving the nutrition of the bronchial mucous membrane are beneficial. Bronchitis accompanied by a copious foul secretion is treated with volatile oils, which exert an antiseptic action on the air passages. Expectorants are usually administered with other agents influencing the respiratory tract; e.g., drugs relieving cough and spasm and those stimulating the respiratory movements or circulation.

Drugs Stimulating the Respiratory Centres.

CO\(_2\) is a natural stimulant.

Strychnine Cocaine Stramonium
Atropine Belladonna Ammonium carbonate
Caffeine Hyoscyamus Strong ammonia

External counter-irritation and heat.

Drugs Depressing the Respiratory Centres.

Morphine, codeine and heroine, chloral and bromides are sedative to the respiratory centre and thus useful in cough, asthma and dyspnea.

Uses.—Drugs stimulating the respiratory centre and movements are of great value in diseases of the chest—especially pneumonia and bronchitis—attended with obstruction in the air passages and cyanosis. They promote coughing and efforts at expulsion of secretion and facilitate the entrance of oxygen into the blood. Some, possibly ammonia, stimulate the movements of the ciliae lining the tracheal mucous membrane.

The plural is sometimes used because, like the vaso-motor, the centres are bilateral in the medulla.
Strychnine and atropine are respiratory stimulants; atropine is indicated where exudation is abundant, while ammonium carbonate is prescribed to increase secretion. Certain drugs sometimes cause in large doses Cheyne-Stokes breathing in animals, e.g., opium, chloral, bromides, digitalis, ammonium carbonate and strychnine, owing to disturbance of the respiratory centre. Drugs depressing the respiratory centre are not used for this purpose but because they also relieve cough.

Drugs Relaxing Spasm of the Bronchial Muscular Tunic and Relieving Cough.

LOCALLY.

<table>
<thead>
<tr>
<th>White of egg Mucilage</th>
<th>Linseed tea Syrups</th>
</tr>
</thead>
</table>

SYSTEMICALLY.

<table>
<thead>
<tr>
<th>Opium</th>
<th>Codeine</th>
<th>Heroin</th>
<th>Hyoscymus</th>
<th>Stramonium</th>
<th>Cannabis Indica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrites</td>
<td>Chloral</td>
<td>Bromides</td>
<td>Chloroform</td>
<td>Phenacetin</td>
<td>Adrenalin</td>
</tr>
</tbody>
</table>

Uses of Drugs Allaying Spasm and Cough.

Coughing is a reflex act following irritation of sensory nerve endings in any part of the respiratory tract (usually of afferent vagal branches), in the pharynx, pleura, ears, teeth, stomach and liver. Sensory impulses conveyed to the reflex centre for coughing,—near the respiratory centre in the medulla,—are there transformed into motor impulses and result in coughing. Drugs may stop coughing by acting locally to relieve congestion and irritation (demulcents) or they may exert a topical sedative action on the nerve endings. They also act systemically by quieting the reflex centre for coughing, or the sensory or motor nerve endings; also by abating congestion in promoting secretion (expectorants), or in influencing the circulation.

Cough may be beneficial when it assists the expulsion of exudation, but is not so when it is constant and ineffective, as in congestion of the trachea, bronchial mucous membranes, lungs or pleura; in pulmonary consolidation; and in coughs originating outside of the respiratory tract. We should try to arrest coughing by agents removing the cause (congestion or irritation), such as counter-irritants, expectorants, local applications (sprays, inhalations) and heart stimulants, but if these are inefficient and coughing is immoderate, we may resort to the use of sedative agents. Some preparation of opium is most frequently employed to stop coughing, but should be avoided if cyanosis exists, since inspiratory and expulsive efforts are weakened by the drug. Belladonna, on the other hand, stimulates the respiratory centres and arrests cough by depressing both the afferent and efferent vagal terminations in the lungs, while—like opium—lessening secretion. These drugs are often combined. When spasm of the bronchioles exists, as in asthma, adrenalin is particularly valuable.
DRUGS ACTING ON THE URINARY ORGANS.

Diuretics are drugs increasing the secretion of urine. Four factors are concerned with urinary flow. (1) The composition and viscosity of the blood. (2) The state of local (renal) and general blood pressure. (3) The activity of the renal cells. (4) Reabsorption or rapidity of flow of urine in the constricted tubes. The renal mechanism influenced by drugs comprises:

(1) The malpighian glomerules, which excrete alkaline fluid, urea and salts (chlorides, sulphates and phosphates), and other substances from the blood by osmosis. Their activity depends upon their blood supply, which is increased by agents causing dilatation of their afferent arterioles, thus accelerating the velocity and flow of blood to the glomerules; and by drugs increasing general blood tension without corresponding constriction of the renal vessels. Drugs augmenting the mass of blood and tension in the malpighian bodies enlarge the surface of cubical epithelium covering the capillary loops and promote osmosis or filtration of fluid into the cavity of the malpighian capsule. There is also some true secretion by the cells lining the glomeruli. Sugar, peptone and egg albumin injected into the blood are excreted by the glomeruli.

(2) The nucleated polyhedral cells lining the convoluted tubes.—These secrete the solid products resulting from the retrograde metamorphosis of nitrogenous bodies circulating in the blood, as urea, uric acid, creatin, and other organic substances, pigment, phosphates and water. Also in animals having an acid urine, the change in reaction from alkaline secretion of the malpighian bodies to acid occurs in convoluted tubes, unless the urine is hurried along too rapidly by diuretics.

(3) The constricted tubes.—These regulate the urinary secretion by either impeding its passage by constriction of their walls, thus aiding absorption, or by their active peristalsis facilitating the flow of urine. The chief function of the constricted tubes is to cause concentration of the urine.

(4) Nervous mechanism.—This governs the calibre of the vessels of the malpighian bodies, and possibly controls the unstripped muscle of the constricted tubes. No secretory nerves, such as those controlling the secretory cells of the salivary glands, have been discovered in the kidneys. Variations in the blood-supply are apparently sufficient to account for the secretion of urine.

The flow of urine is therefore chiefly regulated by the vasomotor system, with centres in the medulla and thoracic and lumbar cord. The constrictor and dilator fibres run in the splanchnics, through the renal plexus, enter the kidney at the hilum, and accompany the arteries to their final endings. We may classify diuretics broadly in two groups: (1) Those acting chiefly upon the glomerules. (2) Those affecting mainly the renal cells of the tubules.

(1) Diuretics increasing the glomerular fluid.
 (a) By increasing the flow through the renal arteries.
 (b) By lessening osmotic pressure of the blood.

Water is the chief diuretic. Without an abundance of water diuresis
Drugs Acting on the Urinary Organs

is impossible. This fact is often lost sight of. Water is absorbed from the bowels (hardly at all from the stomach), where it becomes salt solution by taking up sodium chloride from mucus or food, or from superficial cells of the tract, or from that formed by the neutralization of HCl from the stomach. Water then enters the blood as an isotonic or hypotonic salt solution, increasing its mass (hydremic plethora) and its pressure, thus dilating the renal arterioles and augmenting the flow of urine. Experimentally, Raphael doubled his urinary output by doubling his intake of water. But the most powerful drug (diuretin) only enhanced his urinary flow 50 per cent. The salts act chiefly upon the glomerules. When hypertonic salt solutions enter the blood they increase its osmotic pressure and water passes into the blood from the tissues. The osmotic pressure is then lowered, but the mass of blood is increased, together with vascular tension, and thus dilatation of the renal vessels, and diuresis. The most diuretic salts include potassium acetate, citrate, bitartrate, and solution of ammonium acetate. Sodium chloride and sulphate; potassium nitrate, bicarbonate and iodide; and magnesium salts; may act as diuretics, but not so certainly. Digitalis, squill and strophanthus are powerful diuretics when the circulation is poor, with venous engorgement and low pressure, by overcoming this condition and increasing the flow of blood through the arterioles of the glomerules. They may, like many diuretics, have a local action to dilate arteries in the kidneys and to stimulate renal cells, but this is doubtful. In fact it is probable that powerful diuretics usually act locally to dilate the renal arteries. This has been noted in the case of caffeine (Pearce) but has not been specifically proved in the case of most diuretics. The nitrites are diuretic if they dilate the renal arterioles more than the arterioles generally.

(2) Diuretics stimulating the renal cells, or lessening absorption from the tubules, or both.

The matter of absorption from the tubules is disputed. Some authorities deny that resorption of water or other substances plays any important part in urinary secretion. Caffeine and theobromine act chiefly through powerful stimulation of the renal cells of the tubules, besides dilating renal vessels through excitation of the heart and augmenting blood pressure. The irritant diuretics contain volatile oils, resins or aromatics, as buchu, juniper (gin), turpentine and cantharides. They stimulate the renal cells, or hinder resorption, or both. Urea is the natural stimulant of the renal cells. The irritant glucosides, scoparin and asparagus, act as renal stimulants. Calomel either stimulates the renal cells, or causes diuresis indirectly, in relieving venous engorgement (which obstructs flow in the renal arterioles) by its cathartic action. Diuretics may lessen resorption in the tubules either by hindering the absorbing power of the tubules, or by hastening the flow of urine through them. The solids in the urine are chiefly increased during the first few days after the use of diuretics, and the filtered substances from the malpighian bodies (urea and salts) are eliminated more proportionately by diuretics than the secreted matters (pigment, creatin, uric acid).

Diuretics, according to Fischer's recent and much discussed theory,
act through influencing the colloid chemistry of the renal cells. Production of acid in the renal cells leads to their swelling, edema and lack of function. All salts, glucose and alkalies antagonize this condition, reduce edema of the renal cells, allow water to pass through them, and are all diuretic. Acidosis and edema of the renal cells are brought about by lack of oxygen—hence caffeine, digitalis and agents improving renal blood supply are diuretics in supplying oxygen. Salts and sugar dehydrate tissue; therefore, common salt, sucrose, glucose and lactose are diuretics in abstracting water from the tissue and renal cells.

Uses.—Diuretics are useful in removing toxins and waste solid matters in the blood resulting from disease or the imperfect oxidation of albuminoid substances. Their action depends on an extra ingestion of water. In fevers the potassium salts are employed with spirit of nitrous ether, alcohol and digitalis. They are antipyretics by eliminating pyrogenic material. Tissue waste is increased by diuretics, and they are serviceable in plethora, rheumatism and obesity. In acute disease of the kidneys, salines and digitalis are indicated; in chronic renal disorders salines and diuretin (expensive) are often used. Diuretics remove water from the system. They are, therefore, employed in edema and dropsy of renal or cardiac origin (digitalis), and in chronic effusions, as in pleuritis and pericarditis. In cases with edema water must, however, be restricted and a salt-free diet given. Diuretics lessen irritation of the kidneys by diluting the urine when the secretion is concentrated or contains toxins or other irritants (uric acid, calcium oxalate, etc.). Finally, stimulating diuretics (buchu, turpentine, etc.), are indicated in chronic inflammatory diseases of the kidneys and bladder, and in relaxed and paretic disorders of the bladder (incontinence of urine) to excite the reflex and motor functions of the sphincter and detrusor muscles.

Drugs Influencing the Reaction of Urine.

In man and animals secreting an acid urine, the basic phosphates of sodium and potassium in the blood are decomposed by the renal cells, and acid phosphates of sodium or potassium—being more diffusible—are eliminated, giving the urine its characteristic reaction, while the bases remain behind. In the case of the herbivora the urine is alkaline, because there are larger quantities of magnesium and calcium salts in the food, which precipitate phosphoric acid in the stomach, and because there is an excess of alkaline sodium and potassium salts in the blood. The urine may best be made acid by benzoic acid, which is converted into hippuric acid during its passage through the kidneys. Salicylic acid, urotropin, the mineral acids (as acid salts), and large quantities of the vegetable acids and boric acid tend to acidify the urine in a less degree. An acid urine may be made alkaline by alkalies, as salts of potassium, lithium, sodium and calcium, together with the vegetable salts, tartrates, citrates and acetates, which circulate as carbonates in the blood. Drugs promoting diuresis make the urine less acid because the basic sodium phosphate in the blood is not so readily broken up in the kidney when it diffuses through the cells in great dilution. Ammonia fails to make the urine alkaline because it is transformed into urea.
Uses.—Benzoic acid is sometimes of benefit in acidifying and disinfecting an alkaline decomposing urine of pyelitis or cystitis. Recently urotropin has been used more successfully for these purposes. The alkalies are thought to be useful in alkalizing the blood in certain disorders (rheumatism, hemoglobinemia, etc.), and the urine of carnivora, to prevent the precipitation of uric acid in the urine or to aid its solution when already precipitated.

Drugs Influencing the Composition of Urine.

Speaking generally, drugs act on the glomerules to eliminate water and salts. Drugs influence the tubules to secrete organic substances and water. Whether the glomerular fluid is chiefly an osmotic filtration or a true secretion is a moot point.

The composition of the urine is also altered by most drugs eliminated in it, leading to changes in color, odor, reaction and the appearance of blood pigment, etc.

Thus blood appears in the urine after toxic doses of turpentine, cantharides and salicylic acid; and blood pigment, in poisoning by potassium chloride, acetonilid, nitrites, glycerin and mushrooms (muscari); and occasionally by overdoses of mineral acids, naphtol, naphtalin and arsenic. Rhubarb and senna impart their coloring matter (chrysarobin) to urine, which makes acid urine brown, but alkaline urine a deep blood or purplish red. Carbolic acid, creosote, naphtalin and other tar-products, together with gaultheria and uva ursi (due to contained arbutin), stain the urine a greenish-brown or blackish hue. Santonin dyes an alkaline urine cherry or purple-red, while an acid urine is turned yellow or greenish. Logwood gives its color to acid urine, while an alkaline urine is rendered red or violet. Poisonous doses of sulphonal and trional give rise to a claret-colored urine, owing to hematoporphyrin. Gamboge and carrots bestow their colors on the urine. Turpentine is said to give urine the odor of violets, but large doses impart the peculiar odor of the oil itself. Cubebs, copaiba, eucalyptus, valerian, musk, asafetida, sandal wood oil, asparagus and turpentine (large doses) communicate their special odor to the urine.

Urinary Antiseptics.

Certain drugs are sometimes given with the purpose of killing bacteria in the urine in purulent pyelitis and cystitis. Among these are:

Urotropin	Salol
Benzoic acid	Buchu
Boric acid	Copaiba
Methylene blue	Cubebs
Salicylic acid	Volatile oils

Urinary Sedatives.

The foregoing list, in preventing decomposition, and:

| Hyoscyamus | Opium |
| Belladonna | Alkalies (with an acid urine) |
DRUGS ACTING ON THE SEXUAL ORGANS.

(A) Influencing Chiefly the Male Generative Organs.

The mechanism concerned with the sexual functions is presided over by cerebral and spinal lumbar centres. Agents may immediately excite the spinal centres or cause local irritation of sensory nerves in various parts of the body—more particularly in the neighborhood of the genital organs—and thus reflexly stimulate the lumbar centres.

The cerebral centres are mainly affected by visual, nasal or oral impressions, and also reflexly by irritation of sensory nerve-endings, more especially those situated in the sexual organs.

(1) Aphrodisiacs are drugs exciting sexual desire (and increasing sexual power in the male). They include:

DIRECT APHRODISIACS.

- Strychnine, Phosphorus, Alcohol (act on centres).
- Cantharides (local irritant).
- Yohimbine (causes congestion of the sexual organs).

INDIRECT APHRODISIACS.

In debility: Iron, Strychnine, Arsenic (full diet).

(2) Anaphrodisiacs are drugs lessening sexual desire. They are:

- Opium, Bromides, Purgatives, Nauseants, (bleeding), (spare diet).

Uses.—Aphrodisiacs may sometimes be useful in impotence and loss of sexual desire. Irritants, as cantharides, may cause inflammation of the urinary tract. Loss of sexual desire and power should usually be treated by improving the general nutrition with tonics and good feeding and by regulating the use of the sexual organs, unless the trouble is due to organic disease. Drugs diminishing sexual appetite may be useful in quieting the centres and rendering them less sensitive to sources of local irritation. It is, however, more sensible to remove the cause of irritation, as smegma preputii, acid urine, urinary calculi, intestinal parasites, scybala, fissure of the rectum, hemorrhoids, etc. Anaphrodisiacs may be employed to subdue excessive sexual excitement and nervousness (hysteria) sometimes accompanying "heat" in the female.

(B) Influencing the Female Sexual Organs.

(1) Emmenagogues are drugs which favor the occurrence of "heat" (ovulation) in the female when it is irregular or abnormally absent. We are at present ignorant of their exact mode of action. Some act directly, perhaps, by stimulating the centres or sexual organs.

DIRECT EMMENAGOGUES.

- Savin, Rue, Cantharides (irritants).
- Ergot.

INDIRECT EMMENAGOGUES.

In debility: Iron, Arsenic, Strychnine, Full diet.

Uses.—The irritant emmenagogues are usually ineffectual in medicinal doses, while they may cause inflammation of the urinary tract and
abortion (in pregnant animals) in large doses. The use of the indirect emmenagogues is more rational and effective. Aloes is thought to stimulate the uterus reflexly by irritation of the large intestines, and may also act locally on the uterus after absorption. Absence of estrum, ordinarily a symptom resulting from a general or local condition, should be treated if possible by removing the cause (anemia, debility, plethora, obesity, deformity of genital tract).

(2) *Ecbolics, or oxytocics,* are drugs stimulating uterine contraction during or directly after parturition. The exact physiological details concerned in their action are unknown except in the case of ergot and pituitrin. They are:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergot</td>
<td>Quinine</td>
</tr>
<tr>
<td>Pituitrin</td>
<td>Hydrastis</td>
</tr>
<tr>
<td>Cotton root bark</td>
<td>Savin</td>
</tr>
<tr>
<td>Corn smut</td>
<td></td>
</tr>
</tbody>
</table>

(3) *Drugs restraining uterine contractions.*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthetics</td>
<td>Chloral</td>
</tr>
<tr>
<td>Cannabis Indica</td>
<td>Bromides</td>
</tr>
</tbody>
</table>

Uses.—Ecbolics (preeminently ergot) are used to contract the uterus and arrest hemorrhage after parturition; or to stimulate the womb during parturition in inertia. In poisonous doses they may lead to abortion during pregnancy. Drugs restraining uterine contraction (especially opium) are sometimes given to prevent threatened abortion.

(4) *Drugs influencing milk-secretion.*

(a) Galactagogues are drugs increasing the flow of milk. They include:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracts of the pituitary and mammary glands</td>
<td>Alcohol Full diet</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>Leaves of castor oil plant (internally or locally on udder as poultice).</td>
</tr>
</tbody>
</table>

Drug treatment is practically valueless in increasing the secretion of milk; rich feeding is the chief desideratum. Many drugs are eliminated in milk and may produce their characteristic effects in animals or man drinking it. Among these are:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium</td>
<td>Arsenic</td>
<td>Copper</td>
</tr>
<tr>
<td>All volatile oils</td>
<td>Mercury</td>
<td>Carbolic acid</td>
</tr>
<tr>
<td>Purgative salts</td>
<td>Lead</td>
<td>Colchicum</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>Zinc</td>
<td>Euphorbium</td>
</tr>
<tr>
<td>Senna</td>
<td>Iron</td>
<td>Ergot</td>
</tr>
<tr>
<td>Castor oil</td>
<td>Bismuth</td>
<td>Salicylic acid</td>
</tr>
<tr>
<td>Scammony</td>
<td>Neutral salts</td>
<td>Veratrine</td>
</tr>
<tr>
<td>Jalap</td>
<td>Ammonia</td>
<td>Strychnine</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acids</td>
<td>Croton oil</td>
</tr>
<tr>
<td>Potassium iodide</td>
<td>Sulphur</td>
<td>Aloes</td>
</tr>
<tr>
<td>Antimony</td>
<td>Atropine</td>
<td>Turpentine</td>
</tr>
</tbody>
</table>
(b) *Antigalactagogues.*—Belladonna is the only efficient drug lessening the secretion of milk, applied locally or given internally. It paralyzes the peripheral secretory nerve-endings and is useful in mammitis by diminishing the circulatory activity in the mammary gland.

DRUGS INFLUENCING METABOLISM.

(1) *Alteratives.*—The term "alterative" is a vague, indefinable word used to describe the action of certain drugs modifying tissue change and improving nutrition in some disorders. The word is simply a cloak for ignorance and should be dropped. The value of alteratives has been discovered by clinical experience. The following are often classed as alteratives:

- Arsenic and its preparations
- Mercury and its salts
- Iodine and its salts
- Cod liver oil
- Phosphoric acid
- Colchicum
- Sarsaparilla
- Sulphur

Uses.—Alteratives are employed in those diseases in which experience has proved them to be beneficial.

Tonics.—The word "tonic" is another term even more vague and all-embracing than "alterative," and, therefore, impossible to define precisely. Tonics improve the general nutrition and health, and, as ordinarily understood, refer to drugs promoting appetite and digestion (bitter tonics, as gentian); the state of the blood (hematinics, as iron and arsenic); or the condition of certain organs (heart tonics, as digitalis; nerves, as strychnine). Strychnine is the best example of a tonic. "Tone" is largely due to reflex activity (response to stimulation) which is preëminently stimulated by strychnine.

Tonics are indicated in the treatment of debility (general or special) and anemia.

DRUGS INFLUENCING BODILY HEAT.

Antipyretics are drugs lowering the temperature of the body in fever. The mechanism concerned with temperature changes is as follows:

1. **Heat Production.** There are centres for heat-production at the base of the brain (tuber cinereum and corpus striatum), and less important heat-producing centres in the upper part of the spinal cord.

2. **Heat Loss.** There are centres for heat loss in the cerebrum (cruciate and sylvian), and also at the base, in the tuber cinereum, increasing the frequency of respiration. Then the vasomotor and respiratory centres in the medulla and the sweat centres (probably also situated in the medulla) all contribute to heat loss. This follows from the loss of heat through evaporation of sweat, by the dilatation of the superficial vessels in the absence of sweating, and through the more rapid exchange of air caused by increased frequency of respiratory movements. Heat is also lost in the passage of urine and feces.
3. **Heat Regulation.** There are centres in the tuber cinereum, and less important centres in the corpus striatum, which coördinate or adjust the relations between the heat-producing centres and the centres for heat-loss. The result is the uniform, normal temperature existing in health whereby the production of heat, caused chiefly by muscular activity and favored by constriction of the superficial vessels, is balanced by loss of heat—through flushing of the surface vessels, or sweating, and by lessened muscular action and more rapid respiration. In the body the fall of a few degrees of temperature causes shivering or violent muscular action, together with marked constriction of the cutaneous vessels, which leads both to greatly increased heat production and diminished heat loss.

The heat-regulating centres may be compared to the thermostat set to keep the temperature of rooms at a fixed point. This instrument acts through the expansion and contraction of metal whereby the heat is turned on or off. As in the thermostat, which preserves a uniform temperature by regulating the heat-production and heat-loss, so in the body the heat-regulating centres are set to keep the temperature at the normal point for the species. As one may set the temperature in the thermostat at any given point, within reasonable limits, so in the body the heat-regulating centres may be set at a higher or lower level. In fevers toxins set the heat-regulating centres at a higher point, while certain drugs set these centres at a lower level. The highest temperatures follow violent muscular action in the rigors of certain fevers. When the heat-regulating centres regain control, and stimulate the centres for heat-loss, sweating occurs and the fever rapidly falls (malaria). Fever is due chiefly to increased heat-production, combined with a certain diminution in heat-loss.

Very recently it has been discovered that adrenalin secretion plays an important rôle in the production of fever. Adrenalin seems to be essential as an activator of the brain, enabling it to convert latent energy into heat and motion. The brain, liver and adrenals form a kinetic system for this end. To use a mechanical simile, the brain is the battery, adrenalin is the oxidizer, the liver is the gasoline tank (glycogen), and the muscles are the furnace in which combustion occurs. To go a step further it appears that the thyroid gland is the pacemaker, since it regulates the rate of discharge of energy.

Is fever beneficial? Artificial heating of animals to a temperature of 104°F., after injection with fatal doses of bacteria, caused half to survive while all the controls died. Again, the factitious production of a chill in animals subjected to experimental infections, caused a subsequent fever and cure of the infection. Fever is probably the result of toxins. Whether these do or do not directly act on the heat-regulating centres is unknown.

Action.— Now as to the precise action of antipyretics. Some act by diminishing metabolism, as quinine. Some dilate the superficial vessels and may also cause sweating, as salicylic acid, alcohol, ammonium acetate, nitrous ether, opium and ipecac. Some act by depressing the circulation, as aconite, veratrum, digitalis, antimony and venesection. These lessen metabolism. The modern, coal-tar antipyretics, as acetanilid, antipyrin
and phenacetin, act directly on the heat-regulating centres, either to increase their resistance to the action of the toxins of infections, or to lower the point at which the temperature of these centres is set—to use the thermostat analogy. Such agents also strengthen the control of the heat-regulating centres over the centres for heat-loss, and may or may not cause sweating. In excessive doses their depressing effect on the circulation is so marked that collapse may occur. That they act centrally is shown by the fact that they fail to act when the spinal cord is cut. They do not act in health because of the absence of disturbance of the heat-regulating centres by toxins. They do not act by diminishing heat-production—as has been hitherto taught—since metabolism is not notably lowered by them. Acetanilid increases metabolism. They do not depend upon sweating, as they act under the influence of atropine which prevents diaphoresis.

Uses.—Antipyretics are used to diminish fever. It is wiser to employ the coal-tar products for this purpose because they are not only more effective but also promote comfort by their sedative influence on the nervous system. They are, however, generally contra-indicated unless fever is high or long-continued, since it has been pointed out that high temperature is a natural protective agency in destroying toxins and bacteria. Cold is the best antipyretic measure, when it can be employed, in not only lowering fever and increasing the elimination of toxins in the urine, but in powerfully stimulating the vital nerve centres. (See p. 497.)

DRUGS ACTING ON THE SKIN.

(A) Drugs Influencing the Blood Vessels of the Skin

(1) Locally dilating superficial vessels.

IRRITANTS OR COUNTER-IRRITANTS.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantharides</td>
<td>Corrosive mercuric chloride</td>
</tr>
<tr>
<td>Iodine</td>
<td>Arsenous acid</td>
</tr>
<tr>
<td>Mustard</td>
<td>Silver nitrate</td>
</tr>
<tr>
<td>Capsicum</td>
<td>Zinc chloride</td>
</tr>
<tr>
<td>Croton oil</td>
<td>Carbolic acid</td>
</tr>
<tr>
<td>Oil of turpentine and other volatile oils</td>
<td>Mineral acids</td>
</tr>
<tr>
<td>Ammonia water</td>
<td>Caustic alkalies</td>
</tr>
<tr>
<td>Camphor</td>
<td>Anesthetics and alcohol (when evaporation is prevented)</td>
</tr>
<tr>
<td>Red mercuric iodide</td>
<td>Heat</td>
</tr>
</tbody>
</table>

Drugs are classified as follows, according to the degree of irritation they produce:

Rubefacients are drugs which cause vascular dilatation and redness of the skin when locally applied, such as mustard and iodine (and heat).

Vesicants are drugs producing inflammation of the skin and exudation of serum under the epidermis (vesicles), when locally applied, such as cantharides.
Pustulants are drugs inducing a still higher grade of inflammation when locally applied, accompanied by migration of leukocytes from the vessels into the vesicles, forming pustules.

Caustics, or escharotics, are agents which, when locally applied, lead to so great a degree of irritation that the vitality of tissues is destroyed, *e.g.,* nitric acid, caustic potash and the white-hot iron.

Uses.—Irritants are often called counter-irritants when they are used against (counter) existing irritation or inflammation by reflexly causing contraction of vessels in congested or inflamed underlying parts. Thus a blister on the chest leads to contraction of the vessels in the inflamed pleura and relieves pleuritis. Counter-irritants are, therefore, employed locally to overcome internal congestion and inflammation. Rubefacients are often applied over the whole surface of the body (mustard and turpentine) to dilate superficial vessels and equalize the circulation in colds, chills and internal congestions. Vesicants are used to alter the circulation and nutrition of adjacent parts and to secure resolution and absorption of inflammatory products in joint and periostical disorders. (For details see Counter-irritants, p. 491.)

(2) **Locally contracting superficial vessels.**

Astringents are drugs which, when locally applied, make the tissues drier and denser and lessen secretions. Their action is probably dependent on various factors: partial coagulation of the albuminous fluids of the tissues; coagulation of morbid secretions; removal of water; and contraction of the muscular coat of the blood vessels. They are local irri-

The astringents are:

<table>
<thead>
<tr>
<th>Salts</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>Adrenalin</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Tannic acid, and drugs containing it</td>
<td>Hydrastis</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>Cocaine</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Antipyrin</td>
<td></td>
</tr>
<tr>
<td>Ferric</td>
<td>Methylene chloride</td>
<td>On evaporation-</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Ether</td>
<td></td>
</tr>
<tr>
<td>Hamamelis</td>
<td>Cold</td>
<td></td>
</tr>
<tr>
<td>Ergot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Styptics, or hemostatics, are drugs which arrest hemorrhage, when locally applied, both by coagulation of albumin of the blood and by direct contraction of the vessels and tissues surrounding them. Adrenalin and solutions of ferric alum, ferric chloride and subsulphate are the most powerful styptics, although all astringents possess an hemostatic action.

Uses.—Astringents are employed in local loss of tone and relaxation of tissues accompanied by serous, mucous or purulent exudation from mucous membranes or raw surfaces. The irritating astringents are usually contra-indicated in acute inflammatory conditions, but are thought to prevent the out-wandering of leukocytes through the blood vessels, which results in purulent exudation.

Styptics are employed in the treatment of hemorrhage from mucous
membranes, or in bleeding from other parts which cannot be stopped by surgical means, heat or cold. The coagulated blood is prone to sepsis, speedy decomposition and infection.

(B) **Drugs Locally Softening, Soothing and Protecting the Skin, Emollients.**

They include:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive oil</td>
<td></td>
</tr>
<tr>
<td>Cottonseed oil</td>
<td></td>
</tr>
<tr>
<td>Lanolin</td>
<td></td>
</tr>
<tr>
<td>Petrolatum</td>
<td></td>
</tr>
<tr>
<td>Lard</td>
<td></td>
</tr>
<tr>
<td>Cacao butter</td>
<td></td>
</tr>
<tr>
<td>(Fomentations—Poultices)</td>
<td></td>
</tr>
</tbody>
</table>

Demulcents are drugs exerting a soothing, protecting and softening influence on the mucous membrane of the alimentary canal, when given internally. They are mostly gums, syrups and albuminous fluids, as:

- Acacia
- Glycerin
- Linseed infusion or tea
- White of egg
- Liquorice
- Milk
- Syrup
- Starch
- Molasses
- Sweet oil
- Honey

Uses.—Emollients are serviceable in softening the skin when it has a tendency to be dry and fissured; also in chafing and superficial inflammation when emollients protect the skin from the natural irritation of the air.

Demulcents are of value in inflammation of the mucous membrane of the digestive tract (olive oil, not starch or gums, which may decompose and irritate), and again in catarrh of the mucous membrane of the upper respiratory tract, because they exert a direct sedative influence on the throat, and either reflexly or in some measure directly, act on the bronchial tubes. Demulcents are often employed to relieve irritation in the urinary tract, but after their decomposition in the alimentary canal and absorption into the blood they can not act as such. They act chiefly by supplying water.

(C) **Drugs Influencing the Secretions of Sweat.**

The mechanism controlling the sudoriferous glands and secretion of sweat, comprises sweat centres in the medulla and spinal cord; secretory nerves proceeding from them with terminations in the glands; the gland cells, and blood vessels of the skin. Any portion of this mechanism may be affected by drugs to increase or diminish sweat secretion.

(1) **Drugs increasing the secretion of sweat, or diaphoretics.** They may:

(1) Stimulate the sweat centres.
(2) Excite the secretory nerve-endings in the glands.
(3) Increase the activity of the gland cells.
(4) Stimulate the vasodilators and increase the vascularity of the skin. Stimulation of the secretory and of the vasodilator nerves usually go hand in hand, since they accompany each other in their course to the sweat glands.
DIAPHORETICS.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilocarpine</td>
<td>The latter stimulates the gland cells, or secretory nerve-endings.</td>
</tr>
<tr>
<td>Alcohol</td>
<td>The others act indirectly by promoting the vascularity of the skin, and thus the activity of the sweat glands.</td>
</tr>
<tr>
<td>Spirit of nitrous ether</td>
<td></td>
</tr>
<tr>
<td>Nitrites</td>
<td></td>
</tr>
<tr>
<td>Volatile oils (reflexly stimulate the</td>
<td></td>
</tr>
<tr>
<td>circulation, as camphor)</td>
<td></td>
</tr>
<tr>
<td>Heart stimulants</td>
<td></td>
</tr>
<tr>
<td>Ipecac and nauseants (relax vessels)</td>
<td></td>
</tr>
<tr>
<td>External heat</td>
<td></td>
</tr>
<tr>
<td>Preventing loss of heat (blankets)</td>
<td></td>
</tr>
<tr>
<td>Warm drinks</td>
<td></td>
</tr>
<tr>
<td>Antimony salts</td>
<td></td>
</tr>
<tr>
<td>Solution of ammonium acetate</td>
<td></td>
</tr>
<tr>
<td>Opium</td>
<td></td>
</tr>
<tr>
<td>Camphor</td>
<td></td>
</tr>
<tr>
<td>Ipecac</td>
<td></td>
</tr>
<tr>
<td>Potassium acetate</td>
<td></td>
</tr>
<tr>
<td>Potassium citrate</td>
<td></td>
</tr>
<tr>
<td>Aconite</td>
<td></td>
</tr>
</tbody>
</table>

(2) **Drugs diminishing the secretion of sweat, or anhidrotics.**

They may depress the various parts of the mechanism which are stimulated by diaphoretics. They are:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atropine</td>
<td>Paralyze secretory nerve-endings</td>
</tr>
<tr>
<td>Belladonna</td>
<td>Acids</td>
</tr>
<tr>
<td>Hyoscyamus</td>
<td>Zinc salts</td>
</tr>
<tr>
<td>Stramonium</td>
<td>Nux vomica</td>
</tr>
<tr>
<td>Cold externally</td>
<td>Quinine</td>
</tr>
<tr>
<td></td>
<td>Salicylic acid (locally)</td>
</tr>
<tr>
<td></td>
<td>Action undetermined</td>
</tr>
</tbody>
</table>

Uses.—There are two indications for the use of diaphoretics. *First,* to bring blood to the surface and to cause sweating, thus equalizing the circulation in “colds,” chills and congestions and reducing temperature in fever by evaporation and radiation of heat from the skin. Ammonium acetate, alcohol and spirit of nitrous ether are commonly used in the treatment of the disorders first noted, but acetanilid and phenacetin are more powerful antipyretics. *Second,* to eliminate morbid material from the blood in failure of the kidneys, as urinary suppression, or uremia. These conditions are comparatively rare in veterinary practice. The skin of the lower animals generally is much less responsive to diaphoretics than that of man, while horses and cattle are more susceptible to these agents than dogs, cats or pigs.

A warm covering and atmosphere assist the dilation of the peripheral vessels and activity of the gland cells and should always be obtained to aid diaphoresis. Anhidrotics are of little service in veterinary medicine. Excessive sweating is usually a sign of debility and is remedied by rest, tonics and good feeding.
DRUGS WHICH DESTROY MICROORGANISMS AND PARASITES.

(1) *Disinfectants or germicides* are agents which destroy the microorganisms causing infectious and contagious diseases, fermentation and putrefaction. Examples:

- Corrosive mercuric chloride
- Carbolic acid
- Lime
- Chlorinated lime

(2) *Antiseptics* are agents which prevent the growth and development of the microorganisms occasioning fermentation, putrefaction and disease; more especially the micrococci producing suppuration. Those used externally for surgical purposes are:

- Iodine and its tincture
- Chlorazene
- Dichloramine-T
- Alcohol
- Carbolic acid
- Corrosive sublimate
- Creolin
- Cresol

Antiseptics which are given internally:

- Naphtol
- Salol
- Creolin
- Carbolic acid

Deodorants, or deodorizers, are agents which destroy or counteract a foul odor. Those possessing any real value are also disinfectants and antiseptics, and remove the source of the odor.

(For further details see special article on disinfectants, antiseptics and deodorants, p. 505.)

Anthelmintics, vermifuges or vermicides are drugs which kill or expel worms, such as the various species of tapeworm, roundworm, pinworm, whipworm, etc. The term is also used to cover drugs removing such parasites as bots, which are not worms. These drugs are supposed to be relatively insoluble, but investigation has shown that they are usually absorbed in large part.

Anthelmintics removing tapeworms:

- Aspidium (horse and dog) Calomel
- Oil of turpentine
- Kouso
- Areca nut (sheep)
- Pumpkin seed

Anthelmintics removing ascarids:

- Creolin
- Oil of turpentine
- Arsenic

- Horses.

- Copper sulphate
- Carbon bisulphide
Dogs.

Santonin Spigelia Oil of chenopodium

Anthelmintics removing pinworms:
By mouth, cathartics, oil of chenopodium, thymol.
Rectal injections containing salt, solution of lime, quassia, iron salts, phenol (¼ of 1% solution), tannic acid (5ss-Oi), and oil of turpentine (5ss-Oi) are used to destroy these parasites infesting the lower bowel.

Anthelmintics removing strongyles:
Thymol Copper sulphate
Oil of chenopodium Chloroform
Turpentine

Anthelmintics removing bots (Gastrophilus spp.)
Carbon disulphide

Anthelmintics against lungworms:
Carbolic acid (Intratracheal injections)
Turpentine (Intratracheal injections)
Chloroform (Injections in nostrils)

Vermifuges are purgatives (as aloes and oil) used to expel dead parasites from the bowels after the administration of anthelmintics.

Parasiticides, or antiparasitics, are drugs which destroy parasites, more especially those inhabiting the skin. We may classify them as those:

(1) Against fungi of ringworm and favus (Trichophyton spp.)
Mercurial ointments Chrysarobin ointment Salicylic acid
Tincture of iodine Boric acid
Glycerite of phenol Cantharides Thymol
Creolin Croton Oil Sulphurous acid
Creosote Formalin

(2) Against ray fungi of lumpy jaw, etc. (Discomyces or Actinomyces spp.)
Tincture of iodine Iodoform
Potassium iodide Copper sulphate
Glycerite of carbolic acid Corrosive sublimate

(3) Against fungi of thrush or aphtha, sporadic aphthous stomatitis (Oidium albicans).
Boric acid Alum
Potassium chlorate Salicylic acid
Potassium permanganate Hydrochloric acid

(4) Against mites of scab, itch or mange.
Sulphur Styrax
Lime-sulphur dips Phenol
Sulphur dioxide Corrosive sublimate
Tar Salicylic acid
Crude petroleum Cantharides
Peruvian balsam
(5) *Against lice.*
Staphisagria
Oil of tar
Peruvian balsam
Styrax
Oil of anise
Phenol

(6) *Against fleas.*
Pyrethrum
Carbolic soap
Oil of anise

(For details concerning the use of parasiticides, see special articles on the drugs enumerated above and p. 598.)
PHARMACY.

The More Important Medicinal Bodies and Principles Contained in Drugs.

Alkaloideum, pl. alkaloidea,—alkaloids. Characteristics:

1. Alkaloids are nitrogenous bodies, being the active principles of many vegetable drugs.

2. They resemble mineral bases in that they have an alkaline reaction and unite with acids to form soluble crystalline salts. Hence their name, alkaloids.

3. Chemically they are ammonia compounds. One or more atoms of hydrogen (in NH₃) are replaced by various radicals.

4. They are mostly insoluble in water, but very soluble in alcohol. Solutions possess a bitter taste.

5. They are similar to animal alkaloids (ptomaines) and probably have a like origin, i.e., from the decomposition of albuminoid material. Thus the symptoms of some kinds of ptomaine poisoning (sausage) resemble those of plant alkaloid poisoning (atropine). Animal alkaloids (leukomains) may also be formed by body cells, as products of metabolism; viz., adrenalin.

6. Alkaloids are precipitated in solutions by tannin, forming insoluble tannates.

 They are usually solids and their salts are soluble and convenient for hypodermic use.

8. Their Latin ending is ina; English, ine; viz.: Morphina, morphine.

Examples: An alkaloid of cinchona is quinine; of belladonna, atropine.

Glucosideum, pl. glucosidea.—Glucosides are neutral, non-nitrogenous organic bodies, representing the active principles of many vegetable drugs. They yield glucose and other substances on decomposition. Hence their name. Their Latin ending is inum; English, in; viz., salcinum, salicin.

Examples: A glucoside of digitalis is digitalin; of santoninum is santonin.

Oleum, pl. olea.—Fixed oils are combinations of glycerin with fatty acids; usually oleic, stearic, margaric or palmitic acids. They are liquid at ordinary temperatures and soluble in benzin, chloroform and ether. Exposed to the air they undergo acid fermentation, resulting in “rancidity.” Fixed oils are expressed from fruits and seeds of plants and animal tissue. They are “fixed” because they cannot be distilled. They leave a greasy mark on paper.

Examples: Cod liver oil, castor oil, olive oil, linseed oil and croton oil.

Oleum, pl. olea.—Fats are solid, fixed oils.

Examples: Lard, cacao butter.
Oleum destillatum, pl. olea destillata.—Distilled oils are obtained by the distillation of flowers, fruits, leaves or seeds of plants; by maceration, infusion, expression; or by extraction with solvents. They are either liquid or solid and possess an aromatic odor and taste. They are lighter than water, and soluble in alcohol, ether, and very slightly soluble in water. Distilled oils are miscible with fatty substances and mineral oils. They do not leave a greasy mark on paper.

Synonyms: Essential oils, volatile oils and ethereal oils. Alcoholic solutions of these oils are known as essences.

Examples: Oil of peppermint, oil of cloves, oil of wintergreen.

Oleo-resina, pl. oleo-resinae.—Oleo-resins are semi-solid mixtures of resins and volatile oils. Many are natural products, exuding from trees, as crude turpentine, which contains the volatile oil of turpentine and a resin, or what is commonly termed "rosin." They are soluble in ether.

Examples: Oleo-resin of capsicum, oleo-resin of aspidium.

Resina, pl. resinae.—Resins are brittle, amorphous solids, soluble in alcohol and alkalies. They are obtained from oleo-resins by simple distillation, as in the case of turpentine; or may be extracted from plants by means of heat or alcohol.

Examples: The resins of Burgundy pitch and podophyllum.

Balsamum, pl. balsama.—Balsams are oleo-resins with the addition of either cinnamic or benzoic acids, or both. They are solids or liquids.

Examples: Balsam of Peru, balsam of Tolu.

Gummus, pl. gummi.*—Gums are solid exudations from plants. They are generally soluble in water, and their solutions are precipitated by alcohol.

Example: Gum acacia.

Gum resina, pl. gum-resinae, are solid exudations from plants consisting of a mixture of a gum and a resin.

Pharmaceutical Processes.

Many of the technical methods are those employed in chemistry, but of those more especially used in pharmacy are the following:

Processes of Mechanical Division.

Slicing.—This prepares the drug for further reduction, and is the first of all pharmaceutical processes.

Bruising or Contusion.—Consists in breaking the drug by force, and is usually performed with an iron mortar and pestle.

Rasping or Filing.—For those drugs not easily reduced by the former process, as guaiac wood.

Trituration.—Performed with mortar and pestle. The effect produced where there is a circular motion, accompanied by pressure.

Grinding and Sifting.—In order to exhaust drugs some must be ground and sifted to a finer powder than others. To accomplish this,

*Gummi (indeclinable noun), often used for gum or gums.
after grinding, we use sieves of different degrees of fineness, designated by numbers 20, 40, 60, 80, 100. These have reference to the number of meshes contained to the square inch. Therefore, when a 60 powder is directed to be used, it is that which will pass through a sieve containing 60 meshes to the square inch.

Levigation.—Somewhat similar to trituration, but performed with a slab and muller. These should be made of glass, or some non-absorbent material.

Elutriation.—This consists in mixing the powder, obtained by some of the former comminuting processes, with water; agitating it; allowing the coarser particles to settle, and pouring off the supernatant liquid which holds the finer particles in suspension. The powder settles from the latter and is dried.

Mechanical Processes.

- Processes by which liquids are separated from solids, and by which active principles and soluble constituents are separated from the inert portion of the drug.

Decantation.—The process by which solids are allowed to subside in a mixture and the supernatant liquid is slowly poured off or decanted. Liquids which will not mix, or that are of different specific gravity, may be decanted one from the other.

Filtration.—This is the process of separating a solid insoluble substance from a liquid by passing the liquid containing it through a porous substance called a filter. The filter commonly used consists of unsized or bibulous paper, although cotton, muslin, felt, earthenware, and other substances are employed.

Percolation consists in the following process: A pulverized vegetable drug (containing both soluble and insoluble constituents) is placed in a conical vessel, or percolator, and subjected to the action of a liquid called a menstruum, when the soluble portion, or percolate, flows from the lower opening. The menstruum as it descends becomes more and more saturated with the soluble constituents of the drug. The first that escapes is the strongest, and each successive portion of the percolate becomes weaker until the drug is exhausted. The percolate should not drop faster than 10 drops per minute. Percolation is employed in making tinctures, fluid and solid extracts, syrups and some other fluid pharmaceutical preparations.

Clarification.—Is the process whereby cloudy substances are made clear by the addition of some coagulable substances, as albumin or ichthyocola. It is the adding to any fluid, containing a sediment, a substance which will carry down all undissolved particles, then filtering or decanting the liquid.

Chemical Processes Used in Pharmacy.

Solution.—The process by which soluble substances assume the fluid state through the action of a liquid.

Lixiviation.—Employed to separate a soluble constituent from an insoluble porous body. The substance to be lixiviated is mixed with water
and placed in a conical vessel, the bottom of which is covered with straw or coarse sand, and, after maceration has continued sufficiently, the saturated portion, called the \textit{lye}, is drawn off from an opening in the lower part of the vessel.

\textit{Crystallization}.—Is the concentration of a liquid containing a soluble solid by means of heat, when on allowing it to stand until cool, crystals form. Stirring during cooling will produce \textit{granulation}. Solution, filtration and crystallization are the three best ways of obtaining pure salts.

\textbf{Processes Requiring the Application of Heat.}

\textit{Liquefaction}.—Is the melting of substances which at ordinary temperature are hard, and when cool return to the same condition as before heating, as resin, wax, lard, tallow.

\textit{Evaporation}.—Is the conversion of a liquid into steam or vapor. Liquids which evaporate at ordinary temperature are called \textit{volatile}, as alcohol. To keep the heat below the boiling point of water, we use the water bath, which cannot reach a higher temperature than 100° C. To gradually increase the heat, use the sand bath.

\textit{Distillation}.—Is the vaporization of a liquid in a retort or a still, by heat, and condensation of the vapor through a cooled tube, where it is condensed and passes into a receiver and is called the \textit{distillate}. Distillation is used to purify liquids or recover a volatile liquid from a solid, solution or mixture. Where two liquids are mixed that have different points of vaporization and are separated in this way, the process is called \textit{rectification}.

\textit{Sublimation}.—Distillation of a volatile solid. When the product is in a solid form, it is called a \textit{sublimate}, as iodine, camphor, etc.; when in flakes, it is called \textit{flowers}, as sulphur.

\textit{Maceration}.—A term used to denote the action of liquids upon drugs at ordinary temperature.

\textit{Digestion}.—Same process, with heat raised to 40° C.

\textit{Menstruum}.—Any fluid substance used to dissolve a solid body or extract its medicinal principles.

\textit{Excipient}.—Any substance used to give a pill mass proper consistency.

\textit{Exsiccate}.—The process of removing all moisture, even the water of crystallization, from a crystal, by the use of heat.

\textit{Desiccate}.—To remove all excess moisture. Heat not usually employed in this process.

\textit{Incineration}.—The combustion of a substance for its ashes.

\textit{Reduction} is employed to recover a metal in its purity, when in a combined state.
Pharmaceutical Preparations.

The "United States Pharmacopeia" is an authoritative book, including the drugs in most common use, with a description of their properties, tests for their purity, and methods for making their preparations. It is revised each decade by a convention of representative delegates from medical schools and societies, schools of pharmacy and pharmaceutical associations, with the collaboration of medical officers of the army, navy and public health service. The last edition dates from September 1, 1916. All matter occurring in the "Pharmacopeia" is said to be according to the U. S. P., or official. That occurring in the "British Pharmacopeia" is marked B. P. The dispensatories in the United States are three: The United States, National and Kings, which contain all matter in the Pharmacopeia and much besides pertaining to materia medica and therapeutics. The National Formulary is published by the American Pharmaceutical Society and contains important formulae not included in the U. S. Pharmacopeia.

Official Preparations.

I.—Preparations Whose Solvent Is Water.

Decoctum, pl. *decocta.*—Decoctions are solutions of crude drugs in water, obtained by boiling. Unless specified otherwise, their strength is 5 per cent., and the boiling is conducted fifteen minutes. Decoctions tend to undergo rapid decomposition, and are suitable only in case of those drugs whose active principle is soluble in water. They are unsuitable when the active principle of a drug is volatile, decomposed by heat, or when it contains much starch, which would form an easily decomposable, thick mass.

Drugs containing hard, woody substances, especially albumin, which coagulates in boiling and remains in the crude drug, are those especially adapted for this method.

Infusum, pl. *infusa.*—Infusions are aqueous solutions of drugs made by maceration in cold or boiling water, without the aid of ebullition. Maceration is done for half an hour, and the strength is 5 per cent., unless otherwise ordered. The same disadvantages apply in the case of infusions as with decoctions, in addition to the longer time required for their preparation. Some drugs, as digitalis or ergot, which yield their active principles to water and are more powerful when freshly made, are suitable for this process.

Liquor, pl. *liquores.*—Solutions are preparations holding active non-volatile principles in solution in water. They have no uniform strength.

Aqua, pl. *aquae.*—Waters are aqueous solutions of volatile principles. They have no uniform strength and are mostly solutions of volatile oils or gases.

Mistura, pl. *misturae.*—Mixtures are compounds consisting of a combination of fluid preparations or compounds in which solid substances are dissolved or held in suspension by an appropriate vehicle. The term is thus very comprehensive, including most prescriptions for fluids used
in practice, but more narrowly it applies in pharmacy to insoluble mate-
rials suspended by suitable vehicles in water, the whole to be shaken
before using. They have no uniform strength.

Emulsium, pl. emulsa.—Emulsions are similar to mixtures in that an
oily substance in a state of fine division is held in suspension in a gummy
or albuminous vehicle. They have no uniform strength.

Syrupus, pl. syrupi.—Syrups are saccharine solutions. The vehicle
is usually water, although vinegar and alcohol may be used, and they are
all medicated except the simple syrup. They are not of uniform strength.

II.—Preparations Whose Solvent Is Alcohol.

Tinctura, pl. tincturae.—Tinctures are alcoholic solutions of non-
volatile principles, made usually by maceration and percolation of the
crude drug. They vary in strength; the more powerful drugs in 10 per
cent., the weaker drugs in 20 per cent. solution. The alcohol in tinctures
is often an important factor in the action of the preparation. Strong or
diluted alcohol is used according to the solubility of the active principle.

Spiritus, pl. spiritus.— Spirits are alcoholic solutions of volatile sub-
stances, either gases or liquids or solids. They have no uniform strength.

Elixir, pl. elixirs.—Elixirs are alcoholic solutions of drugs containing
sugar and aromatic substances.

III.—Preparations Having Wine as a Solvent.

Vinum, pl. vina.—Wines are weak tinctures containing a small
amount of alcohol, the remainder of the solvent being white wine. They
are no longer official.

IV.—Preparations Having as a Solvent Diluted Acetic Acid.

Acetum, pl. aceta.—Vinegars are solutions of the active principles of
drugs in acetic acid prepared by maceration and percolation. They are
not of uniform strength.

V.—Preparations Made by Solution and Evaporation.

Extractum, pl. extracta.—Extracts are concentrated preparations of
the crude drug. Ordinarily alcoholic solutions of the crude drug are
obtained by maceration and percolation, and then evaporated to a pasty
mass. They are usually stronger, weight for weight, than the crude
drug, but are not of uniform strength.

Fluidextractum, pl. fluidextracta.—Fluidextracts are permanent, con-
centrated medicinal solutions of uniform strength. 1 mil of the fluid-
extract is equivalent to 1 Gm. of the crude drug. This result is obtained
by percolation (usually with alcohol) and partial evaporation.*

VI.—Preparations Made by Distillation or Occurring Naturally,
as Exudations from Trees.

Oleo-resina, pl. oleo-resinae.—Oleo-resins are officially extracts ob-
tained by percolation of the crude drug with ether, and evaporation of
the solvent. They have no uniform strength.

*The last (ninth) edition of the U. S. Pharmacopeia directs that many of the
fluidextracts be assayed so that they will contain a definite prescribed amount of
the active principle.
VII.—Preparations Made By Mechanical Processes.

Pulvis, pl. pulveres.—Powders are preparations of finely pulverized drugs. Sugar of milk is frequently added, on account of its hardness, to aid in pulverization and as a diluent. Comparatively tasteless, non-irritating and often insoluble drugs are given in this form. Drugs that are volatile, deliquescent or irritating are otherwise administered. Powders are used to advantage in veterinary practice, since they are often taken voluntarily on food.

Trituratio, pl. triturations.—Triturates are combinations of drugs and sugar of milk, prepared by trituration. They occur in powder or are pressed into tablets.

Oleum, pl. olea.—Fixed oils are usually obtained by mechanical expression from the product of plants or the tissue of animals.

Pilula, pl. pilulae.—Pills are preparations of drugs made into globular form by the addition of a suitable excipient, and should be of a convenient size for swallowing.

Massa, pl. massae.—Masses are pasty mixtures suitable for making pills.

Suppositorium, pl. suppositoria.—Suppositories are medicinal substances incorporated with cacao butter and moulded into solid, usually conical, bodies intended for introduction into the rectum or vagina, where they melt at the temperature of the body.

Confectio, pl. confectiones.—Confections are pasty masses, consisting of powder incorporated with syrup.

VIII.—Preparations Intended for External Use.

Linimentum, pl. linimenta.—Liniments are liquid preparations with an oily, alcoholic or soapy basis.

Oleatum, pl. oleata.—Oleates are medicinal solutions in oleic acid.

Unguentum, pl. unguenta.—Ointments are preparations having a fatty basis (80 per cent. of lard).

Ceratum, pl. cerata.—Cerates are similar to ointments but harder, owing to the addition of 10 per cent. more wax.

Glyceritum, pl. glycerita.—Glycerites are preparations whose solvent is glycerin.

Emplastrum, pl. emplastra.—Plasters are solid, sticky, supple preparations intended for application to the skin, where they become adhesive at the temperature of the body. In veterinary parlance they are often known as “charges.”

Charta, pl. chartae.—Papers are fragments of medicated paper.

Colloedium, pl. colloedia.—Collodions are solutions of gun cotton in ether and alcohol, leaving a thin, dry, adhesive coating when applied externally.

IX.—Preparations Having Honey as an Excipient.

Mel, pl. melita.—Honeys.

IX.—Non-Official Preparations Peculiar to Veterinary Practice.

Bolus, pl. boli.—Balls are substitutes for pills. They are of elongated, cylindrical shape, about two and one-half inches long, and should weigh about two ounces when intended for horses. Various excip-
ients are used to make a mass of the proper consistency. For immediate use, molasses and licorice root may be employed, and brown tissue paper is used as a covering for the balls. Gelatine capsules may take the place of the balls, and should be covered with paper to prevent slipping through the fingers when wet with saliva.

Linsseed meal is a good excipient on account of its gum. Soap is often used, and glycerin makes a good preservative and keeps the mass moist.

Heat is often necessary in preparing a ball mass when the materials are resinous (as aloes) or waxy. A ball is given to a horse by holding it in the right hand, the tips of the fingers and thumb surrounding it in the form of a cone. The tongue of the animal being drawn to the operator's left with his left hand, the right is then quickly passed along the roof of the patient's mouth (avoiding the edges of the back teeth) until the back of the tongue is reached, when the ball is dropped, the right hand rapidly removed and the tongue released.

If the mouth is narrow or the animal unmanageable, a balling iron or speculum is used to keep the mouth open. The horse may be backed into a narrow stall and the head steadied by an attendant with the assistance of a "twitch" on the nose. Substances of an irritating nature may be given in this form, and balls are also used when the disposition of the patient does not admit the giving of a drench.

Haustus, pl. _haustus._—A drench is an extemporaneous fluid mixture, intended for immediate use as a single dose.

Soluble substances are best given in solution to obtain the most rapid results, unless irritating. Even then they may be preferable when sufficiently diluted with water and demulcent. Insoluble drugs may at times be given to advantage in a mixture rather than in the form of a ball or powder. Most official fluid preparations require dilution before administration, but for convenience small doses of tinctures and fluid extracts are dropped upon the tongue of horses unless the preparations are exceptionally acrid. Drenches are particularly applicable for cattle and sheep, as solids are not quickly absorbed in their capacious digestive apparatus, and drenches are given them with ease.

The amount of liquid conveniently administered to horses is from one to two pints; to dogs, from two to four ounces; to sheep, six to eight ounces. Cattle take readily unlimited quantities. Care should be observed that drenches are so diluted as to be harmless to the mucous membrane, and, if containing insoluble drugs, that these be held in suspension by a suitable vehicle or thoroughly shaken before using. Drenches are best given to horses by making a loop on the end of a rope, passing the upper jaw through this, the other end of the rope being passed through a pulley in the ceiling and held by the operator or assistant. The horse should be first backed into a narrow stall. The neck of the bottle (which should properly be made of horn or tin) containing the drench, being introduced and held in the right hand of the operator between the outside of the back teeth and the inside of the cheek of the patient, the left hand is used to steady the nose of the animal, but the nostrils should not be obstructed.
In giving drenches to cattle the operator stands on their left and passes his right arm between the horns over the poll and down in front of the face, grasping the nasal septum between the thumb and forefinger. The neck of the bottle is then thrust with the left hand into the animal's mouth. Dogs are given drenches with the aid of an assistant, who holds the mouth closed with one hand, while he makes a cup by pulling the corner of the lip away from the teeth with the other hand, into which the medicine may be slowly poured, the animal easily swallowing it. Small dogs may be placed sitting upon a table. A large dog may be put upon his hind quarters in a corner, and his head held between the knees of the operator. Cats are given drenches by rolling them in a heavy blanket with only the head out and the jaws held apart by means of two loops of tape about either jaw behind the incisor teeth. The jaws are then pulled apart by drawing on either loop from above and below the animal's head. Sheep may be drenched by backing them into a corner and by holding the head of the animal between the knees of the operator.

Drenches should never be poured into animals if in an unconscious condition, for then they are unable to swallow, and the fluid may gravitate into the trachea. If coughing ensues during the administration of a drench, the procedure should be immediately stopped.

A pint syringe may be used to drench the larger animals. The jaws are held closed by a strap or rope about the head and the lips held together by an attendant.

The nozzle of the syringe, or a rubber tube connected with it, is introduced at one corner of the mouth and the fluid injected toward the back of the tongue.

Electuarium, pl. electuaria.—Electuaries are medicinal pastes intended to be smeared on the teeth of animals, where they melt at the temperature of the body and become absorbed. Molasses, honey, glycerin, syrup or mucilage are used as excipients. Electuaries are used for their local action on the mouth and throat, and for convenience in administration, if so crude a method may be thus described. A certain specified quantity of the electuary may be weighed by the dispenser and served as a sample, or a domestic utensil may be employed to measure the dose, which is smeared with a thin, flat stick on the back teeth or tongue of the patient.
INCOMPATIBILITY.

Before entering the study of prescription writing, it is essential to consider the results of improper combination of drugs, i.e., incompatibility.

While a knowledge of chemistry, pharmacy and the physiological actions of drugs is necessary to avoid incompatibility, it is yet possible to formulate certain rules which will assist us in escaping unfortunate combinations.

Incompatibility is conveniently divided into three classes: I. Chemical. II. Physical. III. Physiological.

I. Chemical incompatibility occurs when drugs are so mixed that an unsuitable alteration in their chemical composition takes place. Certain substances should usually be prescribed alone because of the frequency with which chemical changes arise when they are combined with other medicines. These are:

- Lead, silver and zinc salts
- Iodine and iodides
- Tannic and gallic acids
- Liquid iron preparations
- Corrosive sublimate
- Mineral acids
- Solution of potassa and lime
- Quinine sulphate
- Hydrocyanic acid

The possibilities of the following combinations must be kept in mind to avoid incompatibility:

1. Solutions of alkaloids are incompatible with tannic acid, alkalies, alkaline salts, and iodides and bromides, because precipitation occurs.
2. Glucosides are decomposed by acids and are, therefore, incompatible with them.
3. Acids may not be added to alkalies, alkaline salts or vegetable acid salts, because decomposition and chemical change will ensue.
4. A mixture of salts in solution will decompose if either an insoluble compound or double salt can be formed; otherwise no change will take place.
5. Chloral is incompatible with alkaline solutions, because chloroform is generated.
6. Chloroform and potassium cyanide form prussic acid.
7. Potassium chlorate, nitrate, or permanganate, liberates oxygen and should not be mixed with readily oxidizable substances, such as charcoal, sugar, sulphur, glycerin, carbolic acid, iodine, turpentine and organic materials, lest explosive compounds be formed.
8. Lime water precipitates mercury salts.
9. Both calomel and antipyrine are incompatible with sweet spirit of nitre.
10. Calomel may not be combined with nitrohydrochloric acid lest corrosive sublimate result.
11. Calomel and prussic acid form the poisonous mercuric cyanide.
12. Liquid iron compounds are incompatible with fluid preparations.
of the vegetable bitters (except those of calumba and quassia), because the tannic acid in them throws down a precipitate.

13. Considerable quantities of acid are incompatible with tinctures, since ethers are produced.

15. Gum arabic is incompatible with lead and iron salts, and mineral acids.

16. Strychnine is precipitated in solution by potassium bromide.

17. Pepsin and pancreatin are mutually destructive in fluid combination.

18. Solutions of potassium chlorate and iodide unite to form a poisonous compound.

It is beyond our scope to attempt the enumeration of all possible drug-incompatibilities. The special incompatibilities of each drug may be found under the proper heading in the detailed description of them. Furthermore, we may avoid incompatibility by (above all) simplicity in prescription writing, i.e., the use of a few drugs in combination. Water or alcohol are generally the best solvents.

II. Physical incompatibility consists in the production of unsightly-looking mixtures, but without necessarily causing any chemical alteration of their ingredients; for example, the addition of water to insoluble powders, oils and chloroform. While such combinations are pharmaceutically improper, they may sometimes be used to advantage in practice.

III. Physiological incompatibility consists in the union of drugs possessing antagonistic physiological actions. For instance, the combination of purgatives and astringents; of morphine and atropine; of digitalis and nitroglycerin. Such prescriptions may be valuable therapeutically when the antagonism is not complete. This follows because, while deleterious action of one drug may be offset by another, its beneficial effect may at the same time exist or be accentuated. Thus the anodyne influence of morphine is increased by combination with atropine, but both the depressing action of morphine on the respiration and its constipating tendencies are lessened by atropine.
PRESCRIPTION WRITING.

Words and Phrases Commonly Used in Prescription Writing, with Their Abbreviations.

<table>
<thead>
<tr>
<th>LATIN WORD</th>
<th>ABBREVIATION</th>
<th>TRANSLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidum</td>
<td>Acid.</td>
<td>An acid</td>
</tr>
<tr>
<td>Ad</td>
<td>Ad. lib.</td>
<td>To, up to</td>
</tr>
<tr>
<td>Ad libitum</td>
<td>Add.</td>
<td>At pleasure</td>
</tr>
<tr>
<td>Adde</td>
<td>A. åå.</td>
<td>Add (thou)</td>
</tr>
<tr>
<td>Ana</td>
<td>Aq. font.</td>
<td>Of each</td>
</tr>
<tr>
<td>Aqua fontana</td>
<td>Aq. dest.</td>
<td>Water, spring</td>
</tr>
<tr>
<td>Aqua destillata</td>
<td></td>
<td>Water, distilled</td>
</tr>
<tr>
<td>Bene</td>
<td>Bis. ind.</td>
<td>Well</td>
</tr>
<tr>
<td>Bis in dies</td>
<td>Cap.</td>
<td>Twice daily</td>
</tr>
<tr>
<td>Cape, Capiat</td>
<td>Caps.</td>
<td>Take. Let him take</td>
</tr>
<tr>
<td>Capsula</td>
<td>Cerat.</td>
<td>A capsule</td>
</tr>
<tr>
<td>Ceratum</td>
<td>Chart.</td>
<td>A cerate</td>
</tr>
<tr>
<td>Charta (karta)</td>
<td>Chart.</td>
<td>A paper (medicated)</td>
</tr>
<tr>
<td>Chartula (kartula)</td>
<td></td>
<td>A little paper for a powder</td>
</tr>
<tr>
<td>Cochleare magnum</td>
<td>Coch. mag.</td>
<td>A tablespoon</td>
</tr>
<tr>
<td>Cochleare parvum</td>
<td>Coch. parv.</td>
<td>A teaspoon</td>
</tr>
<tr>
<td>Cola, Colatus</td>
<td>Col.</td>
<td>Strain, strained</td>
</tr>
<tr>
<td>Collyrium</td>
<td>Collyr.</td>
<td>An eye wash</td>
</tr>
<tr>
<td>Compositus</td>
<td>Co. Comp.</td>
<td>Compound</td>
</tr>
<tr>
<td>Congius</td>
<td>C.</td>
<td>A gallon</td>
</tr>
<tr>
<td>Confectio</td>
<td>Conf.</td>
<td>A confection</td>
</tr>
<tr>
<td>Cortex</td>
<td>Cort.</td>
<td>Bark</td>
</tr>
<tr>
<td>Cum</td>
<td></td>
<td>With</td>
</tr>
<tr>
<td>Decoectum</td>
<td>Decoc.</td>
<td>A decoction</td>
</tr>
<tr>
<td>Dilute, Dilutus</td>
<td>Dil.</td>
<td>Dilute (thou), diluted</td>
</tr>
<tr>
<td>Divide</td>
<td>D. Div.</td>
<td>Divide (thou)</td>
</tr>
<tr>
<td>Dividendus</td>
<td>Dividend.</td>
<td>To be divided</td>
</tr>
<tr>
<td>Dividatur in parts æquales</td>
<td>D. in p. æq.</td>
<td>Let it be divided into equal parts</td>
</tr>
<tr>
<td>Dosis</td>
<td>Dos.</td>
<td>A dose</td>
</tr>
<tr>
<td>Emplastrum</td>
<td>Emp.</td>
<td>A plaster</td>
</tr>
<tr>
<td>Enema</td>
<td>Enem.</td>
<td>An enema</td>
</tr>
<tr>
<td>Extractum</td>
<td>Ext.</td>
<td>An extract</td>
</tr>
<tr>
<td>Fac, fiat, fiant</td>
<td>F.</td>
<td>Make, let be made, let them be made</td>
</tr>
<tr>
<td>Filtrum, filtra</td>
<td>Fil.</td>
<td>A filter. Filter (thou)</td>
</tr>
<tr>
<td>Fluidus</td>
<td>Fl. f.</td>
<td>Fluid</td>
</tr>
<tr>
<td>Glyceritum</td>
<td>Glyc.</td>
<td>A glycerin</td>
</tr>
<tr>
<td>Gutta, Guttae</td>
<td>Gtt.</td>
<td>A drop, drops</td>
</tr>
<tr>
<td>Guttatim</td>
<td>Gutt. s.</td>
<td>Drop by drop</td>
</tr>
<tr>
<td>LATIN WORD</td>
<td>ABBREVIATION</td>
<td>TRANSLATION</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Haustus</td>
<td>Haust.</td>
<td>A draught</td>
</tr>
<tr>
<td>Hora</td>
<td>H. Hor.</td>
<td>An hour</td>
</tr>
<tr>
<td>In dies</td>
<td>Ind.</td>
<td>Daily</td>
</tr>
<tr>
<td>Infusum</td>
<td>Inf.</td>
<td>An infusion</td>
</tr>
<tr>
<td>Injicio</td>
<td>Inj.</td>
<td>An injection</td>
</tr>
<tr>
<td>Lac</td>
<td>lb.</td>
<td>Milk</td>
</tr>
<tr>
<td>Libra</td>
<td>liq.</td>
<td>A pound, a Troy pound</td>
</tr>
<tr>
<td>Liquor, or Liqu’or</td>
<td>sq.</td>
<td>A solution</td>
</tr>
<tr>
<td>Lotio (losheo)</td>
<td>liq.</td>
<td>A lotion</td>
</tr>
<tr>
<td>Magnus</td>
<td>Mag.</td>
<td>Large</td>
</tr>
<tr>
<td>Massa</td>
<td>Mass.</td>
<td>A pill-mass</td>
</tr>
<tr>
<td>Misee</td>
<td>ml</td>
<td>Mix</td>
</tr>
<tr>
<td>Mistura</td>
<td>Mist.</td>
<td>A mixture</td>
</tr>
<tr>
<td>Mucilago</td>
<td>Mucil.</td>
<td>A mucilage</td>
</tr>
<tr>
<td>Nox, Nocte Maneque</td>
<td></td>
<td>Night, at night and in the morning</td>
</tr>
<tr>
<td>Numerus, Numero</td>
<td>No.</td>
<td>A number, in number</td>
</tr>
<tr>
<td>Octarius</td>
<td>O.</td>
<td>A pint</td>
</tr>
<tr>
<td>Pars</td>
<td></td>
<td>A part (governs genitive)</td>
</tr>
<tr>
<td>Partes aequales</td>
<td>P. ae.</td>
<td>Equal parts</td>
</tr>
<tr>
<td>Parvus</td>
<td>Parv.</td>
<td>Small</td>
</tr>
<tr>
<td>Pilula</td>
<td>Pil.</td>
<td>A pill</td>
</tr>
<tr>
<td>Pro re nata</td>
<td>P. r. n.</td>
<td>According to circumstances; occasionally</td>
</tr>
<tr>
<td>Pulvis</td>
<td>Pulv.</td>
<td>A powder</td>
</tr>
<tr>
<td>Quantum Sufficiat</td>
<td>Q. S.</td>
<td>As much as is necessary</td>
</tr>
<tr>
<td>Quaqua hora</td>
<td>Q. h.</td>
<td>Every hour</td>
</tr>
<tr>
<td>Saturatus</td>
<td>Sat.</td>
<td>Saturated</td>
</tr>
<tr>
<td>Semissis</td>
<td>ss.</td>
<td>A half</td>
</tr>
<tr>
<td>Semidrachma</td>
<td>Semidr.</td>
<td>A half drachm</td>
</tr>
<tr>
<td>Sesuncia</td>
<td>Sesunc.</td>
<td>An ounce and a half</td>
</tr>
<tr>
<td>Signa</td>
<td>S. Sig.</td>
<td>Sign</td>
</tr>
<tr>
<td>Solve, Solutus</td>
<td>Solv.</td>
<td>Dissolve, dissolved</td>
</tr>
<tr>
<td>Solutio</td>
<td>Sol.</td>
<td>A solution</td>
</tr>
<tr>
<td>Spiritus</td>
<td>Spr.</td>
<td>A spirit</td>
</tr>
<tr>
<td>Suppositoria</td>
<td>Suppos.</td>
<td>A suppository</td>
</tr>
<tr>
<td>Syrups</td>
<td>Syr.</td>
<td>A syrup</td>
</tr>
<tr>
<td>Talis</td>
<td>Tal.</td>
<td>Such, or, like</td>
</tr>
<tr>
<td>Tinctura</td>
<td>Tr.</td>
<td>A tincture</td>
</tr>
<tr>
<td>Ter in die</td>
<td>t. i. d.</td>
<td>Three times a day</td>
</tr>
<tr>
<td>Unguentum</td>
<td>Ungt.</td>
<td>An ointment</td>
</tr>
<tr>
<td>Vinum</td>
<td>Vin.</td>
<td>A wine</td>
</tr>
<tr>
<td>Vehiculum</td>
<td>Vehic.</td>
<td>A menstruum</td>
</tr>
</tbody>
</table>
A prescription, derived from the Latin prae, before, and scriptum, written, comes to us from the early custom of physicians in writing down their advice beforehand for their patients' guidance. As now used it is the written formula of the practitioner describing to the pharmacist the manner of compounding and dispensing medicines, and to the attendant the mode of administering them.

Formulae are official when simply taken from the "United States Pharmacopoeia," and extemporaneous when concocted offhand by the practitioner. Extemporaneous formulae are simple when composed of one ingredient; a compound prescription is composed of several parts, which may be considered as follows:

I. Heading.
II. Names and quantities of drugs.
III. Direction to compounder.
IV. Direction to attendant.
V. Signature of writer.

The heading, "Recipe," is derived from the Latin, the imperative of the verb meaning to take, and is ordinarily represented by the sign R, a corruption of Ρ, the sign of the zodiac for Jupiter. After the Christian era the sign of the cross was used, or N. D., for Nomine Deo, in God's name; J. D. for Juvane Deo, meaning God helping, etc. We have now reverted to the old sign, which is all that remains of an appeal to Jupiter. This symbol seems to put the practitioner, even if involuntarily, into a position of reverence in thus offering a prayer in embryo (the old physicians also wrote one) whenever one writes a prescription. The custom also suggests that we are not yet sufficiently sure of our materia medica after all these centuries, to sacrifice the efficacy of prayer.

In regard to the names and quantities of drugs, we find in the text-books that one should always strive after a classical arrangement, whereby four ingredients are essential to accomplish any result. These include:

I. The basis, or active medicinal substance.
II. The adjuvant, or assistant.
III. The corrigent, or corrective.
IV. The excipient, vehicle, or menstruum.

But we shall find that while such a classical arrangement may exist in the text-books, we are usually content in practice with the basis, together with a vehicle. The classical arrangement is essential in order that the old Latin motto be fulfilled: "Curare cito, tuto et jucunde." Curare—to cure (the basis); cito—quickly (the adjuvant); tuto—safely (the corrigent); jucunde—pleasantly (the excipient).

In a physic ball for horses we may employ aloes as a basis; calomel as an adjuvant; ginger as a corrective; molasses as an excipient. More commonly in fluid preparations we prescribe several bases, or ingredients for curative purposes, neglecting any adjuvant or corrigent and simply using water as a vehicle. It is often of distinct advantage to write for a combination of several drugs whose action looks towards a common end.
Yet one should always lean to simplicity rather than complexity in the number of ingredients. While it is difficult to avoid chemical antagonism, how much harder is it to prevent untoward physiological combinations in the body, which we can in no wise foretell. In olden times ignorance led practitioners to try the effect of an enormous number of drugs, with the hope that out of the charge one at least of the pellets in these shot-gun prescriptions might strike the desired spot, if the others failed to do so. But we now believe that the damage done by all the shot which miss far surpasses the good accomplished by the successful missile. Four hundred different remedies are included in one of these old formulae, whereas now it is rare to find four in a prescription.

In relation to the third part of the prescription (the directions to the compounder), we find that a few regulation Latin phrases or words express these directions. If one is unfamiliar with Latin, one can easily memorize these words and phrases understandingly. The directions to the attendant are heralded by the Latin signa, or signetur, meaning label, or let it be labelled; abbreviated, “Sig.” or merely “S.,” and being for the use of the attendant of the patient, are in English. The directions should be very precise. One should not write: “Use as directed,” or “Give in water,” but indicate exactly the quantity of medicine to be administered, the precise amount of water with which it is to be diluted, and the time at which it is to be given. For instance: “Give one tablespoonful in half a pint of water three times daily after feeding.”

Poisons should be marked as such. It is well sometimes to indicate that the prescription is “for a horse,” in order to avoid mistakes and to quell the qualms of the conscientious druggist.

Preparations which are not to be used internally should be labelled “external use.” Under “signature” the name of the writer and date is included. If desirable, one may inscribe “non repetatur,” do not repeat. Quantities used in prescription writing are indicated by the signs of the apothecaries or troy system of weights for solids. For liquids, signs representing units of the wine measure are employed. The troy grain and ounce are used by apothecaries as units of weights in dispensing prescriptions. In ordering large quantities (as pounds) the avoirdupois pound of 16 ounces is employed, and in buying ounces of drugs without a prescription the avoirdupois ounce is also utilized. The avoirdupois ounce contains 437 grains; the troy ounce contains 480 grains. The grain is of similar value in both systems.

Troy or Apothecaries’ Weight.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Sign</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound</td>
<td>℔</td>
<td>Libra</td>
</tr>
<tr>
<td>Ounce</td>
<td>℥</td>
<td>Uncia</td>
</tr>
<tr>
<td>Dram</td>
<td>℥</td>
<td>Drachma</td>
</tr>
<tr>
<td>Scruple</td>
<td>℥</td>
<td>Scrupulum</td>
</tr>
<tr>
<td>Grain</td>
<td>gr.</td>
<td>Granum</td>
</tr>
</tbody>
</table>
Wine Measure.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Sign</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallon</td>
<td>C or Cong.</td>
<td>Congius</td>
</tr>
<tr>
<td>Pint</td>
<td>0</td>
<td>Octarius</td>
</tr>
<tr>
<td>Fluidounce</td>
<td>f\frac{1}{3}</td>
<td>Fluida Uncia</td>
</tr>
<tr>
<td>Fluiddram</td>
<td>f\frac{1}{5}</td>
<td>Fluida Drachma</td>
</tr>
<tr>
<td>Minim</td>
<td>m\frac{1}{12}</td>
<td>Minimum</td>
</tr>
</tbody>
</table>

A drop is often used synonymously with minim, which is correct if the substance spoken of is water, or a liquid of nearly similar density. If the liquid is not of similar density, then a minim, or the sixtieth part of a dram, is far from being a drop as measured by dropping a liquid from any ordinary utensil. Any amount from 45 drops to 276 drops, measured in this way, may be obtained from a dram of fluid, according to its density, mode of dropping, and kind of vessel from which it is dropped.

A gutta (gtt.), then, is of no fixed value, but means a drop as dropped from a vessel; while a minim is always the sixtieth part of a dram.

Relative Value of Units in the Wine Measure.

<table>
<thead>
<tr>
<th></th>
<th>1C</th>
<th>1Oi</th>
<th>1\text{f}</th>
<th>1\text{i}</th>
<th>1\text{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= 8</td>
<td>= 16</td>
<td>= 8</td>
<td>= 8</td>
<td>= 6</td>
</tr>
<tr>
<td></td>
<td>= 128</td>
<td>= 128</td>
<td>= 8</td>
<td>= 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 1024</td>
<td>= 7,680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 61,440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Value of Units in Troy System.

<table>
<thead>
<tr>
<th></th>
<th>1\text{lb}</th>
<th>1\text{f}</th>
<th>1\text{i}</th>
<th>1\text{Gr}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= 12</td>
<td>= 8</td>
<td>= 3</td>
<td>= 20</td>
</tr>
<tr>
<td></td>
<td>= 96</td>
<td>= 24</td>
<td>= 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 288</td>
<td></td>
<td></td>
<td>5,760</td>
</tr>
</tbody>
</table>

The abbreviation, fl., is usually omitted in prescription writing, as referring to fluids, the character of the preparation being sufficiently apparent. The Roman numerals are used to express the quantities employed when the apothecaries' system is used; when the metric system is employed Arabic numerals are used. The Roman numerals are written under a horizontal line, the i's or j's are dotted (they are identical in Latin) and the dot serves to enforce and check the numbers used. Fractions are usually expressed in ordinary Arabic characters, except \(\frac{1}{2} \), which is often indicated by a double s (ss), standing for semis, the Latin for one-half.

When the apothecaries' (or troy) system is used the symbol precedes the Roman numerals; when the metric system is used the Arabic numerals precede the abbreviation of the unit.
Approximate Equivalents of Wine Units in Domestic Measures.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Conversion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaspoon</td>
<td>= 5 i-ii.</td>
<td>5 mils (or cc.)</td>
</tr>
<tr>
<td>Dessertspoon</td>
<td>= 5 ii.</td>
<td>10 mils (or cc.)</td>
</tr>
<tr>
<td>Tablespoon</td>
<td>= 5 ss.</td>
<td>15 mils (or cc.)</td>
</tr>
<tr>
<td>Cup</td>
<td>= 5 iv.</td>
<td>120 mils (or cc.)</td>
</tr>
<tr>
<td>Tumbler</td>
<td>= 5 viii.</td>
<td>240 mils (or cc.)</td>
</tr>
</tbody>
</table>

There are usually about six teaspoonfuls to the fluid ounce. It is a good plan to have some regard for the size of vials generally kept by druggists, and to write for a quantity to fill the bottle. The bottles commonly in use in human and canine practice are the 2 and 4 dram; the 1, 2, 3, 4, 5, 6, 8, 12, and 16 ounce.

The 2-dram bottles are useful for measuring the dose of fluid extracts for horses; the 3-ounce bottle is convenient in writing prescriptions in the metric system for dogs, as it holds approximately 100 mils. The 4-ounce bottle is the common size, employed in canine practice, containing 24 doses of one teaspoonful each. The ½ pint and pint bottles are more appropriate for larger animals.

The Metric System.

The metric system will be described, because it is the universal system employed in scientific writings, and is now official (employed in the U. S. Pharmacopeia). It is based on the fact that a uniform, unchangeable standard is employed as the unit of all measures, whether of weight, capacity or area. This standard is the ten-millionth part of the distance from either pole to the equator, and is denominated a meter (39.371 inches), and is the standard of length. The cube of 0.1 of a meter is taken as the unit of capacity and called a litre (2.1133 pints). The weight of water at its greatest density, 4° C. (39.2° F.), which this cube will contain, is termed a kilogram (2.2046 lbs. avoirdupois), and is the unit of the measure of weight of ordinary commerce.

Metric Diagram

The weight of water that the small cube will contain is one gram. This is the unit of weight of the metric system. Since the large cube will contain one liter the small cube will contain one one-thousandth of a liter or one milliliter (abbreviated 1 ml). But for prescriptions and other small weighings lesser units than the kilo and liter are required and therefore the cube of one-hundredth of a meter is taken and the weight of water which this cube holds is recognized as the unit of weight and called a gram (15,432 grains). The quantity of water contained in the cube of one-hundredth of a meter is used as a unit in measuring capacity in chemical and pharmaceutical practice and termed a cubic centimeter. The multiples of these measures, proceeding in decimal progression, are distinguished by Greek numerals as prefixes, i.e., Deca-10, Hecto-100, Kilo-1000. The subdivisions of the unit are represented by the Latin prefixes, as deci-0.1, centi-0.01, milli-0.001. Hence, using the gram as the unit, we can arrange a table as follows:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilogram</td>
<td>Kg.</td>
<td>1,000</td>
</tr>
<tr>
<td>Hectogram</td>
<td>Hg.</td>
<td>100</td>
</tr>
<tr>
<td>Decagram</td>
<td>Dg.</td>
<td>10</td>
</tr>
</tbody>
</table>
PRESCRIPTION WRITING

1 DECIMETER OR \(\frac{1}{10} \) METER

Gram Gm. = 1 gram = 1.0
Decigram dg. = 1/10 gram = 0.1
Centigram cg. = 1/100 gram = 0.01
Milligram mg. = 1/1000 gram = 0.001

The metric system has the advantage of being arranged decimally, which makes the computation of percentages easy, and the transference of a quantity of one denomination to that of another, by merely shifting a decimal point. There are other advantages which make it of value to practitioners. Our present system is not uniform with that of any other country. The English, while using the same nomenclature for weights and measures, put a different value upon them. The system has another value, at least theoretically, in having one unit for weights and measures. The unit of the fluid measure is 1 cubic centimeter of water, which at 4° C. weighs one gram. As a matter of fact, fluids are dispensed in the metric system by measuring them in cubic centimeters (abbreviation cc.), and if liquids were all of the same density as water, they would be equiv-
alent to grams of water when measured in cc’s. Unfortunately, this is not the case. Theoretically, medicine should be dispensed by weight in the metric system, but as medicines, when given to patients, are usually measured by bulk, they cannot be dispensed by weight without producing a complication. For example, suppose that we order chloroform in a prescription in the metric system,—

B Chloroformi... 30

S. Two teaspoonfuls in water.

John Smith.

thinking we are dispensing 10 grams,* for a teaspoonful holds 5 grams of water. But as chloroform weighs $\frac{1}{2}$ more than water, we really have ordered $1\frac{1}{2} \times 10 = 15$ Gm. of chloroform. Therefore, in writing a prescription for chloroform with other ingredients, weighed in Gm., we would have to add $\frac{1}{2}$ of the number of Gm. of chloroform in the prescription to the number previously estimated in order to make the chloroform of the same bulk as other liquids of the density of water.

In order to avoid reducing substances of density differing from that of water, to terms of equivalency with that of water, it is the custom, and now official, to weigh solids in Gm. and measure liquids in cc. (mil). This is an exact method if the doses of drugs are learned in the same way: *i.e.*, if the doses of solids are learned in Gm. and prescribed in Gm., and the doses of liquids are learned in cc. and prescribed in cc. (now mil).

In writing prescriptions in the metric system a line is drawn perpendicularly across the right-hand side of the blank to indicate the decimal point; multiples of the unit being placed to the left of the line, while fractions are written to the right of the decimal line. In using this system we are spared the annoyance of special signs and different tables for weights and measures. As matters now stand we must be cognizant of both systems, and be able to convert the old into the new, or *vice versa.* One dram is equivalent to four grams, 5i. = 4 Gm. Therefore, 1 Gm. = $\frac{5}{4}$ or gr. 15. Then gr. i. = $\frac{1}{15}$ of 1 Gm.; or .066 Gm. The equivalent of gr. i is .06 Gm. In order to determine the equivalent of fractions of a grain in grams, we divide .06 by the denominator and multiply the result by the numerator of the fraction of a grain. For example:

$$\text{gr.} \frac{2}{3} = \frac{2}{3} \text{ of .06 Gm. as .06 Gm.} = \text{gr. i.}$$

$$3).06(.02 \times 2 = .04. \text{ Therefore, gr.} \frac{2}{3} = .04 \text{ Gm.}$$

$$\frac{6}{0}$$

Again: to find the equivalent of gr. $\frac{1}{8}$ in Gm.

$$8).066(.008 \times 1 = .008$$

$$\frac{64}{2}$$

Therefore, gr. $\frac{1}{8} = .008 \text{ Gm.}$

*For each dose.
Table for Converting Apothecaries' Weights and Measures Into Grams and Mils (Cubic Centimeters).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>.001</td>
<td>1</td>
<td>.06</td>
</tr>
<tr>
<td>1/40</td>
<td>.0015</td>
<td>2</td>
<td>.12</td>
</tr>
<tr>
<td>1/30</td>
<td>.002</td>
<td>3</td>
<td>.18</td>
</tr>
<tr>
<td>1/20</td>
<td>.003</td>
<td>4</td>
<td>.24</td>
</tr>
<tr>
<td>1/16</td>
<td>.004</td>
<td>5</td>
<td>.30</td>
</tr>
<tr>
<td>1/12</td>
<td>.005</td>
<td>6</td>
<td>.36</td>
</tr>
<tr>
<td>1/10</td>
<td>.006</td>
<td>7</td>
<td>.50</td>
</tr>
<tr>
<td>1/8</td>
<td>.008</td>
<td>8</td>
<td>.42</td>
</tr>
<tr>
<td>1/6</td>
<td>.010</td>
<td>9</td>
<td>.55</td>
</tr>
<tr>
<td>1/4</td>
<td>.016</td>
<td>10</td>
<td>.60</td>
</tr>
<tr>
<td>1/3</td>
<td>.02</td>
<td>15</td>
<td>.72</td>
</tr>
<tr>
<td>1/2</td>
<td>.03</td>
<td>16</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>.065</td>
<td>20</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>.13</td>
<td>25</td>
<td>1.55</td>
</tr>
<tr>
<td>3</td>
<td>.20</td>
<td>30</td>
<td>1.90</td>
</tr>
<tr>
<td>4</td>
<td>.26</td>
<td>35</td>
<td>2.20</td>
</tr>
<tr>
<td>5</td>
<td>.32</td>
<td>40</td>
<td>2.50</td>
</tr>
<tr>
<td>6</td>
<td>.39</td>
<td>48</td>
<td>3.00</td>
</tr>
<tr>
<td>8</td>
<td>.52</td>
<td>50</td>
<td>3.12</td>
</tr>
<tr>
<td>10</td>
<td>.65</td>
<td>60 (f5i.)</td>
<td>3.75</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>72</td>
<td>4.50</td>
</tr>
<tr>
<td>20 (§i.)</td>
<td>1.30</td>
<td>80</td>
<td>5.00</td>
</tr>
<tr>
<td>24</td>
<td>1.50</td>
<td>90</td>
<td>5.60</td>
</tr>
<tr>
<td>26</td>
<td>1.62</td>
<td>96</td>
<td>6.00</td>
</tr>
<tr>
<td>30</td>
<td>1.95</td>
<td>100</td>
<td>6.25</td>
</tr>
<tr>
<td>40</td>
<td>2.60</td>
<td>120 (f3iii.)</td>
<td>7.50</td>
</tr>
<tr>
<td>50</td>
<td>3.20</td>
<td>160</td>
<td>10.00</td>
</tr>
<tr>
<td>60 (§ii.)</td>
<td>3.90</td>
<td>180 (f5iii.)</td>
<td>11.25</td>
</tr>
<tr>
<td>120 (f5ii.)</td>
<td>7.80</td>
<td>240 (f5ss.)</td>
<td>15.00</td>
</tr>
<tr>
<td>180</td>
<td>11.65</td>
<td>f3v.</td>
<td>18.75</td>
</tr>
<tr>
<td>240</td>
<td>15.50</td>
<td>f5vi.</td>
<td>22.50</td>
</tr>
<tr>
<td>300</td>
<td>19.40</td>
<td>f5vii.</td>
<td>26.25</td>
</tr>
<tr>
<td>360</td>
<td>23.30</td>
<td>f5i.</td>
<td>30.00</td>
</tr>
<tr>
<td>420</td>
<td>27.20</td>
<td>f5ii.</td>
<td>60.00</td>
</tr>
<tr>
<td>480</td>
<td>31.10</td>
<td>f5iii.</td>
<td>90.00</td>
</tr>
<tr>
<td>5ii.</td>
<td>62.20</td>
<td>f5iv.</td>
<td>120.00</td>
</tr>
<tr>
<td>5iv.</td>
<td>124.40</td>
<td>f5v.</td>
<td>150.00</td>
</tr>
<tr>
<td>5vi.</td>
<td>186.60</td>
<td>f5vi.</td>
<td>180.00</td>
</tr>
<tr>
<td>5viii.</td>
<td>248.80</td>
<td>f5viii.</td>
<td>240.00</td>
</tr>
</tbody>
</table>
Exact Equivalent in Approximate Equivalents

<table>
<thead>
<tr>
<th>Metric Weights</th>
<th>Grains</th>
<th>In Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001</td>
<td>.0154</td>
<td>1/65</td>
</tr>
<tr>
<td>.002</td>
<td>.0308</td>
<td>1/32</td>
</tr>
<tr>
<td>.003</td>
<td>.0463</td>
<td>1/22</td>
</tr>
<tr>
<td>.004</td>
<td>.0617</td>
<td>1/16</td>
</tr>
<tr>
<td>.005</td>
<td>.0771</td>
<td>1/13</td>
</tr>
<tr>
<td>.006</td>
<td>.0926</td>
<td>1/11</td>
</tr>
<tr>
<td>.007</td>
<td>.1080</td>
<td>1/9</td>
</tr>
<tr>
<td>.008</td>
<td>.1234</td>
<td>1/8</td>
</tr>
<tr>
<td>.009</td>
<td>.1389</td>
<td>1/7</td>
</tr>
<tr>
<td>.01</td>
<td>.1543</td>
<td>1/6</td>
</tr>
<tr>
<td>.02</td>
<td>.3086</td>
<td>1/3</td>
</tr>
<tr>
<td>.03</td>
<td>.4630</td>
<td>6/13</td>
</tr>
<tr>
<td>.04</td>
<td>.6173</td>
<td>7/11</td>
</tr>
<tr>
<td>.05</td>
<td>.7717</td>
<td>3/4</td>
</tr>
<tr>
<td>.06</td>
<td>.9260</td>
<td>9/10</td>
</tr>
<tr>
<td>.07</td>
<td>1.0803</td>
<td>1</td>
</tr>
<tr>
<td>.08</td>
<td>1.2347</td>
<td>1 1/4</td>
</tr>
<tr>
<td>.09</td>
<td>1.3890</td>
<td>1 1/3</td>
</tr>
<tr>
<td>.10</td>
<td>1.543</td>
<td>1 1/2</td>
</tr>
<tr>
<td>.20</td>
<td>3.086</td>
<td>3</td>
</tr>
<tr>
<td>.30</td>
<td>4.630</td>
<td>4 1/2</td>
</tr>
<tr>
<td>.40</td>
<td>6.173</td>
<td>6</td>
</tr>
<tr>
<td>.50</td>
<td>7.717</td>
<td>7 1/2</td>
</tr>
<tr>
<td>.60</td>
<td>9.260</td>
<td>9</td>
</tr>
<tr>
<td>.70</td>
<td>10.803</td>
<td>11</td>
</tr>
<tr>
<td>.80</td>
<td>12.347</td>
<td>12 1/2</td>
</tr>
<tr>
<td>.90</td>
<td>13.890</td>
<td>14</td>
</tr>
<tr>
<td>1.00</td>
<td>15.432</td>
<td>15</td>
</tr>
<tr>
<td>2.00</td>
<td>30.864</td>
<td>30, 3ss.</td>
</tr>
<tr>
<td>3.00</td>
<td>46.296</td>
<td>40, 9ii.</td>
</tr>
<tr>
<td>4.00</td>
<td>61.728</td>
<td>60, 9i.</td>
</tr>
<tr>
<td>5.00</td>
<td>77.160</td>
<td>80, 9iv.</td>
</tr>
<tr>
<td>6.00</td>
<td>92.592</td>
<td>90, 9iss.</td>
</tr>
<tr>
<td>7.00</td>
<td>108.024</td>
<td>110, 9vss.</td>
</tr>
<tr>
<td>8.00</td>
<td>123.456</td>
<td>120, 9iii.</td>
</tr>
<tr>
<td>9.00</td>
<td>138.888</td>
<td>140, 9vii.</td>
</tr>
<tr>
<td>10.00</td>
<td>154.320</td>
<td>150, 9viii</td>
</tr>
</tbody>
</table>
We stated that 3i. = 4 Gm. It follows that 3 3i. would equal 32 Gm. As a fact, 3i. apothecaries’ weight, is equivalent to a trifle less than 4 Gm.; and an ounce, apothecaries’ weight, is usually considered equal to 30 Gm. (exactly 31.10 Gm.) for the sake of convenience. A fluid ounce in wine measure is precisely equivalent to 29.57 cc. We have here another reason why both solid and fluid ounces should be valued at 30 Gm. or cc. Although it is the custom to regard the minim of liquid as the equivalent of one grain, it is inexact. An apothecaries’ ounce weighs 480 gr.; a fluid ounce of wine measure weighs 457 gr. Multiples of grams or cubic centimeters may be designated as such, instead of using the technical terms. It is perfectly proper to speak of 100 Gm. as one hundred grams, although technically equal to a hectogram. .1 Gm. may be called onetenth gram, although technically a decigram. Similar remarks apply to cc., yet 1,000 cc. (approximately 1 quart) equal one liter, and this term is in common use. In the ninth (1916) edition of the U. S. Pharmacopeia the British term “mil” (abbreviation of milliliter—mille, Latin for one thousand and in the combining form usually meaning one one-thousandth) or the thousandth part of a liter is used instead of the more cumbersome cubic centimeter. Thus the word “mil” is rapidly coming into use in scientific literature to replace the abbreviation “cc.” In time it may wholly replace it in medical literature but for the present it is necessary for the veterinary student to be familiar with both terms.

Note that the abbreviation for gram, Gm., is capitalized and the abbreviation for grain, gr., is not.

Rules for Forming the Genitive Case in Prescription Writing.

The Latin names of drugs, as we learn them, when consisting of a single word, are in the nominative case. For example: oleum, an oil. The genitive case of a Latin word means of (the word), and is equivalent to the English possessive. Thus the Latin name oleum lini, consists of two words. The first, oleum, is the Latin nominative for oil, and the second word, lini, is the Latin genitive of the word meaning linseed. The name signifies, then, oleum (oil) and lini (of linseed). In writing prescriptions it is usually essential to put the Latin name of the drug in the genitive case, following the use of the heading R, standing for the Latin imperative Recipe, meaning in English, Take.

For example:

R

Potassi nitratis..3i.

Literally translated this means:

Take

Of potassium nitrate, ounce 1.

There is only one other case which is used in writing prescriptions (the accusative), but this can be avoided by using abbreviations in the few instances in which it should be employed. The following rules can be memorized (with their exceptions) in order to form the genitive case (singular):
(1) Latin names of drugs ending in a form their genitive in ae. The only exceptions are three: physostigma takes the genitive in tis, physostigmatis; folia (leaves), pl. genitive, foliorum; theobroma, genitive theobromatis. In most instances the genitive of Latin nouns ending in a, can be made in practice by dropping the nominative ending (a) and adding æ in its place, viz.: Tinctur-a (a tincture), genitive tinctur-ae (of a tincture).

(2) All pharmacopeial nouns ending in us, um (os and on), form their genitive in i. This genitive case can be formed in practice by dropping the nominative ending (us or um) and adding i in its place, viz.: bol-us, a ball; genitive bol-i, of a ball. Extract-um, an extract; genitive extract-i, of an extract.

The nouns ending in os and on are very few. Exceptions: rhus, genitive rhois; flos, genitive floris. Fructus, quercus and spiritus do not change in the genitive, as it is the same as the nominative case.

(3) All other Latin names of drugs, of whatever termination (except those ending as described under rules 1 and 2) have their genitive in s and is.

The genitive case can be formed in practice, in some instances, by adding is to the nominative, as, for example; chloral, genitive chloral-is; ether, genitive, ether-is. To many nouns ending in the nominative in as or is, we not only add is to the nominative, but also change the latter letter of the nominative case. For instance, to sulphas (sulphate) not only do we add is, sulphas-is, but we change the latter letter, s, of sulphas into a t so that the proper genitive of sulphas is sulphat-is.

The same remark applies to all the other Latin names of salts, as sulphis, genitive sulphit-is; nitras, genitive nitrat-is; hydrochloras, genitive hydrochlorat-is; citras, genitive citrat-is; phosphas, genitive phosphat-is; acetas, genitive acetat-is. Cortex is not cortex-is in the genitive, but corticis. Mas, genitive not mas-is, but maris. Adeps, genitive not adeps-is, but adapis. Mucilago, pepo and pulvis lengthen and change in the genitive to mucilagin-is, pepon-is and pulver-is. Aloe, genitive not aloes, but aloês, adding s and not is.

(4) Some Latin names of drugs do not change their ending in the genitive because indeclinable and not Latinized, or else they belong to the fourth declension, where the genitive case is the same as the nominative. Examples: spiritus, quercus and fructus, already mentioned as exceptions to rule 2; Cannabis, digitalis, sinapis and hydrastis. The genitive of these nouns is the same as the nominative.

The following are indeclinable: amyl, buchu, catechu, coca, curare, jaborandi, kino, cussu, gummi, etc.

If the Latin names for quantities and amounts thereof are written out in full (instead of using signs for quantities, and numbers for the amounts), the quantities and amounts in Latin must be put into the accusative case, as they are the objects of the verb, recipe.
For example:

\[\text{R} \]
Sodii sulphatis, uncias duas.

Translated:

Take
Of sodium sulphate, ounces two.

The Latin noun *uncia* (ounce) is in the accusative case, and the adjective *duas* is also in the accusative, agreeing with *uncias*. But to write out prescriptions in full, as above, is not customary and would be considered pedantic.

Again, the Latin names of the ingredients should be written in the accusative case when no noun for weight or measure is employed. For example:

\[\text{R} \]
Pilulas catharticas compositas duas.

Translated literally:

Take
Pills cathartic compound, two. Or, take two compound cathartic pills.

Pilulas (pills) is in the accusative object of the verb *recipe*. Catharticas, compositas, and duas are adjectives, agreeing with pilulas. We can only write this prescription correctly, without using the accusative case, by abbreviating it as follows:

\[\text{R} \]
List of Latin Nouns Found in the Pharmacopeia with Their Genitive Ending.*

[The figure in parenthesis after each word indicates the declension to which it belongs.]

Acacia,
Acetanilidum,
Acetas,
Aceticum,
Acetonum,
Acetphenetidinum,
Acetum,
Acidum,
Aconitina,
Aconitum,
Adeps,
Adhesivum,
Adjuvans,
Æther,
Alcohol,
Aloe,
Aloinum,
Althea,
Alumen,
Aluminum,
Ammonia,
Ammonium,
Amygdala,
Amyl,
Amyllum,
Animal,
Anisum,
Anthemis,
Antidiphtheriticum,
Antimonium,
Antipyrina,
Antisepticus,
Apocynum,
Apomorphina,
Aqua,
Argentum,
Arnica,
Arsenas,
Arsenosum,
Arsenum,
Asafetida,
Aspidum,
Atropina,
Aurantium,
Aurum,
Balsamum,
Belladonna,
Benzaldehydum,
Benzinum,
Benzoas,
Benzoicum,
Benzoinum,
Acacias (1).
Acetanilidi (2).
Acetatis (3).
Acetic (2).
Acetoni (2).
Acetphenetidini (2).
Aceti (2).
Acidi (2).
Aconitinae (1).
Aconitii (2).
Adips (3).
Adhesivi (2).
Adjuvantis (3).
Athens (3).
Alcoholis (3).
Aloes (3).
Aloini (2).
Althaeas (1).
Aluminis (3).
Alumini (2).
Ammoniæ (1).
Ammonii (2).
Amygdalae (1).
Amylis (3).
Amylis (2).
Animalis (3).
Anisi (2).
Antidiphtheritici (2).
Antimonii (2).
Antipyrinae (1).
Antiseptici (2).
Apocyni (2).
Apomorphìnæ (1).
Aquæ (1).
Argenti (2).
Arnicæ (1).
Arsenatis (3).
Arsenosii (2).
Arseni (2).
Asafetidæ (1).
Aspidii (2).
Atropinae (1).
Auranti (2).
Auri (2).
Balsami (2).
Belladonnæ (1).
Benzaldehydi (2).
Benzinii (2).
Benzoas (3).
Benzoici (2).
Benzoinii (2).
Benzosulphinidum,
Berberis,
Betanaphthol,
Bicarbonas,
Bismuthum,
Bisulphis,
Bitartras,
Boras,
Bos,
Bromidum,
Bromformum,
Boricum,
Bromum,
Buchu (indeclinable).
Caffeina,
Calamus,
Calcium,
Calendula,
Calumba,
Calx,
Cambogia,
Camphora,
Camphoras,
Camphoricum,
Canadensis,
Cannabis,
Cantharis,
Capsicum,
Carbo,
Carbonas,
Carboni (neuter genitive used as substantive).
Cardamomum,
Carum,
Caryophyllus,
Cassia,
Cathaplasmus,
Cera,
Ceratium,
Cerium,
Cetaceum,
Charta,
Chimaphila,
Chirata,
Chloralformamidum,
Chloralum,
Chloras,
Chloridum,
Chlorina,
Chloriformum,
Chondrus,
Benzosulphinidi (2).
Berberidis (3).
Betanaphtholis (3).
Bicarbonatis (3).
Bismuthi (2).
Bisulphitis (3).
Bitartratis (3).
Boratis (3).
Bovis (3).
Bromidi (2).
Bromformini (2).
Borici (2).
Bromi (2).
Caffeinae (1).
Calami (2).
Calcii (2).
Calendulae (1).
Calumbæ (1).
Calcis (3).
Cambogiæ (1).
Camphoræ (1).
Camphoratis (3).
Camphorici (2).
Canadensis (3).
Cannabis (3).
Cantharidis (3).
Capsici (2).
Carbonis (3).
Carbonatis (3).
Cardamomæ (2).
Cari (2).
Caryophylli (2).
Cassiae (1).
Cataplasmatis (3).
Ceræ (1).
Cerati (2).
Ceri (2).
Cetacei (2).
Chartæ (1).
Chimaphilæ (1).
Chiratæ (1).
Chloralformamidi (2).
Chlorali (2).
Chloratis (3).
Chloridi (2).
Chlorinate (1).
Chloroformi (2).
Chondri (2).
Chromium, Chrysoarobinum, Cinicifuga, Cinchona, Cinchonidina, Cinchonina, Cinnaldehydum, Cinnamomum, Citras, Citricum, Coca, Cocaine, Coccus, Codeina, Colchicina, Colchicum, Colodium, Colocynthis, Confuctio, Conium, Convallaria, Copaba, Coriandrum, Cuminum, Cortex, Creosotum, Cressol, Creta, Cubeba, Cuprum, Cusso (indeclinable).

Cyanidum, Cyprisedium, Decocta, Dicromas, Digitalis, Disulphidum, Elastica, Elaterinum, Elixir (indeclinable).

Emblastrum, Emulsum, Ergot, Erigdictyon, Erigdicty (Pharmaepoia).

Eucalyptol, Eucalyptus, Eugenol, Euonymus, Eupatorium, Extractum, Fel, Ferrocyanydum, Ferrum, Ficus, Fistula, Fluidextractum, Feniculum, Flourum,

Cyanidi (2). Cyprisedid (2). Decoctae (1). Dichromatis (3). Digitalis (3). Disulphidi (2). Elastice (1). Elaterini (2).

Emplastris (2). Emusl (2). Ergota (1). Ergodiuntis (3).

Eucalyptolis (3). Eucalypti (2). Eugenoli (3). Euromini (2). Eupatoriæ (2). Extractii (2). Felli (3).

Ferrocyanydidi (2). Ferri (2). Fici (2), also ficus. Fistulae (1). Fluidextracti (2). Feniuli (2). Folii (2).

Formaldehydum, Frangula, Galla, Gallas, Gallicum, Gambir (indeclinable).

Krameria, Lactis, Lacticum,
<table>
<thead>
<tr>
<th>Latin Noun</th>
<th>Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactuca</td>
<td>- Lactuca, Lacta, Lactus, Lactae, Lactucae, Lactuali, Lactulae, Lactuli</td>
</tr>
<tr>
<td>Lappa</td>
<td>- Lappa, Lappae, Lappae, Lappae, Lappae, Lappae, Lappae, Lappae, Lappae</td>
</tr>
<tr>
<td>Laptandra</td>
<td>- Laptandra, Laptandre, Laptandree, Laptandree, Laptandree, Laptandree</td>
</tr>
<tr>
<td>Lignum</td>
<td>- Ligni, Lignum, Ligni, Ligni, Ligni, Ligni, Ligni, Ligni, Ligni, Ligni</td>
</tr>
<tr>
<td>Liniment</td>
<td>- Linimenti, Linimentum, Linimenti, Linimenti, Linimenti, Linimenti, Linimenti</td>
</tr>
<tr>
<td>Linum</td>
<td>- Linum, Linum, Linum, Linum, Linum, Linum, Linum, Linum, Linum, Linum</td>
</tr>
<tr>
<td>Lithium</td>
<td>- Lithii, Lithium, Lithii, Lithii, Lithii, Lithii, Lithii, Lithii, Lithii, Lithii</td>
</tr>
<tr>
<td>Lupulinum</td>
<td>- Lupulini, Lupulinum, Lupulini, Lupulini, Lupulini, Lupulini, Lupulini, Lupulini, Lupulini, Lupulini</td>
</tr>
<tr>
<td>Magnesium</td>
<td>- Magnesii, Magnesium, Magnesii, Magnesii, Magnesii, Magnesii, Magnesii, Magnesii, Magnesii, Magnesii</td>
</tr>
<tr>
<td>Maltum</td>
<td>- Malti, Maltum, Malti, Malti, Malti, Malti, Malti, Malti, Malti, Malti</td>
</tr>
<tr>
<td>Manganum</td>
<td>- Mangani, Manganum, Mangani, Mangani, Mangani, Mangani, Mangani, Mangani, Mangani, Mangani</td>
</tr>
<tr>
<td>Manna</td>
<td>- Mannae, Manna, Mannae, Mannae, Mannae, Mannae, Mannae, Mannae, Mannae, Mannae</td>
</tr>
<tr>
<td>Marrubium</td>
<td>- Marrubii, Marrubium, Marrubii, Marrubii, Marrubii, Marrubii, Marrubii, Marrubii, Marrubii, Marrubii</td>
</tr>
<tr>
<td>Massa</td>
<td>- Massae, Massa, Massae, Massae, Massae, Massae, Massae, Massae, Massae, Massae</td>
</tr>
<tr>
<td>Mastiche</td>
<td>- Mastiche, Mastiche, Mastiche, Mastiche, Mastiche, Mastiche, Mastiche, Mastiche, Mastiche, Mastiche</td>
</tr>
<tr>
<td>Matico</td>
<td>- Matico, Matico, Matico, Matico, Matico, Matico, Matico, Matico, Matico, Matico</td>
</tr>
<tr>
<td>Nux</td>
<td>- Nucis Vomicae, Nux, Nux, Nux, Nux, Nux, Nux, Nux, Nux, Nux, Nux</td>
</tr>
<tr>
<td>Vomica</td>
<td>- Vomica, Vomica</td>
</tr>
<tr>
<td>Opulus</td>
<td>- Opuli, Opulus, Opuli, Opuli, Opuli, Opuli, Opuli, Opuli, Opuli, Opuli, Opuli</td>
</tr>
<tr>
<td>Oxalas</td>
<td>- Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalas</td>
</tr>
<tr>
<td>Oleas</td>
<td>- Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Olea</td>
</tr>
<tr>
<td>Oleatum</td>
<td>- Oleati, Olea, Oleati, Olea, Oleati, Olea, Oleati, Olea, Oleati, Olea, Olea</td>
</tr>
<tr>
<td>Oleicum</td>
<td>- Oleici, Olea, Oleici, Olea, Oleici, Olea, Oleici, Olea, Oleici, Olea, Olea</td>
</tr>
<tr>
<td>Oleoresina</td>
<td>- Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina</td>
</tr>
<tr>
<td>Oleum</td>
<td>- Olei, Olea, Olei, Olea, Olei, Olea, Olei, Olea, Olei, Olea, Olea</td>
</tr>
<tr>
<td>Opium</td>
<td>- Opii, Opia, Opii, Opia, Opii, Opia, Opii, Opia, Opii, Opia, Opia</td>
</tr>
<tr>
<td>Opulus</td>
<td>- Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli</td>
</tr>
<tr>
<td>Oxalas</td>
<td>- Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalatis, Oxalas, Oxalas</td>
</tr>
<tr>
<td>Oleas</td>
<td>- Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Oleatis, Olea, Olea</td>
</tr>
<tr>
<td>Oleatum</td>
<td>- Oleati, Olea, Oleati, Olea, Oleati, Olea, Oleati, Olea, Oleati, Olea, Olea</td>
</tr>
<tr>
<td>Oleicum</td>
<td>- Oleici, Olea, Oleici, Olea, Oleici, Olea, Oleici, Olea, Oleici, Olea, Olea</td>
</tr>
<tr>
<td>Oleoresina</td>
<td>- Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina, Oleoresinii, Oleoresina</td>
</tr>
<tr>
<td>Oleum</td>
<td>- Olei, Olea, Olei, Olea, Olei, Olea, Olei, Olea, Olei, Olea, Olea</td>
</tr>
<tr>
<td>Opium</td>
<td>- Opii, Opia, Opii, Opia, Opii, Opia, Opii, Opia, Opii, Opia, Opia</td>
</tr>
<tr>
<td>Opulus</td>
<td>- Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli, Opulii, Opuli</td>
</tr>
</tbody>
</table>

LIST OF LATIN NOUNS
Scoparius,
Scopoli,
Scopolamina,
Scutellaria,
Semen,
Senega,
Senna,
Serpentaria,
Sesum,
Sevum,
Sinapis,
Sodium,
Sparteina,
Spigelia,
Spiritus,
Staphisagria,
Stearas,
Stearicum,
Stillingia,
Stramonium,
Strontium,
Strophanthinum,
Strophanthus,
Strychnina,
Stryrax,
Subacetatia,
Subcarbonatas,
Subgallatia,
Subnitratus,
Subsalicylastia,
Subsulphatia,
Succus,
Sulphatia,
Sulpho,
Sulphonethylmethanum,
Sulphonmethanum,
Sulphur,
Sulphuricum,
Sulphurosum,
Sumbul (indeclinable).

Scoparii (2).
Scopolae (1).
Scopolaminæ (1).
Scutellaræ (1).
Seminis (3).
Senega (1).
Sennæ (1).
Serpentariae (1).
Seri (2).
Sevi (2).
Sinapis (3).
Sodii (2).
Sparteinae (1).
Spigelæ (1).
Spiritus (4).
Staphisagriae (1).
Stearatis (3).
Stearici (2).
Stillingiae (1).
Stramonii (2).
Strontii (2).
Strophanthi (2).
Strophanthi (2).
Strychnæ (1).
Styracis (3).
Subacetatis (3).
Subcarbonatis (3).
Subgallatis (3).
Subnitratis (3).
Subsalicylastis (3).
Sulsulphatis (3).
Succi (2).
Sulphatis (3).
Sulphitis (3).
Sulphonethylmethani (2).
Sulphonmethani (2).
Sulphuris (3).
Sulphurici (2).
Sulphuros (2).

Suppositoria, Suprarenales, plural.
Syropus,
Talcum,
Tamarindus,
Tannas,
Tannicum,
Taraxacum,
Tartaricum,
Tartras,
Terehenum,
Terebinthina, Terpinum,
Tersulphas,
Theobroma,
Thiosulphas,
Thymol,
Thyroideæ, plural.
Tinctura, Tragacantha,
Trichloraceticum,
Trioïdum,
Tritium,
Triturationis (3).
Trophici (2).
Ulmi (2).
Unguenti (2).
Uvae ursi (1).
Valeriana, Vanilla,
Vanillinum, Vanillinae (1).
Vanillin (2).
Veratri (2).
Veratrinæ (1).
Veratrum (2). Viburnum (2).
Vinæ (2).
Virginiana, Xanthonium, Zea,
Zincum, Zingiber,
List of Latin Adjectives Found in the Pharmacopoeia, with Their Genitive Endings.

Masculine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Albus,</td>
<td>Albi,</td>
<td>Alba,</td>
<td>Album.</td>
</tr>
<tr>
<td>Amarus,</td>
<td>Amari,</td>
<td>Amara,</td>
<td>Amari.</td>
</tr>
<tr>
<td>Ammoniatus,</td>
<td>Ammoniati,</td>
<td>Ammoniata,</td>
<td>Ammoniatum.</td>
</tr>
<tr>
<td>Aromaticus,</td>
<td>Aromatici,</td>
<td>Aromaticæ,</td>
<td>Aromaticum.</td>
</tr>
<tr>
<td>Cantharidatus,</td>
<td>Cantharidati,</td>
<td>Cantharidata,</td>
<td>Cantharidatum.</td>
</tr>
<tr>
<td>Compositus,</td>
<td>Compositi,</td>
<td>Composita,</td>
<td>Compositum.</td>
</tr>
<tr>
<td>Corrosivus,</td>
<td>Corrosivi,</td>
<td>Corrosiva,</td>
<td>Corrosivum.</td>
</tr>
<tr>
<td>Depuratus,</td>
<td>Depurati,</td>
<td>Depurata,</td>
<td>Depuratum.</td>
</tr>
<tr>
<td>Dilutus,</td>
<td>Diluti,</td>
<td>Diluta,</td>
<td>Dilutum.</td>
</tr>
</tbody>
</table>

Masculine and Feminine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Effervescens,</td>
<td>Effervescentis,</td>
<td>Effervescens.</td>
<td>Effervescentis.</td>
</tr>
<tr>
<td>Exsiccatus,</td>
<td>Exsiccati,</td>
<td>Exsiccatum.</td>
<td>Exsiccati.</td>
</tr>
<tr>
<td>Flavus,</td>
<td>Flavi,</td>
<td>Flava,</td>
<td>Flavi.</td>
</tr>
</tbody>
</table>

Masculine and Feminine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexilis,</td>
<td>Flexile.</td>
<td>Flexilis.</td>
<td></td>
</tr>
<tr>
<td>Glacialis,</td>
<td>Glaciale.</td>
<td>Glacialis.</td>
<td></td>
</tr>
</tbody>
</table>

Masculine and Feminine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerinatus,</td>
<td>Glycerinati,</td>
<td>Glycerinata,</td>
<td>Glycerinatum.</td>
</tr>
<tr>
<td>Granulatus,</td>
<td>Granulati,</td>
<td>Granulata,</td>
<td>Granulatum.</td>
</tr>
<tr>
<td>Hydratus,</td>
<td>Hydrati,</td>
<td>Hydrata,</td>
<td>Hydratum.</td>
</tr>
<tr>
<td>Liquefactus,</td>
<td>Liquefacti,</td>
<td>Liquefacta,</td>
<td>Liquefactum.</td>
</tr>
<tr>
<td>Liquidus,</td>
<td>Liquidi,</td>
<td>Liquida,</td>
<td>Liquidum.</td>
</tr>
<tr>
<td>Lotus,</td>
<td>Loti,</td>
<td>Lota,</td>
<td>Loti.</td>
</tr>
</tbody>
</table>

Masculine and Feminine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitis,</td>
<td>Mite.</td>
<td>Mitis.</td>
<td></td>
</tr>
<tr>
<td>Mollis,</td>
<td>Mollis.</td>
<td>Molle.</td>
<td></td>
</tr>
<tr>
<td>Mollis,</td>
<td>Mollis.</td>
<td>Molis.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Masculine and Feminine.

|------|------|------------|------------|---------|
Examples of Prescriptions for Different Preparations.

TO WRITE A PRESCRIPTION FOR A PILL.

1. We calculate the number of pills we wish to prescribe and then multiply the dose of each ingredient in the pill by that number. We will suppose that we desire to prescribe 30 pills for a dog, containing reduced iron, socotrine aloes and sulphate of strychnine. The dose of reduced iron is gr.ii.; of socotrine aloes gr.ss.; of strychnine sulphate gr.1/120. Multiply each dose by 30.

Reduced iron...gr.ii. \(\times 30 = \text{gr.60} \)
Aloes ..gr.\(\frac{1}{2} \) \(\times 30 = \text{gr.15} \)
Strychnine ..gr.1/120 \(\times 30 = \text{gr.} \frac{1}{4} \)

The Latin of aloes socotrine is aloe, genitive aloë-s, of aloes; socotrîna, genitive socotrinae, of socotrine.

The Latin of strychnine sulphate is strychnina, genitive strychnin-ae, of strychnine; sulphas, genitive sulphat-is, of sulphate.

The Latin of reduced iron is ferrum, genitive ferr-i, of iron: reduc-tum, genitive reduct-i, of reduced. Hence:

\(\text{M. et div. in pil. xxx.} \)

The Latin names of the drugs being put in the genitive, and the signs and numbers for the proper quantities and amounts added, we come to the Latin directions to the pharmacist. (Misce) mix (et) and (divide) divide (in pilulas, accusative plural) in pills xxx. This is a regulation phrase and can be employed whenever we write a prescription for pills, so that it should be memorized. It can be abbreviated correctly as follows:

\(\text{M. et div. in pil. xxx.} \)

Instead of writing the prescription as just described, we can calculate the dose needed of each ingredient in the pill, and then write a prescription for one pill and direct the pharmacist to make 30 pills like it.

\(\text{M. et f. pil. 1. Dispense pil. tales No. xxx.} \)

The same prescription may be written in the metric system: gr.1 = .06 Gm. Fractions of a grain are converted into grams, therefore, by
dividing .06 by the denominator of the fraction and multiplying the result by the numerator. The dose of aloes (gr. ½) is transformed into grams, then, as follows:

\[2).06(.03 \times 1 = .08 \]

\[\frac{.08}{600} = \frac{0.08}{600} \]

Gr.1/120 is converted into grams thus:

\[120).0600(.0005 \times 1 = .0005 \text{ Gm.} \]

Solids in Gm. Liquids in mils.

R

<table>
<thead>
<tr>
<th>Ferri reducti</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloes socotræ</td>
<td>03</td>
</tr>
<tr>
<td>Strychnæ sulphatis</td>
<td>0005</td>
</tr>
<tr>
<td>M. et f. pil. 1; dispense pil. tales No. xxx.</td>
<td></td>
</tr>
<tr>
<td>Sig. (as before).</td>
<td></td>
</tr>
</tbody>
</table>

This prescription may be abbreviated in this manner:*

Fer. reduc.	12
Aloès soc.	03
Strych. sulph.	0005
M., etc.	

Prescriptions for balls are calculated and written in every respect like those for pills. We may write the above prescription in another form, in case we prescribe a pill or ball mass to be made, or an official mass to be divided into pills. Suppose we write a prescription for a physic mass, suitable for horses. We conclude to write for a quantity of the mass sufficient to make eight balls. Each ball contains a single dose of aloes and sufficient excipient to make the mass of the proper consistency. The dose of aloes is one ounce, and we know by experience that it will take an equal amount of molasses and one dram of powdered ginger to make a proper ball mass. Multiplying each of the ingredients, then, by 8, we find we need 8 ounces each of aloes and molasses, and 1 ounce of pulverized ginger, to make a mass which shall be divided into 8 balls.

The Latin names and genitives of socotrine aloes we have already described. Molasses is *syrupus fuscus* in Latin, or brown syrup. *Syrupus*, genitive *syrup-i*, of syrup. *Fuscus*, genitive *fusc-i*, of brown. The Latin for powdered ginger is *pulvis*, powder, genitive *pulver-is*, of powder. *Zingiber*, ginger, genitive *zingiber-is*, of ginger.

We will proceed to write the prescription thus:

R

Aloès socotræ,	12
Syrupi fuscī	03
Pulveris zingiberis	0005
M. et f. massa, in bolos viii., dividenda.	

(Abbreviated)

| M. et f. massa, in bolos viii., divid. |
| Sig. Give one ball at once. |

Abbreviations are those official in U. S. Pharmacopeia.
The Latin directions to the pharmacist are translated: (Misce) mix (et) and (fiat) let there be made (massa) a mass (in bolos, accusative pl.), in balls viii. (dividenda) to be divided. This is also a stock phrase and should be memorized as applying to pills or balls made from a mass.

The prescription is abbreviated:

\[R \]

Aloës soc.
Syr. fusci.......................... \(\frac{3}{4} \) of viii.
Or: Misce et divide in bolos viii.
(Abbrev.) M. et div. in bolos viii.

Translated: Mix and divide into balls 8.

Or: M. et fac bolos viii. (abbrev.) M. et f. bolos viii.

Translated: Mix and make balls 8.

Mixtures are compounds in which fluids are mixed or solids dissolved or held in suspension by a suitable vehicle. We must first decide upon the number of doses which we wish to prescribe, and then the quantity of the mixture to be given at each dose.

Suppose we wish to give sweet spirit of nitre and quinine to a horse. We propose to give the mixture three times daily for several days. The dose of the nitrous ether will be an ounce; the quinine will be dissolved in it. Bottles are in use containing 12 to 16 ounces, or 1 pint. We will decide upon the pint bottle. This, then, will hold 16 ounces, or 16 doses of sweet spirit of nitre. In each dose of the nitre we want dissolved gr.xx of quinine sulphate. \(16 \times \text{gr.xx} = \text{gr.cccxx} = 5v. \) i. Now, 5 drams of quinine sulphate will not dissolve in 16 ounces of sweet spirit of nitre, so that we will add enough diluted sulphuric acid to dissolve the quinine. We do not know how much sulphuric acid will be required, so we write after acid sulphuric, q. s., for quantum sufficiat, i.e., as much as suffices (to dissolve, understood).

Again, we do not know exactly how much bulk* the quinine will take up when dissolved in the nitre; nor what amount of acid will be required. Yet, on the other hand, we want to fill our bottle. To get over these difficulties we will write after sweet spirit of nitre ad, underlined (to); in other words, we order the druggist to take of sweet spirit of nitre enough to (make, understood) a pint.

The Latin for quinine is quinina, genitive quinin-ae, of quinine. The Latin for sulphate is sulphas, genitive sulphat-is of sulphate. The Latin for spirit of nitrous ether is spiritus, genitive spiritus, of spirit; nitrosus, genitive, nitros-i, of nitrous; aether, genitive aether-is, of ether. The Latin for sulphuric acid diluted is acidum, genitive acid-i, of acid; sulphuricus, genitive sulphuric-i, of sulphuric; dilatus, genitive dilut-i of diluted.

We may now write our prescription as follows:

*The increase in volume of the drench through the addition of this amount of quinine would be negligible, but in cases where large quantities of solids are dissolved in liquids the increase in volume is marked.
We will write a prescription for a mixture containing 12 doses of chloral and potassium bromide for a dog. The quantity of the mixture given to each dose will be a teaspoonful. Now, there are six teaspoonfuls in one ounce. We will order a 2-ounce bottle, which will, therefore, hold 12 doses of a teaspoonful each. The dose of chloral is gr. v $5 \times 12 = \text{gr. lx, or 5i.}$ The dose of potassium bromide is gr. x. $10 \times 12 = \text{gr. cxx, or 5ii.}$ Then we will order enough water to fill the bottle. The Latin for chloral is chloral, genitive chloral-is, of chloral; Latin for potassium bromide is potassium, genitive potassi-i, of potassium; bromidum, genitive bromid-i, of bromide; Latin for water is aqua, genitive aqu-ce, of water.

A drench is a mixture which is given the horse in one dose. We will write a prescription for a horse, containing ether, chloroform and laudanum, to be administered as a drench. The Latin for ether is æther, genitive æther-is, of ether; dose, $\frac{3}{2}$i. The Latin for chloroform is chloroformum, genitive chloroform-i, of chloroform; dose, $\frac{3}{2}$ii. The Latin for laudanum is tinctura opii; tinctura, genitive tinctur-ae, of tincture; opium, genitive opi-i, of opium; dose, $\frac{3}{2}$ii. The prescription reads:

Translated: (Misce) mix, (et) and (fiat) let there be made (haustus) a drench.

(Abbreviated) M. et. f. haust.

Sig. Give at once in one dose in pint of water.
In writing a prescription for powders, we may either write for one powder and direct the druggist to dispense several more like it, or write for the whole amount of the ingredients and order them divided into the required number of doses or papers. In the first case we will write for a powder containing one dose of each of the drugs.

For example, we write a prescription for calomel and santonin, with sugar of milk as an excipient, since the dose of the drug is inconveniently small. This powder is suitable for a medium-sized dog.

The Latin for calomel, or the lower chloride of mercury, is hydrargyrum, genitive hydrargyr-i, of mercury; chloridum, genitive chlorid-i, of chloride; mite, genitive mit-is, of lower; dose, gr.i. The Latin for santonin is santoninum, genitive santonin-i, of santonin; dose, gr.i. The Latin for sugar of milk is saccharum, genitive sacchar-i, of sugar; lac, genitive lac-tis, of milk; amount gr.x. The prescription will read:

R

Hydrargyro chloridi mitis.
Santonini ...āā gr.i.
Sacchari lactis ..gr.x.
Misce et dividite in chartulas numero vi.

Translated: Mix, and let there be made powder 1; dispense powders such vi.

(Abbreviated) M. et f. pulv. 1; dispense pulv. tales vi.

Sig. One powder every half hour until 4 doses are given.

John Smith, D. V. M.

In the second case, if we write a prescription for six powders, we multiply the dose of the ingredients in each powder by 6, and then order the prescription to be dispensed in six papers.

R

Hydarg. chlor. mit.
Santonin. ...āā gr.vi.
Sacch. lact. ...5i.
Misce et dividite in chartulas numero vi.

Translated: Mix and divide into papers in number vi.

Sig. (as before).

To write the above in the metric system. The dose of calomel or of santonin is gr.i= .06 Gm. \(.06 \times 6 = .36 \) Gm., or gr.vi. The amount of sugar of milk used as an excipient in each powder is gr.x. \(.06 \times 10 = .6 \) Gm., the amount prescribed in each powder. The amount necessary for six powders is \(6 \times 6 = 3.6 \) Gm., approximately 1 Gm.

R

Solids in Gm. Liquids in mls.
Hydarg. chlor. mit.
Santonin. ...āā 36
Sacch. lact. ... 4
M. et div. ch't. in No. vi.
Sig. (as before).

We will write a prescription for a horse, in the form of a powder, containing dried iron sulphate, nux vomica and sodium bicarbonate. The
Latin for iron sulphate (dried) is ferrum, genitive ferr-i, of iron; sulphas, genitive sulphat-is, of sulphate; exsiccatus, genitive exsiccat-i, of dried; dose, 5i. The Latin for nux vomica is nux, genitive nuc-is, of nux; vomica, genitive vomica-ce, of vomica; dose, 5i. The Latin of sodium bicarbonate is sodium, genitive, sodi-i, of sodium; bicarbonas, genitive bicarbonat-is, of bicarbonate. We will order a sufficient quantity of the ingredients to make thirty powders. The dose of iron and nux vomica is 5i. × 30 = 3 iii., 5 vi. The dose of sodium bicarbonate is 5 ii. × 30 c = 3 viii. ss.

Ferri sulphatis exsiccati. Pulveris nucis vomicae exsiccati = 3 iii., 5 vi.
Sodii bicarbonatis = 3 viii. ss.
Misce et divide in chartulas xxx.

Translated: Mix and divide into papers xxx.

In order to avoid the expense of having powders divided into papers, we may frequently direct one dose to be weighed by the druggist, and a measure to be furnished holding the quantity.

Ferr. sulph. exsiccat. Pulveris nucis vomicae...āā 3 iii., 5 vi.
Sodii bicarbonatis...225| Misce et f. pulv. (Furnish measure holding 3 ss.)

Translated: Mix and let there be made a powder.

To transform this prescription into terms of the metric system: 5 i. = 30 Gm.; 5 i. = 4 Gm. Hence 3 iii., 5 vi. = 114 Gm.; 3 viii. ss. = 225 Gm.

Solids in Gm. Liquids in mils
Ferr. sulph. exsic. Pulv. nuc. vom. āā 114
Sod. bicarb. 225
M. et f. pulv., etc.
S. (as before).

Electuaries are not suitable preparations in which to prescribe powerful drugs, as we cannot secure any degree of accuracy in the dosage. This happens because we do not usually know the exact amount of excipient which will be required to make the paste of the proper consistency. We will write for an electuary containing potassium chlorate, licorice and molasses. The Latin for potassium chlorate is potassium, genitive, potassi-i, of potassium; chloras, genitive chlorat-is, of chlorate; dose, 5 ii. The Latin for powder of licorice root is (powder has been given before) glycyrrhiza, genitive glycyrrhiz-ae, of licorice; radix, genitive radic-is, of root. The Latin for molasses is syrupus, genitive syrup-i, of syrup; fuscus, genitive fusc-i, of brown; dose of licorice root and molasses immaterial. They are used as excipients.
R
Potassi chloratis.
Pulveris glycyrrhizae radicis........................... q.v.
Syrupi fusi q.s.
Misce et fiat electuarium.

Translated: Mix and let there be made an electuary.
(abbreviated) M. et f. electuarium.
(weigh 5vi. as sample).

S. Give amount equal to sample every 2 hours smeared on teeth.

John Smith, D. V. M.

We cannot tell precisely what quantity of potassium chlorate will be administered in the 5vi. ordered in this prescription, but we can be assured that it will not be larger than 3 drams, which is a small dose for the horse.

Suppositories are occasionally prescribed to dogs. The excipient is cacao butter, of which about 15 grains is required. We will write a prescription containing iodoform and extract of belladonna root, to be dispensed in suppositories for a medium-sized dog. The Latin for iodoform is iodoformum, genitive iodoform-i, of iodoform; dose, gr. 1/2. The Latin for extract of belladonna root is belladonna, genitive belladonn-a, of belladonna; extractum, genitive extract-i, of extract; radix, genitive radic-is, of root; dose, gr. 1/4. The Latin for cacao butter is oleum theobroma; oleum, genitive ole-i, of oil; theobroma, genitive theobromatis, of theobroma. The quantity of cacao butter may be safely left to the discretion of the pharmacist. We will multiply the dose by ten, to make ten suppositories.

R
Iodoformi .. gr.v.
Extracti belladonnæ radicis................................. gr.liss.
Olei theobromatis q.s.
Misce et fiat suppositoria x.

Translated: Mix and let there be made suppositories x.
(abbreviated) M. et f. suppos. x.

Sig. Introduce one into the bowel every 4 hours.

John Smith, D. V. M.

In writing prescriptions for ointments the degree of dilution of the medicinal substance, or substances, must be determined. In case the dilution is done in percentage, the metric system is particularly useful. A 5-per-cent. ointment of the yellow oxide of mercury is of value in some cases of conjunctivitis. We will write for 5 Gm.

The Latin for yellow oxide of mercury is hydrargyrum oxidum flavum; hydrargyrum, genitive hydrargyr-i, of mercury; oxidum, genitive oxid-i, of oxide; flavum, genitive flavi, of yellow.

The excipient will be simple ointment. Latin for simple ointment is unguintum, genitive unguent-i, of ointment. If we order 5 Gm. of simple ointment we can determine the amount of mercury necessary to form a 5-per-cent. preparation with it by simply moving the decimal line forward two places, .05, which will give a 1-per-cent. ointment of mercury; and then, by multiplying by 5, .05×5=.25, we secure a 5-per-cent. ointment.
Solids in Gm. Liquids in mils.

Hydrargyri oxidi flavi.......................... 25
Unguenti .. 5

Misce et fiat unguentum.

Translated: Mix and let there be made an ointment.

(Abbreviated) M. et f. ung.

Sig. Use externally.

John Smith, D. V. M.

There is nothing of special note to consider in regard to writing prescriptions for liniments. We will write a prescription for carron oil as an example.

Carron oil is composed of equal volumes of solution of lime and cottonseed oil. The Latin for oil of cottonseed is oleum gossipii seminis, oleum, genitive ole-i, of oil; yossypium, genitive gossypi-i, of cotton; semen, genitive semin-is, of seed. The Latin for solution of lime is liquor calcis; liquor, genitive liquor-is, of liquor; calx, genitive, calc-is, of lime.

Liquoris calcis.
Olei gossipii seminis.......................... 3ii.

Misce et fiat linimentum.

Translated: Mix and let there be made a liniment.

(Abbreviated) M. et f. liniment.

Sig. Apply externally.

John Smith, D. V. M.
CLASSIFICATION.

PART I.

Inorganic Agents.

Section I.—Water, and solution of hydrogen dioxide.
Section II.—Alkaline metals; potassium, sodium, ammonium and lithium.
Section III.—Alkaline earth metals; calcium, barium, magnesium, heavy metals; including Sections IV-VI.
Section IV.—Aluminum, cerium, plumbum, argentum, zincum, cuprum and bismutum.
Section V.—Ferrum, manganum.
Section VI.—Hydrargyrum.
Section VII.—Arsenic, atoxyl, sodium cocodylate, antimony.
Section VIII.—Phosphorus.
Section IX.—Chlorine, iodine, thyroid extract, bromine, orthoform.
Section X.—Sulphur.
Section XI.—Acids.
Section XII.—Carbon Compounds.
 Class 1. Carbon.
 Class 2. Alcohol, ether, chloroform.
 Class 3. Nitrites.
 Class 4. Chloral, chloretone.
 Class 5. Antipyretics, analgesics.
 Class 6. Antiseptics.
 Class 7. Miscellaneous carbon compounds.

PART II.

Vegetable Drugs.

Section I.—Drugs acting on the brain.
 Class 1. Depressing the brain: opium.
 Class 2. Stimulating the brain: belladonna.
Section II.—Drugs acting on the spinal cord.
 Class 1. Stimulating the inferior cornua: nux vomica, strychnine.
 Class 2. Depressing the inferior cornua: physostigma, gelsemium.
Section III.—Drugs acting chiefly on the motor nerves.
 Class 1. Depressing the motor nerves: tobacco, conium and lobelia.
Section IV.—Drugs acting on the sensory nerves.
 Class 1. Depressing the sensory nerves: cocaine, eucaine, stovaine, holocaine, yohimbine, novocaine.
Section V.—Drugs acting on the secretory nerves.
 Class 1. Stimulating the secretory nerves: pilocarpus.
Section VI.—Drugs acting on the heart.
 Class 1. Increasing the force and decreasing the frequency of the heart: digitalis, strophanthus, convallaria and squill.
 Class 2. Decreasing the force and frequency of the heart: aconite, veratrumin viride and album, veratrine.
Section VII.—Drugs acting on the respiration: ipecac.
Section VIII.—Vegetable antipyretics and antiseptics.
 Class 1. Cinchona and its alkaloids.
 Class 2. Salicylic acid, salacin, salol, oil of gaultheria and methyl salicylate, aspirin.
Section IX.—Volatile oils or drugs containing them.
 Class 1. Used mainly for their action on the skin: turpentine, oil of tur-
pentine, terebene, terpin hydrate, Burgundy pitch, Canada turpentine, resin, tar, pitch, oil of cade, balsam of Peru, balsam of Tolu, benzoin, benzoic acid, black and white mustard, fibrolysin, thiosinamine, eucalyptus, arnica, myrrh.

Class 2. Used mainly for their stomachic and carminative action upon the digestive tract: capsicum, ginger, peppermint, menthol, spearmint, anise, cardamon, coriander, fennel, fenugreek.

Class 3. Used mainly for their antispasmodic action in stimulating the nervous system: valerian, ammonium ferric and zinc valerianates, asafetida and ammoniacum.

Class 4. Used mainly for their stimulant and diuretic action on the genitourinary tract: buchu and oil of juniper.

Section X.—Vegetable bitters: gentian, quassia, cascarilla, calumba, taraxacum, hydastris.

Section XI.—Vegetable cathartics.

Class 1. Simple purgatives: aloe, linseed oil, castor oil, rhamnus purshiana, phenolphthalein, frangula, rhamnus catharticus, rhubarb (chrysarobin), senna.

Class 2. Drastic purgatives: croton oil, scammony root, jalap, gamboge, elaterin, colocynth, podophyllum, podophyllin.

Section XII.—Tannic acid and drugs containing it: nutgall, tannic acid, gallic acid, pyrogallol; white oak, catechu, kino, hamamelis.

Section XIII.—Vegetable demulcents: olive oil, cottonseed oil, soap, soft soap, glycerin, linseed, acacia, tragacanth, althaea, sugar.

Section XIV.—Vegetable drugs killing parasites.

Class 1. Used to destroy tape worms: aspidium, areca nut, kamala, kouso, granatum, pepo.

Class 2. Used to destroy round worms: santonica, chenopodium, spingelia.

Class 3. Used to destroy oxyurides: quassia.

Class 4. Used to destroy lice: stavesacre.

Class 5. Used to destroy fleas: pyrethrum.

Section XV.—Vegetable drugs stimulating unstriated muscle, particularly of the uterus: ergot, cotton root bark.

Section XVI.—Vegetable drugs acting mechanically: starch, oil of theobroma, purified cotton, pyroxylin, collodion, euphorbium.

Section XVII.—Medicinal agents of animal origin: adrenalin, pituitrin, thyroid glands (see p. 192), cantharides, lard, suet, hydrous wool fat, yellow and white wax, spermaceti, honey, milk, sugar, pepsin, pancreatin, ox gall, papain, cod liver oil, ichthyol, thiol.

NOTE.

ABBREVIATIONS USED IN REFERENCE TO THE SYNONYMS IN THE DESCRIPTIONS OF DRUGS.

DOSAGE.

Three doses of each medicine are usually given; one for horses and cattle; one for sheep and swine, and one for cats and dogs, unless otherwise specified. The quantities are expressed in units of the apothecaries' weight or wine measure and also in the metric system. The solids in the latter to be dispensed in grams, the liquids in mls. Only those official drugs and preparations of the United States and British Pharmacopoeias will be mentioned, which are considered to be of value to practitioners of veterinary medicine. In connection with doses the following abbreviations are used:

The same dose may be given to dogs and cats of equal weight.
PART I.
INORGANIC AGENTS.

SECTION I.
Water.

Aqua, Water. Aqua Destillata, Distilled Water. H₂O. (The latter used in filling many prescriptions.)

Action external.—The reader is referred to special articles on “Cold and Heat” (p. 497), “Food and Feeding” (p. 479), and “Counter Irritants” (p. 491), for details concerning the action and uses of water, respectively, as a medium of heat and cold, as an article of diet in health and disease, and as a counter irritant. Cold water, externally, at first stimulates reflexly heat production, with slight rise of temperature, increased carbonic acid elimination and contraction of the vessels and muscles of the skin. If the cold water application is continued, the bodily heat falls, owing to physical abstraction of heat. “Reaction” follows the removal of cold, if properly applied, with dilation of the superficial vessels (and sensation of warmth and exhilaration in man). Moderate warm water (105° F.) applications stimulate cutaneous vascularity, favor diaphoresis, and diminish urinary secretion. Hot water (110°-120° F.) applications act as counter irritants in dilating the peripheral vessels, contracting those in more remote parts, and relieving pain, spasm, congestion and inflammation.

Action internal.—Water is quickly absorbed from the intestines (to very slight extent from the stomach), and thus swells the secretion of urine, and, to a less extent, that of bile, saliva and pancreatic juice. Intestinal peristalsis is favored by a considerable amount of water. Water also increases tissue change, and elimination of carbonic dioxide and urea; promotes the appetite and washes out the tissues and urinary tract, thus removing waste matters from the body. The elimination of uric acid is lessened by water. Large quantities of water, if not taken at meal time—when they dilute the digestive juices and disorder digestion—favor the formation of fat.

Uses Internal.—Healthy animals may be given as much water as they desire, with certain restrictions in relation to work and feeding. It is unwise to allow horses much water, either immediately before or after severe work, or after feeding. If water is given before severe work it increases the bulk of intestinal contents, is apt to cause digestive disturbance, and interferes with the movements of the diaphragm. For these same reasons water should only be permitted in small amount (at a time) in “heaves” of horses.

Horses must be given water sparingly for the first three hours after unloading following shipment on the railroad, when they are much wearied or are very thirsty.
If a quantity of cold water is allowed horses after hard work, colic is very likely to occur. Working horses should, therefore, be watered, in reasonable amount, while at work; and, if this is impracticable, may be allowed but a few mouthfuls of water, or a gallon of oatmeal gruel after severe work, with whole hay but no grain until after an hour's rest. When horses at rest drink much water after eating, the contents of the stomach (which is unusually small in this animal) are washed into the intestines and are not so thoroughly digested. This accomplishes two bad results: it deprives the animal of some nourishment and engenders digestive trouble and diarrhea.

The best plan is to give resting horses water before eating, or to keep it at their command at all times. Cold water is desirable, frequently and in unlimited quantities, in fever, although there is a popular fear of it. Water is more valuable than any other known agent in fever to eliminate toxins. Drinking should be encouraged by putting salt on the food and by keeping water always at the animal's disposal. Also by giving large enemata of normal salt solution (p. 519). Hot water assists the action of diaphoretics; cold water that of diuretics. Lukewarm water is an emetic, but hot water, in small and repeated doses, allays nausea and vomiting. Water is restricted in ordinary diarrheas, obesity, and to assist the absorption of exudations. The drinking of water should be encouraged by a liberal allowance of salt (which in itself aids digestion), in animals in a poor condition, to increase their appetite and flesh. Water is valuable in diluting a concentrated urine from which calculi are liable to be deposited. High rectal injections of water are absorbed, and consequently flush out the kidneys.

Solution of Hydrogen Dioxide.

LIQUOR HYDROGENII DIOXIDI. Solution of Hydrogen Dioxide.

(U. S. P.)

Synonym.—Aqua Hydrogenii Dioxid, Liquor Hydrogenii Peroxidi (B. P.), Hydrogen Peroxide. An aqueous solution containing not less than 3 per cent., by weight of H₂O₂, corresponding to not less than 10 volumes of available oxygen.

Derivation.—Add barium dioxide, 300, to cold, distilled water, 500; agitate and keep at a temperature of 10° C. (50° F.). To this mixture (of barium hydrate) add a solution of phosphoric acid, 96, in cold distilled water, 320, and shake them together thoroughly. Filter, and wash the precipitate (barium phosphate) with distilled water until the filtrate measures 1000. Add diluted sulphuric acid to the filtrate (until cloudiness disappears in a small filtered portion of it; absence of barium), and starch 10. Agitate frequently. Filter and refilter till the solution becomes clear.

Properties.—A colorless liquid, odorless or having odor suggesting ozone, slightly acid to the taste, and producing a peculiar sensation and froth in the mouth; liable to deteriorate by age, exposure to heat, or protracted agitation.

Reaction slightly acid. When exposed to the air at the ordinary temperature, or when heated in a water bath at a temperature not exceeding 60° C. (140° F.) the solution loses chiefly water. When rapidly heated it is liable to decompose suddenly. (The value of a given sample of hydrogen dioxide may be roughly ascertained by adding a few drams to a few crystals of potassium permanganate in a test tube. The greater the amount of effervescence the better the hydrogen dioxide.—Wallian.)

Dose.—H. & C., 3i-ii, (30-60); D., 3i-ii, (4-8).
Action and Uses.—Hydrogen dioxide is probably the most powerful, non-toxic, surgical antiseptic and disinfectant. It is not poisonous to higher animals, and liberates oxygen immediately in the presence of all forms of living matter, excised organs, and drawn blood, thus destroying all bacteria and organized fermenters. It is, moreover, a most efficient cleansing agent in wounds, the gaseous froth mechanically removing detritus better than irrigation. It thus acts like soap-suds in ordinary washing processes. Injected intravenously hydrogen dioxide causes death through the formation of gas (oxygen) emboli—in its catalysis in the blood—by plugging the heart and blood-vessels of the brain and lungs.

The microbicidal action is transient and not persistent; only water remains. Therefore hydrogen dioxide is useless for the production of continuous antiseptic action. The drug is an antiseptic in the digestive tract, and some oxygen may be absorbed by the blood, but this is extremely doubtful. The official solution contains 10 volumes of oxygen; that is, it yields up 10 times its bulk of oxygen gas. Most proprietary preparations are stronger, and contain 12 volumes of oxygen, and are more powerfully disinfectant.

Hydrogen peroxide is particularly valuable as an antiseptic on suppurating and septic wounds, necrosed tissue, abscess cavities, in anaerobic infections (tetanus), sinuses, ulcers, morbid growths and suppurating mucous membranes. It is well to add a little sodium bicarbonate to hydrogen peroxide, to neutralize its acidity, before using on mucous membranes or raw surfaces. Gauze saturated with it is used as packing to stop bleeding, as in epistaxis. In fistulae of the withers and poll, hydrogen peroxide acts as an efficient cleansing and antiseptic agent, and it should be injected prior to the use of other antiseptics, stimulants and caustics, as carbolic acid in glycerine (see p. 248). Hydrogen dioxide is probably the best remedy we possess in the treatment of acute and membranous inflammation of the pharynx and tonsils in dogs and cats when applied directly to the throat, diluted with two parts of lime water, with an atomizer or brush, or on absorbent cotton on an applicator. To retain its germicidal action it should not be diluted with more than 1 or 2 parts of water. Typhoid bacilli were killed in two and one-half minutes by a 50-per-cent. solution (U. S. Hygienic Laboratory). It is commonly employed on wounds in full strength and only in glass, porcelain, or hard rubber vessels or instruments. The drug should not be used in cavities where an outlet for the free escape of gas is wanting. Peroxide of hydrogen decomposes pus with effervescence, and thus is a guide to its presence or absence; it also destroys the pus cocci.

Hydrogen dioxide is a safe and efficient agent in disinfecting drinking water, and is of some value in gastric fermentative indigestion of dogs where the vomitus and feces show evidence of gas formation or frothiness, and is absolutely safe. Recently good results have been reported from the use of hydrogen dioxide, diluted with three parts of lime water, in dysentery when given as high enemata twice daily.

As substitutes for hydrogen peroxide we have the more stable, non-irritating and alkaline powders, as sodium perborate and zinc peroxide.
Sodium perborate is a white, granular, odorless salt containing not less than 9 per cent. of available oxygen. It is soluble and when it goes into solution it sets free hydrogen peroxide and sodium metaborate producing an alkaline product. It is very useful on wounds, ulcers and raw surfaces on account of its being alkaline and permanent. It is used in 2 per cent. solution or as a dusting powder and, like H_2O_2, tends to stop hemorrhage and is both antiseptic and deodorant. Zinc peroxide is a yellowish-white, light, tasteless, odorless, insoluble powder, but liberates oxygen in contact with living tissue. It is used as a dusting powder on raw surfaces and gives up its oxygen slowly and possesses a slight alkaline reaction when moist.

SECTION II.

Alkaline Metals—Potassium, Sodium, Ammonium, Lithium.

Potassium.

Potassium is not used in medicine in the metallic state. Its compounds may be considered in three groups; 1, Potassa; 2, the Carbonates (acetate and citrate); 3, the Mineral Salts.

Potassium compounds were formerly obtained from wood ashes by lixiviation; from sea water by evaporation, and from argol, a substance deposited in wine casks. Now they are obtained from potassium muriate, mined in Stassfurt, Saxony, which is thought to result from the boiling away of sea water in past ages.

General Action of Potassium Salts.

The action of salts on the body is determined not by the action of the chemical compound or its molecule but by the action of the ions which are dissociated when the salt goes into solution. Thus the action of potassium on the body may be studied by observing the action of KCl since the influence of the Cl ion (anion) may be ignored as it induces no physiological effect upon the organism.

In lethal doses the action of all the potassium compounds is very similar.

Stomach and Intestines.—The potassium salts, with the exception of the vegetable compounds, are irritants to the gastro-intestinal tract, if ingested in concentrated form.

Heart.—When injected into a vein, potassium has a direct, paralyzing action on the heart muscle, and in lethal doses there is cardiac arrest in diastole. Much the same action is, moreover, observed on all higher forms of tissue. The functional activity of the nerves and muscles is depressed and abolished, more especially that of the brain and cord, so that paralysis of central origin occurs.

Potassium has, however, no depressing influence upon the heart when given by the mouth, as enormously greater amounts than are ever given medicinally are daily consumed in the food. Bunge estimates from 50 to 100 grams may be thus daily ingested in food by man. This fact explodes the fallacy that sodium salts are less depressant to the heart than
the corresponding salts of potassium and are preferable as medicinal agents to the latter.

Blood.—When given for any considerable period, the potassium, like the sodium salts, impoverish the system and produce a more fluid state of the blood. Large doses of the potassium salts are likely to occasion purging, while small doses are apt to cause diuresis. The carbonates and vegetable salts resemble each other in action, but that of the mineral salts is peculiar to the individual compound.

Potassium Hydroxide. KOH. (U. S. P.)

Synonym.—Potassa caustica, B. P.; potash, potassium hydrate, caustic potash, lapis causticus chirurgorum, E.; potasse caustique, Fr.; aetz kali, G.; kali causticum fusum, P. G.

Derivation.—A solution of potassium hydrate is evaporated; the residue is fused and run into moulds.

Properties.—Dry, white, or nearly white, fused masses, or sticks, hard and brittle, showing a crystalline fracture; odorless, and of a very acid and caustic taste. Exposed to the air, it very rapidly absorbs carbon dioxide and moisture, and deliquesces. 1 Gm. dissolves in 0.9 mils of water, about 3 mils of alcohol, in 2.5 mils of glycerin at 25° C. (77° F.), also in 0.6 mil of boiling water; very soluble in boiling alcohol.

Liquor Potassii Hydroxidi. Solution of Potassium Hydroxide. (U. S. P.)

An aqueous solution of potassium hydroxide (KOH), containing not less than 4.5 per cent of KOH. Potassium hydroxide, 60 Gm., distilled water, 940.

Synonym.—Liquor potassae, B. P.; solution of potassium hydrate, solution of potash, E.; potasse caustique liquide, lessive caustique, Fr.; aetzkalilauge, G.; liquor kali caustici, P. G.

Derivation.—Boiling a solution of potassium carbonate with calcium hydrate leaves potassium hydrate in solution, while calcium carbonate is precipitated.

\[\text{K}_2\text{CO}_3 + \text{Ca(OH)}_2 \rightarrow 2 \text{KOH} + \text{Ca CO}_3 \]

Properties.—A clear, colorless, odorless liquid, having, even when diluted, a very acid, caustic taste and a strongly alkaline reaction. It has a soapy feel and taste.

Dose.—H. & C., 5-30; Sh. & Sw., 5-30; (2-4); D., m_v-xx, (.3-1.3).

Potassa cum Calce. Potassa with Lime. (Non-official.)

(Equal parts of potassa and lime.)

Synonym.—Vienna paste.

Properties.—A grayish-white powder, deliquescent, having a strongly alkaline reaction; should be soluble in diluted hydrochloric acid without leaving more than a small residue.

Action and Uses.—Potassium hydroxide, its solution, and potassa cum calce are mainly of value as escharotics. Liquor potassae is unfit for internal use unless greatly diluted with water. It resembles potassium carbonate in its effects. Caustic potash is very destructive of tissue by dissolving proteids and forming alkali-proteids. It is most diffusible and, therefore, difficult to limit its action. This we may do, however, by applying a plaster to a part, with a hole in it, through which the caustic stick is applied. Before using the caustic, the outside of the plaster should be covered with oil or grease, but not the part under the aperture in it. After removing the plaster the operation of the caustic may be arrested by vinegar. Cauterization by this means is very painful under

*When solubility is mentioned hereafter, reference will be had to solubility at the above temperature.
ordinary circumstances, but may be made comparatively painless by incorporating one part of morphine muriate with three parts of potassa cum calce, and adding enough chloroform to make a paste.

Caustic potash is indicated where extensive destruction of tissue is desirable, as in the treatment of the bites of rabid dogs and of snakes. It is less commonly used for the removal of warts, and small growths, and as a caustic on indolent or exuberant granulations.

Potash has been employed to form an issue, or artificial ulcer for the production of counter irritation. Potash may be prescribed in bronchitis, for its action, common to the alkalies, in thinning and increasing the bronchial secretions. An excellent mild stimulating liniment consists of:

\[
\begin{align*}
R & \\
\text{Ol. terebinthinæ} & 50.00 \\
\text{Ol. succinii} & 20.00 \\
\text{Saponis pulv.} & 10.00 \\
\text{Potassæ} & 2.00 \\
\text{Aqua ad} & 1,000.00 \\
\text{M. et fiat linimentum.}
\end{align*}
\]

The potash saponifies the oils and exerts a stimulating action on the skin. Potassium bicarbonate is less irritating and more suitable for the latter indication. Potash is sometimes recommended as an antacid and sedative in gastric disorders, but is inferior to sodium bicarbonate for this purpose.

Potassii Carbonas. Potassium Carbonate. \(\text{K}_2\text{CO}_3 \)

(U. S. & B. P.)

Synonym.—Salts of tartar. Carbonate de potasse, Fr. Kalium carbonicum, P. G.

Derivation.—The solution resulting from the lixiviation of wood ashes is boiled to dryness, and the resultant mass is the “potash” of commerce. This is purified to some extent by burning in ovens, forming “pearlash,” a mixture of the hydrate and carbonate. Water dissolves mainly the carbonate which is obtained by evaporation of the aqueous solution.

Properties.—A white, granular powder, odorless, and having a strongly alkaline taste; very deliquescent. Soluble in 0.9 part of water; insoluble in alcohol.

Dose.—H. & C., 5ss-i, (15-30); Sh. & Sw., 5ss-i, (2-4); D., gr.v-xx, (3-1.3).

Potassii Bicarbonas. Potassium Bicarbonate. \(\text{KHCO}_3 \)

(U. S. & B. P.)

Synonym.—Doppeltkohlensaures kali, G. Bicarbonate de potasse, Fr.

Derivation.—Obtained by passing a stream of \(\text{CO}_2 \) through a solution of the carbonate.

\[
\text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} = 2 \text{KHCO}_3
\]

Properties.—Colorless, transparent, monoclinic prisms, or as a white, granular powder, odorless and having a saline and slightly alkaline taste. Permanent in the air. Soluble in 2.8 parts of water. Almost insoluble in alcohol. Becomes converted into the carbonate by boiling.

Dose.—H. & C., 5ss-i, (15-30); Sh. & Sw., 5ss-i, (2-4); D., gr.v-xx, (3-1.3). Preferable to carbonate for internal use, as it is less irritating.

Potassii Acetas. Potassium Acetate. \(\text{KC}_2\text{H}_3\text{O}_2 \)

(U. S. & B. P.)

Synonym.—Acetate de potasse, Fr. Essigsaures kali, G.

Derivation.—Add acetic acid in excess to potassium carbonate. Evaporate to dryness and fuse residue.

\[
\text{K}_2\text{CO}_3 + 2 \text{HC}_2\text{H}_3\text{O}_2 = 2 \text{KC}_2\text{H}_3\text{O}_2 + \text{H}_2\text{O} + \text{CO}_2
\]

Properties.—A white powder, or crystalline masses of a satin-like luster; odorless, or with a faint acetous odor, and having a warming, saline taste. Very
deliquescent on exposure to the air. Soluble in 0.5 part of water and in 2.9 parts of alcohol.

Dose.—Same as bicarbonate.

Potassium Citrate. Potassium Citrate. K$_2$C$_6$H$_5$O$_7$+H$_2$O.

(U. S. & B. P.)

Synonym.—Citrate de potasse, Fr.; Citronsaures kali, G.

Derivation.—Neutralize potassium carbonate with a solution of citric acid, and evaporate to dryness.

3 K$_2$CO$_3$ + 2 H$_2$C$_2$H$_3$O$_7$ = 2 K$_2$C$_6$H$_5$O$_7$ + 3 H$_2$O + 3 CO$_2$.

Properties.—Transparent, prismatic crystals, or a white, granular powder; odorless and having a cooling, saline taste. Deliquescent when exposed to moist air. Soluble in 0.6 part of water; almost insoluble in alcohol, freely soluble in glycerin.

Dose.—Same as bicarbonate.

Action of the Carbonates and Vegetables Salts.

The carbonate is too irritating for internal use, while the bicarbonate is more so than the similar sodium salt. Therefore the latter is in more common use as an antacid. Antacids neutralize abnormal gastric acidity if given in large doses some time after eating.

The vegetable salts (the acetate and citrate) are converted into the carbonate in the blood and are non-irritating. The bicarbonate is also absorbed into the blood as the carbonate. These salts, together with the hydrate, alkalize the blood and urine. It is thought by many authorities that they increase oxidation within the body, as it is known that they do so outside the body in contact with organic matter. As a result of all experiments with the hydrates and carbonates, neither oxidation nor metabolism appear to be materially influenced.

Uric acid elimination is not affected, but urea may be increased, replacing ammonia in the urine. The action of these salts is due wholly to the hydroxyl (OH) ion. The action of the carbonates is only less in degree and rapidity than the hydrates, since OH is freed in the body when carbonates combine with water. The carbonates are mainly useful as antacids; the citrate and acetate as diuretics.

Uses.—Potassium carbonate forms a useful addition to mixtures for application to the skin, as, through its strong alkalinity, it removes grease and sebaceous matter, permitting medicinal agents to penetrate the skin. A mixture of potassium carbonate, 15.0 (3 units); sublimed sulphur, 50.0 (31.5v.); and water, 12 litres (3 gallons), makes a serviceable application for the milder forms of mange and eczema. The animal should be well washed with the mixture in a tub every second day, and Peruvian balsam, oil of cade or tar should be applied daily. Potassium bicarbonate in aqueous solution is serviceable in relieving itching (gr.v.-31.). While probably not so generally efficient as the corresponding sodium salt, it is of benefit when given an hour after feeding to horses subject to colic at that time. It is more useful than sodium bicarbonate in alkalizing an over-acid urine (dogs), and in dissolving and eliminating uric acid from the blood. Potassium citrate and acetate are indicated in irritation or inflammation of the kidneys and bladder and cause absorption of excretions (pleural effusions, for example), through their diuretic power.
They are sometimes prescribed in fever on account of slight diaphoretic and powerful diuretic properties.

Potassium acetate and citrate stimulate bronchial secretion and make it thinner, and are recommended accordingly in bronchitis. They are less efficient than potassium iodide for these purposes in this affection.

Diuretic, diaphoretic and expectorant mixture for fever with bronchitis in horses.

R

Tinctura aconiti .. 5iii
Potassii citratis .. 3iv
Spiritus ætheris nitrosi .. 5viii
Aquæ ... ad 0i

M.

Sig. 4 tablespoonfuls in drinking water 3 times daily.

Synonym.—Nitre, saltpetre, E.; nitre prismatic, azotate (nitrate) de potasse, Fr.; saltpettersaures kali, kalisalpeter, G.

Derivation.—Saltpetre is formed in the soil in certain regions and climates and is made artificially, by the putrefaction of animal or vegetable material, in the presence of heat, moisture, oxygen, and alkaline or earthy bases capable of fixing the nitric acid set free in this process, known as nitrification. The natural conditions for nitrification are present in some parts of India, and saltpetre is largely imported from Calcutta. Artificially, nitre beds are made of animal and vegetable matter, wood ashes, and calcareous earth or old plaster from houses. Sodium nitrate is imported extensively from Chili, where it occurs as a mineral product, and is used widely in this country in artificial fertilizers. Chili saltpetre may be converted into nitre by treatment with potash.

Properties.—Colorless, transparent, six-sided, rhombic prisms, or a white, crystalline powder; odorless, and having a saline taste and producing a cooling sensation in the mouth. Slightly hygroscopic in moist air. Soluble in 2.8 parts of water; in 620 parts of alcohol.

Dose.—H. & C., 5ss-i, (15-30); Sh. & Sw., 5ss-i, (2-4); D., gr.v-xx, (3-1.3).

Action External.—Refrigerant.

Action Internal.—Stomach and Intestines.—Nitre causes, in lethal doses, violent gastro-enteritis, often nephritis, muscular weakness, coma, collapse and depression of the circulation. The pulse becomes both slow and weak. There is muscular weakness and paralysis. Potassium nitrate is one of the most irritating salts of this group, but its toxic effect depends upon the influence of the nitrate ion, and—when concentrated—upon its “salt action” (see p. 115) in withdrawing water from the tissues.

Blood.—Toxic doses of nitre have a slight destructive action (hemolysis) on the red blood cells.

Heart.—Nitre is said to be more depressing to the heart than the other potassium compounds. There is no basis for this belief.

Lungs.—The respiration is slowed by considerable doses of potassium nitrate, and it exerts an antispasmodic action by depression of the unstripped fibres of the bronchi. It has an expectorant action similar to that of the acetate and citrate of potash.

Kidneys.—Diuresis is the predominant medicinal action of nitre. It may induce diuresis through its “salt action” (see p. 115) but in that case should escape unchanged in the urine. Apparently little or none is thus eliminated, except after large doses. In moderate doses the salt is changed in the body. It is conjectured that it is first converted into
nitrates, then into ammonia, and finally escapes from the lungs as free nitrogen.

The diuretic action is chiefly due to direct stimulation of the renal cells.

Potassium nitrate is more frequently prescribed than any other potassium salt in veterinary practice, and is commonly considered one of the best febrifuges. Its only service in fevers is as a diuretic.

Administration.—Nitre is dissolved in a pail of drinking water and kept constantly at the larger animal’s disposal. The salt is rendered harmless by dilution; vascular tension and diuresis are increased by the water, and the solution is cooling and grateful to the taste in fever. Smaller doses (³⅓s.) may be given on the food to horses, but this method is not so desirable.

Uses.—Nitre, ammonium chloride, and common salt, each one part, are dissolved in three parts water, and sometimes used for their refrigerant effect on local inflammatory conditions. Ice poultices are more efficient. The value of nitre is over-estimated in veterinary practice. It is recommended in purpura and rheumatism as an alternative. Here again it is less serviceable than normal serum in the former, or salicylic acid and alkalies in the latter disease. Nitre is, however, in common use in such febrile affections as pneumonia and influenza, and in edema of the limbs and lymphangitis in horses for its expectorant and diuretic action. It is more irritating to the kidneys, than the citrate and acetate, and is not used in human medicine on that account. But it is cheaper and is given in drinking water to horses so largely diluted that its irritating action is avoided.

Powdered potassium nitrate—mixed with an equal amount of stramonium leaves—is sometimes employed in asthma and bronchitis of dogs as an inhalation by burning the mixture.

Potassium Chlorate.

Synonym.—Kalium chloricum, P. G.; chlorate de potasse, Fr.; chlorsaures kali, G.

Derivation.—Pass chlorine into a mixture of potassium carbonate and calcium hydrate; dissolve the result in boiling water and recover the chlorate by crystallization.

\[K_2CO_3 + 6 Ca (OH)_2 + 12 Cl = 2 KClO_3 + Ca CO_3 + 5 Ca Cl_2 + 6 H_2O. \]

Properties.—Colorless, lustrous, monoclinic prisms or plates, or a white powder, odorless, and having a saline taste. Permanent in the air. Soluble in 11.5 parts of water. Almost insoluble in alcohol, but soluble in glycerin. Explodes readily when rubbed with sugar, sulphur, charcoal, glycerin and many other substances.

Dose.—H. & C., ³⅓vi, (8-24); Sh. & Sw., 5s-ⅱ, (2-4); D., gr.v-xx, (.3-1.3).

Action Internal.—Stomach and Bowels.—In concentrated form potassium chlorate is an irritant to mucous membranes—causing vomiting and purging in the alimentary tract—owing to its withdrawal of water from the tissues. Its “salt action” is also seen in its increasing tension in the renal glomeruli and thus causing diuresis (see p. 115, sodium chloride). Lethal doses occasion gastro-enteritis, diarrhea, cyanosis, depres-
sion of the heart, coma and death from asphyxia. Jaundice and dark-colored urine occur in sub-acute poisoning.

The Blood.—The blood is unaffected by medicinal doses, but in poisoning the red corpuscles are broken down and crenated. The hemoglobin is converted into methemoglobin, which is probably a mixture of hematin and soluble albumin. Hemoglobin, methemoglobin and hematin and dis-integrated corpuscles appear in the urine. The blood is chocolate-colored after death. The liver, spleen, kidneys and intestines are softened and filled with disorganized blood. It was formerly thought that potassium chlorate parted with its oxygen in the blood, and it was prescribed in many disorders as an oxidizing agent. Potassium chlorate gives up very little oxygen to the body since almost all of the salt absorbed escapes unchanged from the organism. On the contrary, the important symptoms of poisoning are due to lack of oxygen (asphyxia), methemoglobin not liberating its oxygen readily to the tissues. Death from fat embolism is not uncommon during convalescence from poisoning.

Elimination.—Potassium chlorate is eliminated unchanged by all channels; mainly by the urine (90 to 96 per cent.), but also by the sweat, saliva, etc. Acting locally as a stimulant in the mouth, and then affecting the throat a second time by its elimination in the saliva, potassium chlorate is frequently prescribed in diseases of the mouth and pharynx as a topical stimulant. It is given in electuary, solution, or ball internally.

Summary.—Sialagogue and diuretic.

Uses.—Stomatitis is treated by chlorate of potassium in saturated solution applied on a swab. The salt is valuable in the treatment of pharyngitis in electuary. A favorite combination consists of the following:

Pharyngitis of horses.

R. Fluidextracti belladonnae ..\textsubscript{3i}

Potassii chloratii ..\textsubscript{3ii}

Pulveris glycyrrhizae ...\textsubscript{3v}

Syripi fusci q. s.

M. et fiat electuarium. (Weigh one ounce for sample dose.)

S. Smear amount equal to sample on teeth with stick 3
times daily.

In membranous croup (roup) of fowl (gr.x.), and in that of foals, calves and pigs (gr.xxx.), it is useful when given in solution with an equal dose of the tincture of chloride of iron. A half ounce of a saturated solution of potassium chlorate, with a few drops of lanudanum, forms a useful injection for hemorrhoids in dogs.

Potassii Bitartr. Potassium Bitartrate. \textsubscript{KHC\textsubscript{3}H\textsubscript{4}O\textsubscript{6}}

(U. S. P.)

Synonym.—Potassii tartras acidus, B. P.; cream of tartar, cremor tartari, acid tartrate of potash, E.; tartarius depuratus, P. G.; pierre de vin, Fr., weinstein, G.

Derivation.—Obtained from crude tartar (argol) deposited on the sides of wine casks during fermentation of grape juice, by purification.

Properties.—Colorless or slightly opaque, rhombic crystals, or as a white, somewhat gritty powder; odorless and having a pleasant, acidulous taste. Per-
manent in the air. Soluble in about 155 parts of water, and in 8820 parts of alcohol. Reaction acid.

Dose.—H. & C., 3ss-i, (15-30); Sh. & Sw., 3ss, (15); D., 5ss-i, (2-4).

Action internal.—Intestines.—Potassium bitartrate is a non-irritating purgative in large doses. It is a hydragogue cathartic and has a strong affinity for water; abstracting it from the blood vessels in the bowels, holding the same in solution, and thus flushing out the intestines.

Blood.—Potassium bitartrate is in part decomposed, converted into the carbonate, and absorbed as such into the blood. The greater part is apparently excreted by the bowels unchanged. A portion of the latter, however, may have been absorbed and eliminated by the intestines.

Kidneys.—Potassium bitartrate is an active diuretic and renders the urine more alkaline, but for some reason it is not ordinarily employed in veterinary practice. Nevertheless, it is the best and safest diuretic which can be used by the veterinarian in the treatment of the horse and smaller animals.

Summary.—Diuretic in small doses. Hydragogue cathartic in large doses. It should be given in solution and is useful in dropsies, more particularly of renal origin; also in catarrhal jaundice, and as a laxative for foals and calves. In cases where the urine of the horse is thick, stringy and high-colored, potassium bitartrate will cause it to regain its normal state. It may easily be administered in either food or drinking water, and its diuretic effect is enhanced when the salt is given with a large amount of water.

Sodium.

(The metal is not employed in medicine.)

SODIUM Hydroxide. Sodium Hydroxide. NaOH. (U. S. P.)

Synonym.—Soda caustica, B. P.; soda, sodium hydride, caustic soda, natrum causticum, S. hydricum, E.; soude caustique, Fr.; natron, aetzatron, G.

Derivation.—It is made from liquor sodæ by evaporation, and run in moulds.

Properties.—Dry, white, or nearly white, fused masses or sticks, hard and brittle, showing a crystalline fracture; odorless, and having an acrid and caustic taste. Exposed to the air it deliquesces, absorbs carbon dioxide, and becomes covered with a coating of carbonate. Soluble in 0.9 part of water; very soluble in alcohol.

LIQUOR SODII HYDROXIDÆ. Solution of Sodium Hydroxide.

(U. S. & B. P.)

An aqueous solution of sodium hydroxide, containing not less than 4.5 per cent. of NaOH.

Synonym.—Solution of sodium hydrate, E.; natrum hydricum solutum, soude caustique liquide, Fr.; liquor natri caustici, P. G.; ætzatron lauge, G.

Derivation.—An aqueous solution of sodium carbonate is boiled with calcium hydrate, and the supernatant liquid is siphoned off.

\[\text{Na}_2\text{CO}_3 + \text{Ca} (\text{OH})_2 = 2 \text{NaOH} + \text{CaCO}_3 \]

Properties.—A clear, colorless, or yellowish, syrupy liquid, odorless, having a very acidic and caustic taste, and a strongly alkaline reaction.

Dose.—H. & C., 3ss-i. (15-30.) ; Sh. & Sw., 5ss-i (2-4.) ; D., 1vi-xx. (.3-1.3).

Action and Uses.—Sodium hydroxide and its solution resemble compounds of potassium, but are used chiefly for chemical and pharmaceutical purposes.

Liquor sodii hydroxidi should be given largely with water. In poisoning by the caustic alkalies or soap lye, give vinegar, diluted acetic acid, lemon juice and demulcents. Inject subcutaneously camphorated oil (H. & C., 3ss-i; D., 1xv-xx).
Sodii Carbonas. Sodium Carbonate. Na₂ CO₃ 10 H₂O.

(Non-official)

Synonym.—Washing soda, sal soda, carbonas sodicus, E.; natrum carbonicum crudum, F. G.; carbonate de soude, Fr.; kohlensaures natron, soda, G.

Derivation.—Made by Leblanc’s process. Three steps:
1st. Salt and sulphuric acid heated together. 2 Na Cl + H₂ SO₄ = Na₂ SO₄ + 2 HCl.
2nd. Sodium sulphate is heated with carbon. Na₂SO₄ + 4 Cl = Na₂S + 4 CO₂.
3rd. Sodium sulphide heated with chalk. Na₂S + Ca CO₃ = Na₂ CO₃ + Ca S.

Properties.—Colorless, monoclinic crystals, odorless and having a strongly alkaline taste. In dry air the salt effloresces, loses about half its water of crystallization and becomes a white powder. Soluble in 1.6 parts of water and in 1.02 part of glycerin. Reaction alkaline.

Sodii Carbonas Monoiihydratus. Monohydrated Sodium Carbonate.
Na₂CO₃ + H₂O. (U. S. & B. P.)

Synonym.—Natrium carbonicum siccum, P G.; carbonate de soude, Fr.; getrocknete soda, G.

Properties.—A white, crystalline, granular powder; odorless, and having a strongly alkaline taste. When exposed to the air, under ordinary conditions, it absorbs only a slight percentage of moisture. Soluble in 3 parts of water; insoluble in alcohol and ether; soluble in 7 parts of glycerin. Reaction alkaline. Action of sodium carbonate similar to the hydroxide, but infrequently employed in medicine.

Dose.—H. & C., 5ii-ii, (8-24); Sh. & Sw., gr.xx-xl, (1.3-2.6); D., gr.v-xx, (3-1.3). Given in large amount of water.

(U. S. & B. P.)

Synonym.—Soda, baking soda, sodium hydrocarbonate, bicarbonate of soda, E.; natrum bicarbonicum, P G.; bicarbonate de soude, sel digestive de vichy, Fr.; doppeltkohlensaures natron, G.

Derivation.—Pass CO₂ through a solution of sodium carbonate, Na₂ CO₃ + CO₂ + H₂O = 2 Na HCO₃.

Properties.—A white, opaque powder, odorless, and having a cooling, mildly alkaline taste. Permanent in dry, but slowly decomposed in moist air. Soluble in 10 parts of water, insoluble in alcohol and ether. Slight alkaline reaction. Incompatibles.—Decomposed by acid and acid salts, as bismuth subnitrate.

Dose.—H., 5ss-ii, (15-60); Sh. & Sw., 5ss-i, (2-4); D., gr.v-xxx, (3-2).

General Action of Sodium Salts.

Sodium and its salts are said to be less poisonous than the corresponding salts of potassium because they are less depressing to the circulatory (see p. 102), muscular and nervous systems, but death has occurred after enormous doses. The salts possess a local paralyzing action on nerve and muscular tissue. They are absorbed and eliminated more slowly than the corresponding potassium compounds. Sodium salts alkalize the blood and urine, but are only slightly diuretic. Sodium carbonate, phosphate, and sulphate diminish the solids in the bile and, therefore, increase its fluidity.

Sodium Bicarbonate.

Action External.—Sodium bicarbonate lessens irritability of the skin in itching and burns.

Action Internal.—When sodium bicarbonate is given internally it counteracts gastric acidity, whether it be normal, abnormal (organic acids from fermentation), or excessive (hyperchlorhydria). It thus relieves
pyloric spasm. Its constant administration is said to weaken the digestive powers and create anemia, general cachexia, and scurbutic symptoms, but there appears to be no sufficient basis for this belief. Sodium bicarbonate liberates carbonic dioxide in the stomach, which is a sedative and peristaltic stimulant, thus expelling gas and relieving pain in the viscus. The distention of the stomach with CO₂ gas is also a mechanical cause of its increased motility. Soda dissolves mucus and thins the biliary secretion. It is, therefore, useful in catarrh of the gastro-intestinal tract.

Blood.—The blood is made more alkaline.

Kidneys.—The urine is alkalized, but the salt is only feebly diuretic ("salt action," p. 115).

Uses External.—In aqueous solution (1-50) sodium bicarbonate relieves itching in urticaria, prurigo and chronic eczema. It dissolves mucus in leucorrhea and is often used in this strength as a vaginal injection. It also allays the pain of slight burns and of acute rheumatism. For this purpose cloths should be soaked in saturated solutions and placed upon the affected parts. Added to water (5i.-Oi.) in which instruments are to be boiled, it prevents rusting.

Uses Internal.—Sodium bicarbonate is one of the most useful remedies in gastric or intestinal indigestion associated with abnormal acidity, or flatulence and distress. It does not always remove the cause of indigestion, however, and, therefore, should be combined with agents which do: e.g., cathartics, antiseptics, carminatives and stomachics. For this reason sodium bicarbonate is often prescribed to dogs with bismuth sub-carbonate, salol or beta naphtol; to horses with gentian or nux vomica and ginger.

For horses with indigestion.

R—Sodii bicarbonatis.

Pulveris gentianae radicis.

Pulveris zingiberis "aa.. 3iv

M.

S. Give 3 tablespoonfuls on feed t. i. d.

Sodium bicarbonate with bismuth may be given thrice daily in indigestion and diarrhea of calves, especially when the trouble has arisen from feeding sour milk.

For calves with diarrhea.

R—Sodii bicarbonatis.. 3ii

Bismuthii subcarbonatis.. 3ss

M.

S. 2 teaspoonfuls in milk t. i. d.

Sodium bicarbonate is of value in alkalizing the blood in acute rheumatism. In threatened coma in diabetes mellitus and in nephritis and in other conditions of acidosis, as after anesthesia, in shock, large doses of the salt given in solution by the mouth or intravenously, neutralize acid in the tissues and may avert a fatal ending.

Sodium bicarbonate is of much worth in alkalizing the urine and in preventing the formation of calculi so often occurring in stall-fed cattle, rams and wethers, and may be placed on the feed or in the drinking water. The salt is supposed to assist the action of calomel, with which
it is often conjoined to stimulate the flow of bile and aid the alkaline intestinal juices in transforming the inactive chloride into the active oxide (see p. 168). One may lessen the toxicity of acetanilid by prescribing it in combination with sodium bicarbonate. Sodium bicarbonate is occasionally given in acute bronchitis, but it is distinctly inferior to the corresponding potassium salt in thinning and increasing bronchial secretions.

This salt is highly recommended in the treatment of hemoglobinemia (azoturia) in horses when given in quantities of 10-30 ounces daily. Theoretically, sodium bicarbonate is of benefit in this disease, by neutralizing acid products of metabolism which lead to solution of the hemoglobin. Acidosis results from excessive oxidation in the body in over-exertion, fevers, infections, injuries, surgical operations, in poisoning—as by chloroform, foreign proteids (intestinal stasis), etc. The acid by-products are normally eliminated by the lungs (CO₂) or neutralized by the liver, adrenals and kidneys. When these organs are over-worked—as in the above conditions (also in nephritis and diabetes)—sodium bicarbonate in very large doses may prevent the evil effects of acidosis (coma, edema, nephritis, etc.). Sodium bicarbonate relieves thirst in polyuria of horses, when placed in their drinking water.

Administration.—Sodium bicarbonate may be given in solution, or on the tongue or food in the pure state.

SODII SULPHAS. Sodium Sulphate. Na₂ SO₄ 10H₂O.

(U. S. & B. P.)

Synonym.—Glauber's salt, sulphate of soda, E.; sulfat de soude, sel de Glauber, Fr.; Glaubersalz, natriumsulfat, G.; natrium sulphuricum, P. G.

Derivation.—Neutralize the residue left in the manufacture of HCl from salt, with sodium carbonate. 2 Na HSO₄ + Na₂ CO₃ = 2 Na₂SO₄ + CO₂ + H₂O.

Properties.—Large, colorless, transparent, monoclinic prisms, or granular crystals, odorless, and having a bitter, saline taste. The salt effloresces rapidly in the air. Soluble in a little over its own weight of water; insoluble in alcohol; soluble in glycerin.

Dose.—C., 1biss, (500-750); H. (laxative), 3ii-iv, (60-120); Sh., 3ii-iv, (60-120).

Action Internal.—Digestive Tract.—The action of the saline cathartics depends upon the slow absorption of certain acid ions or anions (sulfates, phosphates, tartrates, and citrates) as compared with others (chlorides, bromides, and iodides). The latter, being readily absorbed into the blood, cause diuresis. The former salts fail of absorption—to any considerable extent—in the bowel, and so their solutions increase the fluidity of the ingesta and aid in the expulsion of feces. Peristaltic action is chiefly excited through increase of the mass of intestinal contents.

Concentrated (hypertonic) solutions of the saline purgatives withdraw water from the blood-vessels of the bowels because the solution in the intestines has a greater osmotic pressure than the blood. When the solution in the bowel becomes sufficiently diluted to be isotonic with the blood some absorption and diuresis occur ("salt action," see p. 115).

The blood and urine first become concentrated, and thirst is induced by the action of the saline purgatives both in withdrawing water from the blood and in preventing absorption of water from the digestive tract.
SODIUM SULPHATE

Later diuresis may take place, especially when absorption of the saline occurs through failure of purgation.

The basic ion, or kation, of some salts is less absorbable than that of others (as Mg), and when such a basic ion is combined with an acid ion of slow absorption (as in MgSO₄) the purgative effect is naturally at its maximum.

Any cholagogue action, formerly attributed to the saline purgatives, has been proved to be wanting. The saline cathartics are sometimes called hydragogues.

Uses Internal.—Sodium sulphate is not used much in human practice on account of its nauseating taste and it is said to produce more griping. For the larger animals it is sometimes preferred to the magnesium salt in veterinary medicine, as in catarrhal jaundice of horses. Sodium sulphate is the principal ingredient of Carlsbad salt, which has recently come into vogue with veterinarians, although long valued in human medicine. The formula for the artificial Carlsbad salt (Sal carolinum factitium), which is the preparation commonly used, is as follows:

R Sodii sulphatis essiceati 40.0
 Sodii bicarbonatis 35.0
 Sodii chloridi 15.0
 Potassii sulphatis 2.0
M. et fiat pulvis.
Sig. One to two heaping tablespoonfuls on the food two or three times daily for horses.

Sodium sulphate is thus given as Carlsbad salt or alone in small doses as a laxative, but in constipation associated with indigestion and malnutrition, gentian, powdered rhubarb, iron and other stomachics and tonics are often combined; while, in fever, small doses of Glauber's salt is useful in promoting the activity of the skin and kidneys, and for this purpose may be given as follows to improve appetite and digestion:

For horses in fevers.
R Spiritus ætheris nitrosi.
 Tincturaæ gentianæ composite ââ.......................... 5vii
 Acidii sulphurici diluti.............................. 5vii
M.
Sig. 4 tablespoonfuls in a pint of water twice daily to which same amount of Glauber's salt is added.

Glauber's salt is useful in aiding the action of peristaltic agents, as alesos. Small doses are given to horses in their drinking water while the alesos is acting.

Sodium sulphate is of benefit in the treatment of diarrhea, dysentery and overloaded and impacted colon of horses when given in frequent and repeated doses in connection with linseed oil.

An enema, consisting of one pound of Glauber's salt in a quart of water, to which two ounces of oil of turpentine and four ounces of glycerin may with advantage be added, should be injected high into the bowel to secure rapid purgation in horses suffering with colic.

Glauber's and Epsom salts are the most common purgatives given to ruminants. It is therefore impossible to enumerate special indications
for their employment in the case of these animals. To assist the action, ginger and molasses are given with Glauber’s or Epsom salt, and often an equal weight of sodium chloride.

\[
\begin{align*}
\text{I.} & \quad \text{Magnesii sulphatis} \quad \text{bhi} \\
\text{II.} & \quad \text{Sodii chloridi} \quad \text{lbss} \\
\text{III.} & \quad \text{Fluidextracti zingiberis} \quad \text{ji} \\
\text{IV.} & \quad \text{Syrupi fusci} \quad \text{jiw} \\
\text{V.} & \quad \text{Aqua} \quad \text{Oi} \\
\text{M.} & \quad \text{Sig.} \quad \text{Give at one dose to cow.}
\end{align*}
\]

When a speedy action is desired, Glauber’s salt should be administered with a large amount of water and thirst should be encouraged by the addition of common salt. When, on the other hand, it is essential to remove fluid and morbid effusions from the body, the purgative salt should be exhibited in concentration and the patient should be deprived of water to a considerable extent. Glauber’s and Epsom salts are not used so commonly in canine practice as calomel and castor oil, but find more favor with German than with English-speaking veterinarians.

Sometimes salts are serviceable in irritable states of the bowels in dogs (piles, duodenitis and intestinal catarrh) in teaspoonful doses; and when given every second day, as a laxative, in eczema. Vomiting, however, not uncommonly follows the ingestion of salts by dogs.

Carlsbad salt forms a good cathartic for cage birds. About 3 grains are added to an ounce of their drinking water in the case of small birds.

\[
\text{SODII CHLORIDUM. Sodium Chloride. NaCl. (U. S. & B. P.)}
\]

\textit{Synonym.}—Common or table salt, muriate of soda, sal commune or culinaire, chloruretum sodicum, E.; natrium chloratum purum, P. G.; chlorure de sodium, sel commun, sel de cuisine, Fr.; chlornatrium, kochsalz, G.

\textit{Derivation.}—Minced in a native state and obtained by evaporation of brine, spring or sea water.

\textit{Properties.}—Colorless, transparent, cubical crystals, or as a white, crystalline powder, odorless, and having a purely saline taste. It is usually slightly hygroscopic. Soluble in 2.8 parts of water; slightly soluble in alcohol; insoluble in ether or chloroform. Reaction neutral.

\textit{Dose.}—Cathartic, C., lbs-1, (250-500); Sh., 5i-ii, (30-60).

\textit{Action External.}—Salt is a stimulant to the skin when applied in concentrated solution.

\textit{Action Internal.}—Salt is an essential constituent of food necessary to the composition of HCl in the gastric juice, and of blood plasma, from which it is constantly eliminated in the urine. Herbivorous animals require sodium chloride in addition to that contained in their food; for blood is rich in common salt, while vegetables abound more especially in potassium salts. The potassium salts, according to Bunge, on entering the blood bring about a chemical reaction, whereby sodium chloride circulating in the plasma is split; the chlorine in sodium chloride combines with potassium, while the acid, set free from the potassium salt unites with sodium, and both products are swept away with the urine, thus removing sodium chloride from the blood. This is only replaced by that taken as food. Some doubt is cast upon this hypothesis by Lapicque,
who relates that African tribes, living wholly upon vegetables, use wood ashes (chiefly potassium) in place of table salt. Animals deprived of salt suffer from anemia, general weakness and edema.

Stomach and Intestines.—Salt has caused gastro-enteritis and death in enormous doses. Large doses occasion emesis in dogs. Irritation of the stomach is caused by withdrawal of water from the mucous membranes by strong (hypertonic) solutions (osmotic action). This is called "salt action" and is common to all salts of the alkalies. Salt in the food often improves digestion—probably by bettering the taste of the food and exciting the appetite and so, reflexly, stimulating the flow of gastric juice, on the same principle that the sight, taste, and smell of food are the chief factors in the first secretion of HCl. Salt acts in the bowels as a mild hydrargogue purgative. It is unfit as a cathartic for horses or dogs; but is useful for cattle and sheep when combined with magnesium or sodium sulphate. Salt creates thirst and, therefore, promotes the ingestion of water. A large supply of water flushes the system and removes deleterious and imperfectly oxidized matters. Neither salt nor any of the sodium salts are as diuretic as the potassium salts.

Salines generally, on being absorbed into the blood, increase its concentration, which causes a flow of water into the blood and increases its volume. This leads to enhanced vascular tension and so to diuresis.

In the case of sodium salts, however, elimination is so rapid from the blood that they do not have time to attract water and occasion diuresis as do potassium salts. When an electrolyte is introduced into the blood it may act either through its ions (p. 8) or, if these are inert, by "salt action." This is practically osmosis.

If a salt is introduced into the blood, water will be drawn into the vessels from the surrounding tissues until the concentration of the salt in the blood is equal to that outside the vessels, or until the blood is isotonic with the surrounding fluid.

Hence a normal salt solution (0.9 per cent.) for injection into the blood is also said to be isotonic or equal in concentration to that normally in the blood.

Blood.—The red corpuscles are augmented by salt. Concentrated or hypertonic salt solution, containing more than 0.9 per cent., injures the red cells, which become crenate and lose water; hypotonic solutions cause the red cells to swell, absorb water and lose hemoglobin.

Metabolism.—Salt solution in the blood withdraws fluid lymph from the tissues by osmotic action, and stimulates protoplasmic activity, and thus favors the general functioning of the tissues; hence its use in depressed states of the system. In this way it appears to stimulate tissue change, as there is an increased elimination of nitrogen in the urine.

Summary.—Emetic, cathartic, digestive, slight diuretic, protoplasmic stimulant.

Uses External.—A solution consisting of one ounce each of salt, nitre and sal ammoniac, in one quart of water, may be used on bruises and sprains as a stimulant and refrigerant lotion. Severe hemorrhage, collapse and surgical shock are treated most successfully by injections
of hot normal salt solution into a vein, under the skin, or into the rectum. The solution maintains the proper salinity of the blood, replaces the mass of blood lost, and supplies heat. The solution is made by adding salt to boiled or distilled water at a temperature of 100° to 105° F. (See p. 517.) A number of human deaths—preceeded by vomiting, diarrhea, fever, delirium and coma, have occurred through the accidental intravenous injection of concentrated salt solutions. Salt is an efficient antidote externally and internally to silver nitrate.

Uses Internal.—Salt is a serviceable emetic for dogs, when zinc sulphate is not at hand, in emergencies and poisoning. One teaspoonful may be stirred into a cup of lukewarm water with a tablespoonful of mustard. It is a useful addition to Epsom salt, since it increases thirst and the ingestion of water, and assists purgation in overloaded conditions of the first and third stomachs of ruminants. One-half pound of salt is administered to cattle with one-half to one pound of Epsom salt, one-quarter pound of ginger and a pint of molasses in two quarts of water. The habitual ingestion of salt is prejudicial to ascariides and diminishes the secretion of mucus in which they live. It is even more efficacious in destroying pinworms inhabiting the lower bowels. Enemata containing 1 to 2 tablespoonfuls of salt to the pint of water are employed for this purpose. Salt should be kept constantly accessible to horses and cattle.

Animals convalescing from acute diseases, and those with feeble digestion, need salt particularly. Horses are commonly given a bran mash once a week, with plenty of salt to enhance its laxative and hygienic action. Dogs usually procure sufficient salt in their ordinary food, but it should be added to their diet in the treatment of obesity. Salt increases edemas and dropsies and should be excluded from the diet in chronic nephritis, in chronic heart disease with edema, in ascites, in pleuritic effusions and hydrothorax—notwithstanding that formerly it was taught that salt aided the absorption of pleural effusions. The danger of concentrated salts solution through its effect on the blood has been noted. In China the drinking of a pint or more of saturated salt solution is a common method of committing suicide. Deaths from giving enemata containing concentrated salt solution have been reported.

Sodi Phosphas. Sodium Phosphate. \(\text{Na}_2\text{HPO}_4 + 12\text{H}_2\text{O} \).

(U. S. & B. P.)

Synonym.—Sodium orthophosphate, phosphate of soda, E.; natrum phosphoricum, P. G.; phosphate de soude, Fr.; natrium phosphat, phosphorsaures natrum, G.

Derivation.—Digest bone ash with sulphuric acid. \(\text{Ca}_3 \text{P}_2\text{O}_7 + 2 \text{H}_2\text{SO}_4 = \text{Ca H}_2 \text{PO}_4 + 2 \text{Ca SO}_4 \). Filter and add sodium carbonate to filtrate.

\(\text{Ca H}_2 \text{PO}_4 + \text{Na}_2 \text{CO}_3 = \text{Na}_2\text{HPO}_4 + \text{H}_2\text{O} + \text{CO} + \text{Ca HPO}_4 \). Evaporate, and sodium phosphate crystallizes out.

Properties.—Large, colorless, monoclinic prisms, or as a granular, crystalline salt; odorless, and having a cooling, saline taste. The crystals effloresce in the air. Soluble in 2.7 parts of water; insoluble in alcohol; slightly alkaline reaction.

Dose.—Same as sodium sulphate; D., 5i-ii, (1-8) as laxative.

The phosphate resembles the sulphate, but is a milder purgative and is wrongly thought to be an hepatic stimulant. It is indicated in jaundice
due to duodenitis, and as a laxative for foals and calves. It is occasionally prescribed in rickets as a source of phosphorus, but the calcium phosphate is more appropriate.

SODIUM PHOSPHATE

Sodium sulphate (U. S. & B. P.)

Synonym.—Sodium sulphate, Na₂SO₄.

Derivation.—Saturate a solution of sodium carbonate or hydrate with sulphurous anhydride gas. Na₂CO₃ + SO₃ = Na₂SO₄ + CO₂.

Properties.—A white powder, odorless, and having a cooling, saline, sulphurous taste. In air it is slowly oxidized to sulphate. Soluble in 3.2 parts of water; sparingly soluble in alcohol; neutral or feebly alkaline.

Dose.—H. & C. 3i, (30); Sh. & Sw., 5ss-i, (2-4); D., gr. v-xxx, (3-2).

Sodium bisulphate (U. S. P.)

Synonym.—Sodium sulphite, Na₂SO₃.

Derivation.—Obtained from sodium carbonate or bicarbonate and sulphurous anhydride gas.

Properties.—Oxidizable, prismatic crystals, or a granular powder, exhaling an odor of sulphur dioxide and having a disagreeable, sulphurous taste. Exposed to the air the salt loses sulphur dioxide and is gradually oxidized to sulphate. Soluble in 4 parts of water and in 72 parts of alcohol; reaction acid.

Dose.—Same as sodium sulphite.

Sodium thiosulphate (U. S. P.)

Synonym.—Sodium hyposulphate, hyposulphite of soda, E.; sodium thiosulphate, Na₂S₂O₅.

Derivation.—Dissolve sulphur in a boiling aqueous solution of sodium sulphite.

Properties.—Colorless, transparent, monoclinic prisms, odorless, and having a cooling, afterwards bitter, taste. Permanent in air below 33° C. (91.4° F.), but efflorescent in dry air above that temperature. Slightly deliquescent in moist air. Soluble in 0.5 part of water; insoluble in alcohol; slightly soluble in oil of turpentine; reaction neutral or faintly alkaline.

Dose.—Same as sodium sulphite.

Administration.—The sulphites are given in solution, or may be added in powder to the food of horses.

Action of the Sulphites, Bisulphites and Hyposulphites.

Action External.—These salts are antiseptics, deodorizers and parasiticides externally and in the digestive tract. The antiseptic action is due to the destructive effect of the sulphites in withdrawing oxygen from organic matter to oxidize themselves into sulphates. Given internally, 96 per cent. of sodium sulphite escapes in the urine as a sulphate, while but 3 per cent. is eliminated unchanged. It has been taught that the sulphites are converted into sulphur dioxide (SO₂) by the acids in the stomach, but this is very doubtful.

Uses.—A 15 per cent. solution or ointment of the sulphites is used against pruritus and parasitic skin diseases. The salts are recommended in indigestion with fermentation, flatulence and foul-smelling feces and in general septic conditions, but have proved as useless as most other drugs in the latter states. Sternberg found that neither the sulphites nor hyposulphites exerted any germicidal action on bacteria in culture media.
The other sodium salts are of no particular value in veterinary practice except sodium bromide. (See Bromine, p. 184.)

Ammonium.

Ammonium is not employed in medicine. Ammonia (NH₃) exists in the free state as a gas, and is used in medicine in solution in water or alcohol.

Aqua Ammoniae. Ammonia Water. (U. S. P.)

Synonym.—Liquor ammoniae, B. P.; spirits of hartshorn, E.; liquor ammonii caustici, P. G.; spiritus salis ammoniaci causticus, ammonia aqua soluta, ammonia liquide, eau (solution, liqueur) d'ammoniaque, Fr.; salmackgeist, aetzammoniak, ammoniakflüssigkeit, G. An aqueous solution of ammonia (NH₃), containing not less than 0.5 per cent. nor more than 10.5 per cent. by weight, of NH₃.

Properties.—A colorless, transparent liquid, having a very pungent odor, alkaline taste, and a strongly alkaline reaction. Spec. gr. 0.958.

Derivation.—Evolve ammonia gas by heating ammonium chloride with calcium hydrate, and pass it into water.

2 NH₄Cl + Ca(OH)₂ = 2NH₃ + 2H₂O + CaCl₂.

Dose.—H. & C., 3ss-i, (15-30); Sh. & Sw., 5i-ii, (4-8); D., mₓ-xx, (.6-1.3).

Preparation.

Linimentum Ammonii. Ammonia Liniment. (U. S. & B. P.)

Ammonia water, 250; sesame oil, 750. (U. S. P.)

Aqua Ammonii Fortior. Stronger Ammonia Water.

(U. S. P.)

Synonym.—Liquor ammonii fortis, stronger solution of ammonia, B. P.; eau d'ammoniaque forte, Fr.; starker salmackgeist, G.

An aqueous solution of ammonia (NH₃), containing not less than 27 per cent. nor more than 29 per cent., by weight, of NH₃.

Derivation.—Same as aqua ammonia.

Properties.—A colorless, transparent liquid, having an excessively pungent odor, a very acrid and alkaline taste, and a strongly alkaline reaction. Spec. gr. 0.897.

Dose.—H. & C., 5ii-vi, (8-24); Sh. & Sw., 5i, (4); D., mₓ-v-x, (.8-6).

Preparation.

Spiritus Ammonii. Spirit of Ammonia.

Synonym.—Spiritus ammoniaci caustici dondii, ammoniated alcohol, E.; liquor ammonii caustici spirituosus, P. G.; alcoóle d'ammoniaque, ligueur d'ammoniaque vineuse, Fr.; weingestige ammoniakflüssigkeit, G.

An alcoholic solution of ammonia (NH₃), containing 10 per cent., by weight, of the gas.

Properties.—A colorless liquid, having a strong odor of ammonia, and a spec. gr. of about 0.808.

This preparation combines the stimulating properties of ammonia and alcohol.

Dose.—H. & C., 3ss-i, (15-30); Sh. & Sw., 5i-ii, (4-8); D., mₓ-x-xx, (6-1.3).

Ammonia Preparations.

Action External.—Ammonia is a powerful irritant in stronger solution, or gas. If it is applied for a sufficient time, hyperemia, vesication and sloughing ensue.

Action Internal.—_Stomach._—If swallowed in concentrated solution

The radical ammonium (NH₄) of the ammonium compounds is not a metal, although it resembles so closely—in physical, chemical and physiological properties—the other alkaline metals, that it is usually classed with them.
death may take place instantaneously from edema and spasm of the glottis. Otherwise, more or less extensive inflammation of the alimentary canal will follow, according to the amount ingested. Diluted vinegar and lemon juice, together with the white of egg, or sweet oil, should be given as antidotes. Tracheotomy may be indicated, if there is glottic obstruction. Ammonia, in passing through the mouth, throat, gullet and stomach, reflexly stimulates the heart and respiration before absorption can occur.

Ammonia is an antacid in the stomach, but should not be employed in gastric irritability.

Respiratory Tract.—Inhalation of stronger ammonia through the nostrils causes reflex stimulation of the heart and respiration by irritation of the nasal branches of the fifth nerve. Care must be exercised to prevent inflammation of the air passages. Ammonia stimulates the respiratory centre when it is injected into the blood. Given under the skin in lethal doses, ammonia causes death by paralysis of the respiratory centres.

Circulation.—It is probable that ammonia only acts reflexly to stimulate the heart through irritation of the stomach when it is ingested. If given intravenously or subcutaneously, ammonia stimulates directly the heart muscle, and probably the accelerator and vasomotor centres, making the cardiac pulsations stronger and quicker and increasing vascular tension. Rarely the vagus centre is stimulated and the heart's action slowed. Lethal doses paralyze the cardiac muscle. Ammonia differs from alcohol in being more evanescent as a stimulant, in not affecting the brain nor metabolism, and in not acting as a food.

Blood.—The normal blood contains ammonia, which is supposed to aid in maintaining its fluidity. The action on the blood is unknown. Ammonia is thought to prevent coagulation of blood within the vessels in conditions favorable to thrombosis.

Nervous System.—An intravenous injection of a lethal dose of ammonia occasions tetanic convulsions in animals, owing to stimulation of the reflex and motor functions of the cord. Medicinal doses excite the spinal reflex and motor centres. When ammonia is applied directly to nerve tissue it excites in dilute solution, but paralyzes functional activity in concentration. The brain is unaffected by the therapeutic administration of ammonia.

Elimination.—Ammonia combines with acid in the stomach and is absorbed into the blood. Ammonia and its carbonate are acted upon by the liver and there transformed into urea, in which form ammonia compounds escape in the urine. Urea being the most active diuretic there is some augmented flow. The urine is, however, not alkalized as by the salts of the other alkaline metals.

Summary.—Heart and respiratory stimulant and antacid. Externally, rubefacient, vesicant, and escharotic.

Uses.—The indications for ammonia are closely in accord with its physiological actions.

Externally.—It is frequently used in stimulating liniments. One
part each of water of ammonia and oil of turpentine, may be combined to advantage with 4 to 6 parts of camphor liniment. Ammonia water is one of the best remedies to relieve pain and antagonize the action of insect bites, as stings of bees and wasps. It should be applied directly to the poisoned part.

Internally.—Ammonia is indicated when rapid stimulation of the heart and respiration is desirable. In emergencies it may be given intravenously (aq. ammon. fort. 1; water, 4 parts); or by inhalation. It is serviceable in the treatment of prussic acid and aconite poisoning, syncope, collapse and shock following surgical operations; also in snake bites. The spirit of ammonia may be prescribed in fevers as a stimulant. Ammonia is inferior to ammonium carbonate or the aromatic spirit in cases of colic and tympanites.

Ammoni Carbonas. Ammonium Carbonate NH₄HCO₃, NH₄NH₂CO₃.

(U. S. & B. P.)

It consists of a mixture of varying proportions of acid ammonium carbonate (NH₄HCO₃) and ammonium carbonate (NH₄NH₂CO₃) and yields not less than 30 per cent. nor more than 32 per cent. of NH₃.

Synonym.—Volatile salt, sal volatile siecum, E.; ammonium carbonicum, L. G.; carbonate d'ammoniaque, alcali volatil concret, sel volatil d'Angleterre, Fr.; flüchtiges laugensalz, reines hirchhornsalz, kohlensäures ammonium, G.

Derivation.—A mixture of ammonium chloride or sulphate, and calcium carbonate, is sublimed and resublimed. Ammonium carbonate, so-called, is a mixture of ammonium carbonate and bicarbonate.

\[4 \text{NH}_4\text{Cl} + 2 \text{CaCO}_3 = \text{NH}_4\text{HCO}_3, \text{NH}_4\text{NH}_2\text{CO}_3 + 2 \text{CaCl}_2 + \text{NH}_3 + \text{H}_2\text{O}. \]

Properties.—White, hard, translucent, striated masses, having a strong odor of ammonia, without empyreuma, and a sharp ammoniacal taste. On exposure to the air the salt loses both ammonia and carbonic dioxide, becoming opaque, and is finally converted into friable, porous lumps, or a white powder. Soluble in 4 parts of water. Alcohol only dissolves the carbonate, leaving the acid carbonate.

Dose.—H., 5ii, (8); C., 5iii-iii, (12-24); Sh. & Sw., gr.xv-xl, (1-2.6); D., gr.iii-x, (2-6); D., emetic, gr.xv, (1).

Preparation.

Spiritus Ammoniv Aromaticus. Aromatic Spirit of Ammonia.

(U. S. & B. P.)

Synonym.—Sal volatile, alcoolat ammoniacal aromatique, Fr.; aromatischer ammoniakgeist, G.

<table>
<thead>
<tr>
<th>Ammonium carbonate</th>
<th>34 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia water</td>
<td>90 mils</td>
</tr>
<tr>
<td>Oil of lemon</td>
<td>10 mils</td>
</tr>
<tr>
<td>Oil of lavender</td>
<td>1 mil</td>
</tr>
<tr>
<td>Oil of myristica</td>
<td>1 mil</td>
</tr>
<tr>
<td>Alcohol</td>
<td>700 mils</td>
</tr>
<tr>
<td>Distilled water</td>
<td>1000 mils</td>
</tr>
</tbody>
</table>

Properties.—A nearly colorless liquid when freshly prepared, but gradually acquiring a yellow color. It has a pungent odor and taste of ammonia. Spec. gr. 0.900.

Dose.—H. & C., 5i-ii, (30-60); Sh. & Sw., 5ii-iv, (8-15); D., 5ss-i, (2-4), well diluted.

The aromatic spirit of ammonia nearly resembles ammonium carbonate in action, but the alcohol and volatile oils add to the stimulant qualities of ammonia and ammonium carbonate.

Action Internal.—Ammonium carbonate is decomposed by acid in
the stomach and escapes in the urine as urea. It stimulates gastric secretion, vascularity and motion, and also excites intestinal peristalsis. It is, therefore, a stomachic and carminative. It is also an antacid, and, in large doses, an emetic to dogs. The action of ammonium carbonate is almost identical with that of ammonia water in stimulating the heart and respiration, but it has more power in augmenting the bronchial secretions.

Summary.—Cardiac and respiratory stimulant, expectorant, stomachic and emetic.

Administration.—Ammonium carbonate is given in ball, or in solution in cold water, to avoid irritating fumes; also, with syrup or gruel. It is often prescribed with other stimulants and antispasmodics, as alcohol, capsicum, camphor and asafetida.

Uses.—The indications for the administration of ammonium carbonate are much the same as those for ammonia preparations. It is a more useful expectorant, however, and it and the aromatic spirit are more serviceable in the treatment of flatulence. For the latter condition in horses with colic, a ball containing ammonium carbonate, nux vomica, and capsicum, is often efficient.

Horse, for flatulent colic.
- **R.** Pulveris nucis vomicae.
- **Ammonii carbonatis áæ.** .. 5ii
- **Pulveris capsici.** .. 5i
- M. et fiat bolus No. i.
- S. Give at once.

We may use ammonium carbonate alone in the case of acute or chronic bronchitis, or it may be combined with other stimulants, or expectorants, as ammonium chloride. In electric shock, so common an accident in the large cities from "live" wires, the administration of full doses of aromatic spirit diluted with half a pint of water will prove a most effective heart stimulant when the animal can swallow.

Ammonii Chloridum. Ammonium Chloride. NH₄ Cl.
(U. S. & B. P.).

Synonym.—Sal ammoniac, ammonia muriaticum or hydrochloratum depuratum, ammoniac hydrochloras or muriás, muriate of ammonia, E.; chlorure d’ammonium, sel ammoniac, chlorhydrate d’ammoniaque, Fr.; salmiak, chlorammontium, G.

Properties.—A white, crystalline or granular powder without odor, having a cooling, saline taste. Somewhat hygroscopic. Soluble in 2.6 parts of water; in 100 parts of alcohol. An aqueous solution of the salt (1 in 20) in ice cold water does not show an immediate acid reaction with litmus.

Dose.—H., 5ii, (8); C., 5ii-vi, (12-24); Sh. & Sw., gr.xv-xl, (1-2.6); D., gr.iii-x, (2-6).

Action Internal.—When ingested, sal ammoniac is a feeble heart and respiratory stimulant, and is not comparable to the ammonia compounds or ammonium carbonate in this respect. It is eliminated in great part unchanged by the urine, but also by the other channels. In its excretion it stimulates the mucous membranes, increases their secretions generally, and is thought to improve their nutrition. Hence it has been
Ammonium chloride both excites the secretion of the bronchial mucous membrane and renders it less viscid in inflammatory conditions. It is mildly diaphoretic and diuretic.

Summary.—Externally, refrigerant; internally, expectorant, alterative, feebly diaphoretic and diuretic.

Uses.—Four ounces each of nitre and sal ammoniac may be dissolved in two quarts of water as a refrigerant lotion. Sal ammoniac is indicated more especially in the second stage of acute bronchitis, in chronic bronchitis, and in chronic intestinal catarrh with diarrhea. Ammonium chloride may be given to dogs as a cough mixture. If cough is excessive, codeine or morphine sulphate can be added to this prescription with advantage as follows:

Cough mixture for dogs with bronchitis.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RB</td>
<td>Ammonii chloridi</td>
</tr>
<tr>
<td></td>
<td>Glycerini</td>
</tr>
<tr>
<td></td>
<td>Codeinæ sulphatis</td>
</tr>
<tr>
<td></td>
<td>Aquæ chloroformi</td>
</tr>
</tbody>
</table>

M.

Sig. Teaspoonful in water every 3 hours.

Liquor Ammonii Acetatis. Solution of Ammonium Acetate.

(U. S. & B. P.).

Synonym.—Spirit of Mindererus, spiritus Mindereri, E.; liquor ammonii acetici, P. G.; acetate d'ammoniaque liquide, esprit de Mindererus, Fr.; ammonium-acetatlosung, G.

An aqueous solution containing about 7 per cent. of \(\text{NH}_4\text{C}_2\text{H}_3\text{O}_2 \) with small amounts of acetic acid and carbon dioxide.

Derivation.—Ammonium carbonate, 5 Gm., is gradually added to 100 mils of cold, diluted acetic acid.

Properties.—A clear, colorless liquid, free from empyreumatic odor and having a mildly saline, acidulous taste, and an acid reaction.

Incompatibles.—Acids and alkalis.

Dose.—H. & C., 5ii-iv, (60-120); D., 5ii-viii, (8-30).

Action.—Spirit of Mindererus stimulates the secretory cells of the kidneys and sudoriparous glands. In the stomach it exerts a mild, antacid action.

Summary.—Externally, refrigerant; internally, diuretic, diaphoretic and antacid.

Uses.—Liquor ammonii acetatis is an exceedingly feeble medicine ("it is useful for the harm it has not done") and is often employed as a vehicle with more powerful agents of its class, e.g., spiritus etheris nitrosi. It is useful as a febrifuge.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RB</td>
<td>Tinc. aconiti</td>
</tr>
<tr>
<td></td>
<td>Sodii bromidi</td>
</tr>
<tr>
<td></td>
<td>Sp. ætheris nitrosi</td>
</tr>
<tr>
<td>M.</td>
<td>Liquor. ammonii acetatis ad</td>
</tr>
</tbody>
</table>
| S. | Teas. every hour.

The foregoing prescription is a good palliative combination for dogs suffering with fever and restlessness. The solution of ammonium acetate is frequently conjoined with sweet spirit of nitre and ammonium chloride or potassium iodide, in the treatment of acute respiratory diseases of
horses, e.g., influenza, bronchitis and pneumonia. It may be added to the drinking water without rendering it unpalatable.

Lithium.

(\textit{The Metal Is Not Used in Medicine.})

\textbf{Lithii Carbonas.} Lithium Carbonate. Li$_2$CO$_3$.
(U. S. & B. P.).

\textit{Synonym.}—Carbonate of lithia, E.; Lithium carbonicum, P. G.; carbonate de lithine, carbonate lithique, Fr.; kohlensaures lithion, G.

\textit{Derivation.}—Made by action of lithium chloride in acid ammonium carbonate.

\[2 \text{LiCl} + \text{NH}_3 + \text{HCO}_3 = \text{Li}_2\text{CO}_3 + \text{NH}_4\text{Cl} + \text{HCl}. \]

Purified by washing with alcohol and drying.

\textit{Properties.}—A light, white powder, odorless, and having an alkaline taste. Permanent in the air. Soluble in 78 parts of water; almost insoluble in alcohol. Reaction alkaline.

\textit{Dose.}—D., gr.iii-x, (2-.6).

\textbf{Lithii Citras.} Lithium Citrate. Li$_3$C$_6$H$_9$O$_7$+4H$_2$O.
(U. S. & B. P.)

\textit{Synonym.}—Lithium citricum, citrate of lithia, E.; citrate de lithine, Fr.; citronsaures lithion, G.

\textit{Derivation.}—Made by action of citric acid on lithium carbonate.

\[2 \text{H}_3\text{C}_6\text{H}_7\text{O}_7 + 3 \text{LiCO}_3 = 2 \text{Li}_3\text{C}_6\text{H}_9\text{O}_7 + 3 \text{H}_2\text{O} + 3 \text{CO}_2. \]

Recovered by evaporation and crystallization.

\textit{Properties.}—A white powder, or in granular form, odorless, and having a cooling, faintly alkaline taste; deliquescent on exposure to moist air; soluble in 2 parts of water; almost insoluble in alcohol or ether. Reaction faintly alkaline to litmus.

\textit{Dose.}—D., gr.v-xx, (3-1.3).

\textbf{ACTION OF LITHIUM SALTS.}

Lithium salts are said to form soluble compounds with uric acid in the blood, and so assist its elimination in the urine. As lithium combines more readily with acid sodium phosphate in the blood than with uric acid, it is doubtful whether it is a very efficient uric acid* solvent in the body. The lithium salts aluminate the urine and notably increase its secretion.

\textit{Summary.}—Lithium salts are diuretics, and uric acid solvents in some degree. The carbonate may be given in powder or pill; the citrate in solution.

\textit{Uses.}—Lithium compounds are of little value in veterinary medicine. They are serviceable, however, in the treatment of dogs with a very acid urine of high specific gravity. The salts will not dissolve calculi in the body, but may prevent their formation.

Water is extremely useful in such conditions. Lithium citrate may be placed in the drinking water. Thirst should be encouraged by the administration of salt on the food, and high rectal injections may be given to create absorption of water by this channel. Lithium salicylate is thought to be the better salt for rheumatism. It is probable that treatment with salicylic acid and lithium would be more satisfactory.

*Uric acid can not exist as such in blood, which is an alkaline fluid.
SECTION III.

Alkaline Earth Metals: Calcium, Barium and Magnesium.

Calcium.

(The Metal Calcium Is Not Employed in Medicine.)

Preparata. Prepared Chalk. CaCO₃.

(U. S. & B. P.)

Synonym.—Drop chalk, E.; craie préparée, Fr.; préparirte kreide, G.

Derivation.—Made from chalk by levigation, elutriation and desiccation.

Properties.—A white to grayish-white, very fine amorphous powder, often formed into conical drops; odorless and tasteless; permanent in the air. Almost insoluble in water; insoluble in alcohol.

Incompatibles.—Sulphates and acids.

Dose.—H., gr.x-ii, (30-60); C., 3ii-iv, (60-120); Sh. & Sw., 5ii-iv, (8-15); D., gr.x-5i, (6-4).

Preparations.

Pulvis Cretæ Compositus. Compound Chalk Powder. (U. S. P.)

Chalk, 30; acacia, 20; sugar, 50.

Dose.—D., gr.x-5i, (6-4).

Mistura Cretæ. Chalk Mixture. (U. S. P. & B. P.)

Compound chalk powder, 20; cinnamon water, 40; water to make 100.

Dose.—D., 3i-ii, (30-60).

Pulvis Cretæ Aromaticus. (B. P.)

Dose.—D., gr.x-5i, (6-4).

Pulvis Cretæ Aromaticus Cum Opio. (B. P.)

(Contains 2½ per cent. opium.)

Dose.—D., gr.x-xl, (6-2.6).

Calcii Carbonas Precipitatus. Precipitated Calcium Carbonate. CaCO₃.

(U. S. & B. P.)

Synonym.—Calcis carbonas precipitata, B. P.; precipitated carbonate of lime, creta precipitata, E.; calcium carbonicum precipitatum, P. G.; carbonate de chaux précipité, craie précipitée, Fr.; präcipitirten kohlensauren kalk, G.

Derivation.—Obtained by precipitation of calcium chloride with sodium carbonate.

CaCl₂ + Na₂CO₃ = CaCO₃ + 2 NaCl. Dry the precipitate.

Properties.—A fine white micro-crystalline powder, without odor or taste, and permanent in the air. Nearly insoluble in water; insoluble in alcohol. The solubility is increased by presence of ammonium salts and especially by carbon dioxide.

Dose.—H., 3i-ii, (30-60); C., 3ii-iv, (60-120); Sh. & Sw., 5ii-iv, (8-15); D., gr.x-5i, (6-4).

Calcium Carbonate.

Action External.—Desiccant and slightly astringent powder; also protective.

Action Internal.—Alimentary Canal. —Calcium carbonate is the slowest acting antacid, because of its comparative insolubility, and is of value when it can exert its long-continued influence throughout the digestive tract. It resembles bismuth in mechanically coating or protecting an inflamed or irritable surface. It is not so astringent nor antiseptic as the bismuth salts, and these are generally preferable to chalk for the smaller animals. It is excreted unchanged in the feces.
Administration.—Calcium carbonate may be given to dogs in troches, pills or powder; to other animals in powder, balls or electuary. Chalk is commonly prescribed suspended in flour gruel, milk or mucilage to the larger animals. The official preparations are suitable for dogs.

Uses.—Chalk forms a dusting powder for moist eczema, slight burns and intertrigo, zinc oxide and starch (1 to 4) is, however, a better preparation. Chalk is the most useful antacid for diarrhea accompanied by fermentation of the intestinal contents, while its local astringent and protecting influence assist in overcoming the trouble. It is especially good for foals and calves given in flour gruel, and often combined with catechu, ginger and opium.

The following prescription is appropriate for dogs with diarrhea:

- **R** Creta preparata
 - Tincturae catechu co. .. $\frac{3}{2}$ ii
 - Fluidextracti zingiberis. ... $\frac{3}{2}$ ss
- M. (Shake.)
- Sig. Two tablespoonfuls in half pint of flour gruel 3 times daily

A serviceable ball for horses with diarrhea is as follows:

- **R** Creolini.
 - Creta preparata
 - Pulv. zingiberis .. $\frac{3}{2}$ ss
 - Pulv. opii .. $\frac{1}{2}$ i
- M. et fiat bolus No. 1.
- Sig. Give at once.

A laxative should always be given before using astringents in diarrhea; preferably linseed oil or salts, for large animals; castor oil, for smaller patients.

Calx. Quicklime, Lime. Calcium Oxide. CaO. (U. S. & B. P.)

Synonym.—Burned lime, quicklime, calcaria, calx viva, calx usta, calcii oxidum, E.; calcaria usta, P. G.; chaux, chaux vive, Fr.; kalk, gebrannter kalk, G.

Derivation.—Prepared by burning white marble, oyster shells, or the purest varieties of natural calcium carbonate, to expel carbon dioxide.

Properties.—Hard, white, or grayish-white masses or granules, or as a white powder; odorless and having a caustic taste. Reaction intensely alkaline. Soluble in about 840 parts of water; soluble in glycerin and syrup; insoluble in alcohol.

Preparations.

Liquor Calcis. Solution of Lime. (U. S. & B. P.)

A saturated, aqueous solution of calcium hydrate.

Synonym.—Lime water, solution of calcium hydrate, aqua calcariae uste, aqua calcis, calcaria soluta, E.; aqua calcariae, P. G.; eau (liqueur) de chaux, Fr.; kalkwasser, G.

Derivation.—Dissolve lime (50 Gm.) in water q. s. The percentage of calcium hydrate \([\text{Ca (OH)}_2]\) varies with the temperature, being somewhat over 0.17 per cent. at 15° C. (59° F.), and diminishing as the temperature rises.

Properties.—A clear, colorless liquid without odor, and having a saline and
feebly caustic taste. It absorbs carbon dioxide from the air, so that a pellicle of calcium carbonate forms on the surface of the liquid. Reaction strongly alkaline. *Dose.*—H. & C., 5iv-vi, (120-180); Calves, 5ii, (60); D., 5i-viii, (4-30).

Syrupus Calcis. Syrup of Lime.
(Non-Official.)
Lime, 65; sugar, 350; water to make 1000. *Dose.*—Calves and dogs, 5ss-i, (2-4). Well diluted with water or milk.

Linthmentum Calcis. Lime Liniment. (U. S. & B. P.)
Synonym.—Carron oil.
Solution of lime and linseed oil, of each 500 mils. *Dose.*—Foals and calves, 5ii-iv, (60-120).

Calcii Hydras. Slaked Lime. (B. P.)
Used as disinfectant in stables.

Action of Lime and Solution of Lime.
External.—Lime is caustic, but less so than potassium or sodium hydrate. It is an irritant. The dust of quicklime will cause conjunctivitis. If inhaled, it will cause inflammation of the air passages; if swallowed, irritation of the digestive tract. The hydrate is a caustic also, but is not so active as lime. Solution of lime is a sedative and astringent.

Internal.—Neither lime nor slaked lime (calcium hydrate) are used internally, except in the official preparations. The action of lime and its solution is due, not to calcium, but to the hydroxyl ion—that is, to the alkalinity. As compared with the alkalies the action is much slower and less in degree, on account of the comparative insolubility of calcium compounds. Solution of lime acts as a sedative, antacid and astringent in the stomach. It dissolves mucous secretions. Lime water is also a mild astringent in the bowels.

Uses.—Lime is employed outside of the body to destroy putrefying organic matter by combining with water and forming slaked lime, which absorbs many of the products of decomposition. Whitewash, a mixture of slaked lime and water, is not a disinfectant, although it covers sources of infection. It may be made so by combination with sufficient phenol to make a 2 per cent. solution. Linimentum calcis is one of the most satisfactory applications for superficial burns and acute eczema. Old clean cotton or linen cloths are soaked in it and spread over the burned surface of the body. This preparation has been facetiously called "carrion" instead of carron oil, because it is not germicidal. Antiseptic applications are of course desirable in burns, giving rise to a raw surface, and the addition of two per cent. of carbolic acid will not only render the preparation antiseptic, but more or less anesthetic as well. When the burn is extensive, boric acid with vaseline (1 to 8) will be safer. Orthoform (see p. 196) is the most comfortable application which can be made on burns, but is expensive. A mixture of slaked lime and charcoal, equal parts, makes a useful stimulant, absorbent, dessicant, and antiseptic dressing powder for wounds and ulcers in horses. Lime water is serviceable in relieving itching in skin diseases, and dries up moist surfaces through its astringent properties. With carbolic acid (1 to 50) lime water is most efficient in allaying pruritus. Lime water is inimical to aphthous ulcerations and may be employed to swab out the mouth in this
disease. Enemata of lime water destroy pin worms. Solution of lime is one of the best remedies in the treatment of vomiting in dogs. It is a direct sedative to the stomach, and, mixed with milk, equal volumes, prevents the rapid coagulation of the casein, lessens the formation of large, tough curds in the stomach, and assists the retention and digestion of milk. Syrup of lime is twenty-four times stronger in calcium hydrate than lime water, and is more astringent. It may be given to foals and calves suffering from indigestion and diarrhea. It should be administered in a considerable quantity of milk.

Lime water may be given as an antidote in poisoning by acids. Car- ron oil is a good, mild laxative and antacid for horses with "heaves." It is given on the food. Furthermore, it is an excellent purgative for foals and calves in the treatment of diarrhea and indigestion.

Calcii Phosphas Precipitatus. Precipitated Calcium Phosphate \(\text{Ca}_3(\text{PO}_4)_2 \). (Non-Official.)

Synonym.—Calcii phosphas, B. P.; precipitated phosphate of lime, E.; calcium phosphoricum. P. G.; phosphate de chaux hydraté, Fr.; phosphahsaure kalkerde, G.

Derivation.—Obtained from bone ash (impure calcium phosphate) by solution in hydrochloric acid and purified by precipitation with ammonia water and by washing with water.

Properties.—A light, white, amorphous powder; odorless and tasteless and permanent in the air. Almost insoluble in cold water; insoluble in alcohol; easily soluble in hydrochloric or nitric acids.

Dose.—H., 3ii-iv, (8-15); C., 5ss-i, (15-30); Sh. & Sw., 3ii-ii, (4-8); D., gr.v-xx, (.3-1.3).

Syrupus Calcii Lactophosphatis. Syrup of Calcium Lactophosphate.

(U. S. & B. F.)

Precipitated calcium carbonate, 25; lactic acid, 60; phosphoric acid, 36; stronger orange flower water, 50; sugar, 650; glycerin, 50; water, a sufficient quantity to make 1,000.

Dose.—Foals and calves, 5ss-i, (15-30); D., 5i-iv, (4-15).

Calcium Phosphate.

Action and Uses.—Calcium salts are most important constituents of the body, being essential for the contractility of muscles, the activity of nerves, the coagulability of blood and, as calcium phosphate, forming 50 per cent. of bones. Calcium is not only necessary for the growth of bone, but also of soft tissues, about 15 grains being required daily by the human adult. Green vegetables, water, eggs and milk are the chief sources of supply. Milk contains more lime than does lime water (0.17%), and much more than meats. The reserve of calcium in the body is in the bones which keep the blood supplied. Much larger quantities of lime are lost in sickness, debility and starvation than in health by the feces and urine—four times as much in the former. Calcium salts mostly pass unchanged through the bowels. A small amount is absorbed and eliminated by the large bowel and by the kidneys. The food ordinarily contains an amount of lime in excess of the needs of the body. By withholding lime from the food animals may develop conditions similar to rickets.

Rickets, however, is not usually due to lack of lime salts, but to an
abnormal condition in which the lime ingested cannot be deposited in the bones, although abounding in the blood. Lime being deficient in the bones in rickets and osteomalacia, it has been given in these conditions and also in caries and fragilitas ossium. Unless the food has been deficient in calcium salts their use will probably be of little benefit.

The same comment applies to the administration of calcium salts in delayed union in fractures and in anemia, malnutrition, and weakness of young animals. In the latter conditions the calcium salt should be given with iron. Calcium phosphate should be given on food with iron to improperly nourished pregnant animals and prevents loss of the young through marasmus and rickets.

Administration.—Precipitated calcium phosphate may be given on the food, but is more readily absorbed if it is administered in the syrup of calcium lactophosphate. A glycerophosphate of lime has recently come into vogue and preparations are made containing the glycerophosphates of lime, potassium, magnesium, iron, sodium and quinine. They are used in anemia and malnutrition and convalescence.

Dose. of the glycerophosphate of calcium and iron—H., 5i-ii.; D., gr.v.-x.

Calcium Chloride. Calcium Chloride. CaCl₂.

(U. S. & B. P.)

Synonym. Calcium chloratum, chlorure de calcium, Fr.; chlorecalcium, calcium chlorid, G.

Derivation.—Neutralize hydrochloric acid with calcium carbonate and evaporate: 2HCl + CaCO₃ = CaCl₂ + CO₂ + H₂O. Fusion at the lowest possible temperature renders the salt anhydrous.

Properties.—White, slightly translucent, hard fragments, granules or sticks; odorless; having a sharp, saline taste, and very deliquescent. Soluble in 1.2 part of water, in about 10 parts of alcohol.

Dose.—H. & C., 5ss-i, (15-30); D., gr.5-20, (3-1.3).

Gelatin. Purified Gelatin. (U. S. P.)

Derivation.—The purified air-dried product of the hydrolysis of certain animal tissues, as skin, ligaments, and bones, by treatment with boiling water.

Properties.—An amorphous, more or less transparent solid, usually shredded or in thin sheets; colorless or with a slight yellowish tint, inodorous, and having a slight, characteristic, almost insipid taste. Insoluble in cold water, but swells and softens when immersed in it, gradually absorbing 5 to 10 times its weight of water. Soluble in boiling water and glycerin, insoluble in alcohol, ether and chloroform, fixed and volatile oils.

Actions and Uses.—Calcium chloride has been used of late extensively both to prevent and arrest hemorrhage. Outside of the body, calcium chloride causes blood to coagulate more quickly and firmly than usual, and the same kind of action appears to obtain—i.e., rendering blood more coagulable—when the salt is given internally. Calcium chloride is used as a hemostatic in hematemesis, hemoptysis, purpura hemorrhagica and in all conditions giving rise to hemorrhage. When administered by the mouth several days before surgical operations in maximum doses it may lessen hemorrhage in cases likely to be attended by much bleeding. But, if given too long, calcium chloride lessens the coagulability of the blood and thus not more than 6 or 8 doses should be given, 3 times daily. Calcium lactate has the same action and is less irritating so that it is more suitable for dogs in the same doses as the
chloride. It may also be given subcutaneously, diluted with as much as 20 parts of water, and in purpura hemorrhagica is more efficient because sometimes not absorbed from the digestive tract in this disorder. It has been found that removal of the parathyroids in dogs causes lime starvation of the body and tetany. Also that lack of lime in the body favors muscular twitching, transudation, itch and edema. Therefore calcium chloride or lactate is given internally to relieve epilepsy, pleural effusions, urticaria, itching, bronchial asthma (spasm and edema), angioneurotic edema, and rashes caused by injection of foreign serums. Calcium chloride solution added to poultices hastens the ripening of boils. It is necessary for the clotting of milk by rennin, and is often used to thicken cream when it is beaten. It is thought that the gelatin owes its power in arresting hemorrhage to the calcium (0.6 per cent.) contained in it. Unless gelatin is sterilized fractionally for half an hour on three to five successive days, tetanus may ensue when it is injected under the skin, and numerous cases have been reported following such use in human surgery. Merck sells a perfectly sterilized gelatin. The simplest manner of employing gelatin to arrest hemorrhage internally is by injection per rectum; 1 1/2 ounces for small animals and 10 ounces to a pint for larger animals of the following aqueous solution, given at body temperature after the bowel has received a cleansing enema of boiled water. The solution is made of gelatin to the amount of 6 per cent. and calcium chloride to the amount of 1 per cent., to which a little laudanum may be added to prevent expulsion. It should be repeated every five hours as long as there is danger of hemorrhage. Experiments by H. C. Wood, Jr., appear to show that gelatin may be given ad libitum by the mouth and retain its hemostatic action.

Calx Chlorinata. (See Chlorine, p. 182.)
Calci Sulphas Exsiccatus. Dried Calcium Sulphate, or Plaster of Paris, used for bandages.

Barium.

(Barium is not used in the metallic state.)

Barium Chloride. Barium Chloride. BaCl₂. (Non-official.)

Derivation.—Native barium sulphate is fused with charcoal. The resulting sulphide is treated with hydrochloric acid. BaSO₄ + 2HCl = BaCl₂ + H₂S.

Properties.—Occurs in colorless, glistening, rhombic plates; taste bitter and disagreeable; permanent in dry air; soluble in 2.5 parts of cold water, reaction neutral.

Dose.—H., 5i-ii by mouth; intravenously, gr. xv.

Action Internal.—Barium chloride is an intense irritant if swallowed in considerable amount and in insufficient dilution. Large medicinal doses stimulate the muscular coat of the bowels and cause increased peristalsis and purging. Evacuations from the bowels follow in horses one-half to one hour after the salt is given in drench; in one to two hours after administration to these animals in ball; in a few minutes after intravenous injection. Subcutaneous injection will occasion abscess. The drug resembles physostigmine in its action on the intestines.

Heart and Blood Vessels.—Barium chloride makes the ventricular
contractions of the heart stronger and slower. The salt stimulates directly the heart muscle. Lethal doses are followed by slower and slower ventricular contractions, succeeded by peristalsis of the cardiac muscle, and, finally, by stoppage of the heart in systole.

Barium chloride also directly excites the muscular walls of the capillaries, and thus contracts the pulmonary, cerebral, and coronary arteries which lack constrictor fibres.

Muscles.—Barium chloride stimulates muscular contraction when it is applied locally. It stimulates contraction of the uterus, bladder and other organs. Toxic doses, given intravenously, cause convulsions owing to stimulation of the spinal cord and medulla. Thus there is initial stimulation of the medullary vagus, vaso-motor and respiratory centres, with rapid respiration. This is succeeded by paralysis of the central nervous system.

Summary.—Circulatory stimulant, and purgative in large medicinal doses.

Uses.—Many practitioners are afraid to use barium chloride, but repeated use of the drug has convinced Muir that it is safe when given in the dose of 1 gram or 15 grains, intravenously, or 4 to 8 grams (1 to 2 drams) by the mouth in solution for the horse.* Barium chloride is of value in colic and obstinate constipation of horses. It may for the time cause some increase of pain but not nearly as much as follows the use of eserine or arecoline, and it quickly passes off when the bowels are moved. Great care should be exercised to avoid introduction of the barium solution into the connective tissue while injecting it into the vein. The needle of the hypodermic syringe should be introduced into the jugular about midway of the neck, and after some drops of blood have exuded from the vein, the syringe is attached and slowly emptied, when the plunger is withdrawn until some blood enters the syringe. Then the needle may be removed with safety. It is rarely necessary to repeat the dose of barium chloride, and small doses of extract of cannabis may be given to lessen colic while barium is acting, when it is given by the mouth.

Extensive experiments of Muir† with barium chloride lead him to conclude that the salt may be administered intravenously in the amount of 1.0 to 2.0 Gm. (15 to 30 gr.) in 1 to 2 drams of sterile water; that 2 Gm. is a safe dose by the intrajugular method for a horse of ordinary weight and fair condition; that the drug acts promptly when given in this way, catharsis being produced within one to nine minutes, and that even volvulus may be relieved; that there are no unpleasant symptoms following the smaller dose (1 Gm.), and that even after the 2 Gm. dose there are only slight signs of pain and sweating; that while the passages from the bowels are few in number the total amount of feces is large; finally, that the drug has the advantage of being cheap.

*Lockhart reports two deaths in horses from 2½ and 3 drams of barium chloride by the mouth and he warns that the efficient cathartic dose approaches the lethal limit with this drug. (Amer. Vet. Review, Apr., 1914.)
That the toxic line is closely approached in giving barium chloride in the dose of 2 Gm. intravenously, is shown by experiment 31,* in which a gelding weighing 900 pounds received two 2 Gm. doses intrajugularly at about 2½ hours apart, when death occurred from heart failure in nine minutes after the second dose. Barium chloride is useful in relieving tympanites of cattle.

Four to five drams are given to cattle and one and one-quarter drams to calves in drench. Since writing the above many fatalities have occurred from the intravenous injection of barium, so that it has largely gone out of use save by the mouth. Used intravenously it cannot be said to be other than dangerous. In human practice it is not employed on account of its toxicity and irritating effect upon the digestive tract.

Magnesium,

(The metal is not used in medicine.)

Magnesii Sulphas. Magnesium Sulphate. MgSO₄ + 7 H₂O. (U. S. & B. P.)

Synonym.—Epsom salt, sal amarum, sal Epsomense, sal anklicium, sulfas magnesieus, etc., E.; magnesium sulfulicum, P. G.; sulfate de magnésie, sel d’Epsom, sel de seidlitz, sel amer, Fr.; bittersalz, schwefelsaure magnesia, G.

Derivation.—It is obtained from native dolomite, a double carbonate of magnesium and calcium, or magnesite (MgCO₃). MgCO₃ + H₂SO₄ = MgSO₄ + H₂O + CO₂.

Properties.—Small, colorless, prismatic needles or rhombic prisms, without odor, and having a cooling, saline and bitter taste; slowly efflorescent in the air; soluble in one part of water; almost insoluble in alcohol; reaction neutral.

Incompatibilities.—Lime water, alkaline carbonates, phosphoric acid, phosphates, silver nitrate and lead acetate.

Dose.—H., laxative, 3i-iv, (60-120); C., purgative, bi-ii, (500-1,000); laxative 3i-iv, (90-120); Calves, 3i-iii, (60-90); Sh., 5iv-vi, (120-180); D., 5i-iv, (4-15).

Action Internal.—Epsom and Glauber’s salts are the best purgatives for general purposes in the treatment of cattle and sheep. The mode of action of Epsom salt is similar to that described under sodium sulphate. Briefly, magnesium sulphate causes purgation by increasing intestinal secretion, retarding absorption of fluid from the bowels, and by slightly stimulating peristalsis. The salt moves the bowels, in the case of the larger animals, usually within twelve or fifteen hours.

Epsom salt is absorbed to some extent, and is eliminated by the kidneys and sweat glands, increasing the secretions of these organs, especially when the dose is small.

Summary.—Hydragogue cathartic. Feeble diuretic and diaphoretic.

Uses.—For uses the reader is referred to sodium sulphate (p. 113), as the uses of the two salts are almost identical. Epsom salt is useful in febrile diseases of horses, as in influenza and pneumonia, given in solution, in doses of two to four ounces twice daily. Solutions of magnesium sulphate produce local anesthesia when injected under the skin or intraspinally.

Tucker has shown that magnesium sulphate is useful in acute sprains and rheumatism, dermatitis, erysipelas, neuralgia and orchitis applied to the affected parts in saturated solution on gauze compresses wrung out in the fluid and covered by a waterproof material. Its beneficial action is due to its dehydrating the tissues (as in the bowels), and may partly be ascribed to its local anesthetic influence. In the Great War a saturated solution of magnesium sulphate containing 10 per cent. of glycerin has been found of great value as a wet dressing for wounds infected with streptococci. It causes an outpouring of lymph and inhibits the growth of bacteria.

The intravenous injection of magnesium sulphate causes general anesthesia and death by paralysis of the respiratory centre. It acts locally and intradurally much like cocaine as a local anesthetic. One mil of a 25 per cent. solution for each 25 lbs. body weight is injected intradurally to cause spinal anesthesia and relieve the spasms of tetanus. Loss of sensation and motion may last for 14 hours.

Recently several deaths have been reported in humans by Boos owing to swallowing concentrated solutions of an ounce or more with absorption. He warns against using solutions containing more than 6 per cent. to avoid absorption and poisoning.

Therefore there may be some danger in using concentrated solutions of Epsom salt, which are often used to withdraw water from the blood in dropsies.

The subcutaneous injection of 20 mils of a saturated solution of magnesium sulphate (Squibb’s) in each side of the neck of a horse, twice daily, will relieve the spasms of tetanus. Mohler and Eichorn in a severe acute case gave this treatment with complete recovery. The spasms began to relax on the fifth day and on the twelfth day the injection was given once daily for another 10 days. Antitoxin should be used also to neutralize the toxins. Ten drams of a 25 per cent. solution have been injected intraspinally with good effect in equine tetanus, but such treatment is not without danger. In urgent cases of tetanus a 6 per cent. solution may be given intravenously at the rate of 2 or 3 mils a minute until the spasms are relieved.

Magnesii Carbonas. Magnesium Carbonate. \((\text{MgCO}_3)\), \(\text{Mg(OH)}_2 + 5\text{H}_2\text{O}\).

(U. S. P.)

Synonym.—Magnesii carbonas ponderosa, or magnesii carbonas levis, B. P.; magnesia alba, carbonate of magnesia, E.; magnesium carbonicum, P. G.; carbonate de magnésie, magnésie blanche, Fr.; weisse magnesia, G.

Derivation.—Mix concentrated, boiling, aqueous solutions of magnesium sulphate and sodium carbonate, and evaporate.

\[5\text{MgSO}_4 + 5\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} = (\text{MgCO}_3)_\text{Mg} + (\text{OH})_2 + 5 \text{NA}_2\text{SO}_4 + \text{CO}_2\]

Purified by digestion with water, filtration and drying.

Properties.—Light, white, friable masses, or as a bulky, white powder, without odor, and having a slightly earthy taste; permanent in the air, practically insoluble in water, to which, however, it imparts a slightly alkaline reaction; insoluble in alcohol; dissolved by dilute acids with effervescence.

Dose.—Foals and calves, 5i-li, (4-8); D., gr.v-5i, (3-4).

Magnesii Oxidum. Magnesium Oxide. MgO. (U. S. P.)

Synonym.—Magnesia, calcined magnesia, light magnesia, magnesia levis, B.
HEAVY MAGNESIUM OXIDE

P.; calcined magnesia, magnesia calcinata, E.; magnesia usta, P. G.; magnésie calcinée, Fr.; gebrannte magnesia, G.

Derivation.—Heat magnesium carbonate. 4 (MgCO₃) Mg (OH)₂ + 5 H₂O = 5 MgO + 6 H₂O + 4CO₂. Water and carbon dioxide are driven off and magnesia (MgO) is left.

Properties.—A white, very bulky, very fine powder, without odor, and having an earthy, but not a salina taste. On exposure to the air it slowly absorbs moisture and carbon dioxide; almost insoluble in water; insoluble in alcohol.

Dose.—Foals and calves, 3½–11, (4–8); D., gr.v-3i, (.3–4).

Magnesii Oxidum Ponderosum. Heavy Magnesium Oxide, or Heavy Magnesia. MgO. (U. S. P.)

Synonym.—Magnesia ponderosa, B. P.; magnésie calcinée pesante, Fr.; schwere gebrannte magnesia, G.

Derivation.—Made from light magnesia by trituration with alcohol, drying and pulverizing.

Properties.—A white, dense, very fine powder, which conforms to the same reactions and tests as magnesii oxidum.

Dose.—Foals and calves, 3½–11, (4–8); D., gr.v-3i, (.3–4).

Action of Magnesium Carbonates and Oxides.

Internal.—Alimentary Canal.—These salts are antacid and counteract abnormal acidity when exhibited after a meal. The carbonate also exerts a sedative action in liberating carbon dioxide in the stomach, and both the carbonate and oxide unite with the gastric juice to form chlorides, lactates and bicarbonates. These compounds are mild, saline purgatives.

Blood and Urine.—The oxide and carbonate of magnesium alkalize the blood and urine, and are slight diuretics. They resemble potassium and sodium bicarbonates, as antacids, but are milder because feebly absorbed.

Uses.—Phillip’s milk of magnesia is a good laxative and antacid preparation for puppies. One or more teaspoonfuls may be added to milk, which will be taken voluntarily. Magnesia is a useful remedy for foals and calves affected with intestinal indigestion, tympanites and acid diarrhea, as follows:

B

Magnesii oxidi ponderosi
Pulveris rhei……………………………………………………………3⅔ ⅞iss.
Pulveris zingiberis…………………………………………………5vi.

M. et divide in chartulas No. vi.

S. Give one powder in milk or flour gruel 3 times daily.

Magnesia may give rise to intestinal concretions if its use is persisted in for a considerable period.

Magnesium carbonate and oxide are antidotes to mineral acids, oxalic acid, salts of mercury, arsenic and copper, and alkaloids, by alkalizing the gastric contents and rendering these bodies insoluble. Arsenic antidote is kept on hand at drug stores and is made by adding solution of ferric sulphate to an aqueous mixture of magnesia (see ferri oxidum hydratum cum magnesia, p. 154).
Heavy Metals: Including Aluminum, Cerium, Plumbum, Argentum, Zincum, Cuprum, Bismuthum, Ferrum, Manganum and Hydargyrum.

Aluminum.

(The metal is not used as medicine.)

Alumen. Alum. AlK (SO₄)₂+12 H₂O (U. S. P.)

Synonym.—Alumen purificatum, B. P., potassium alum, aluminum and potass-sium sulphate, sulphate of aluminum and potassium, E.; alun, sulphate d'alumine et de potasse, Fr.; alun, kalialun, G.

Derivation.—From alum slate, clay, shale, or schist, a native mixture of alu-minum silicate and iron sulphide. This is roasted and exposed to the air, when the sulphur is oxidized into sulphuric acid and combines in part with aluminum and iron to form sulphates. The mass is lixiviated with water, and aluminum and iron sulphates together with sulphuric acid are recovered in solution. The solution is concentrated and to it is added potassium chloride. The double sulphate of potassium and aluminium (alum) is formed, which crystallizes out on cooling, while potassium sulphate and ferric chloride remain as by-products. Alum is purified by recrystallization.

Properties.—Large, colorless crystals, crystalline fragments, or as a white powder; alum is odorless and has a sweetish and strongly astringent taste. Soluble in 7.2 parts of water. It is freely soluble in glycerin; insoluble in alcohol; reaction acid.

Incompatibles.—Iron, lead and mercury salts, alkalies, lime, tartrates and tannic acid.

Dose.—H. & C., 5ii-iv, (8-15); Sh. & Sw., gr.xx-5i, (1.3-4); D., gr.v-x, (3-6); emetic, D., 5i, (4).

Alumen Exsiccatum. Dried Alum. AlK(SO₄)₂. (U. S. & B. P.)

Synonym.—Alumen ustum, P. G.; burnt alum, E.; alun calciné (desséché, brulé), Fr.; gebrannter alun, G.

Derivation.—Heat 100 Gm. of alum moderately until aqueous vapor ceases to be disengaged, and the product is reduced to 55 Gm.

Properties.—A white, granular powder, without odor, possessing a sweetish, astringent taste, and attracting moisture on exposure to air. Soluble very slowly and incompletely in 20 parts of water; insoluble in alcohol. Reaction acid. Alumen and alumen exsiccatum may be either potassium or ammonium alum, AlNH₄(SO₄)₂+12H₂O, which closely resembles potassium alum in physical properties and appearance.

Alumini Hydroxidum. Aluminum Hydroxide. Al(OH)₃. (U. S. P.)

Synonym.—Aluminum hydrate, hydrated alumina, E.; hydrate d'alumine Fr.; thonerdehydrat, reine thonerde, G.

Derivation.—Alum, 100 Gm.; monohydrated sodium carbonate, 45 Gm.; water, a sufficient quantity. Mix hot, boiling solutions of alum and sodium carbonate. Precipitate strained, washed and dried.

Properties.—A white, bulky, amorphous powder; odorless and tasteless; permanent in dry air; insoluble in water or alcohol.

Dose.—Same as alum.

Aluminum Salts.

Action External.—Dried alum is a superficial caustic, in contact with raw surfaces, on account of its affinity for water. It is only used externally. Alum has no action on unbroken skin, but applied to mucous membranes or denuded parts it is antiseptic and astringent; coagulates albumin of discharges; precipitates or coagulates albumin of the tissues; squeezes blood out of the vessels; reduces inflammation and makes the part whiter, tougher and denser. Alum is a hemostatic, stopping bleed-
ing by compression of the structures surrounding the vessels, and by causing blood to clot. Alum coagulates casein and gelatin in the presence of an alkali.

Action Internal.—Stomach and Intestines.—Enormous doses of alum produce gastro-enteritis, while large doses cause vomiting in carnivora. All the secretions are diminished in the alimentary canal, and constipation ensues, unless the dose is excessive. Traces of alum are said to appear in the urine, but little is absorbed from the digestive tract and systemic poisoning is not caused by the ingestion of alum. Intravenous injection of salts of aluminum produce vomiting, weakness, tremors, convulsions, paraplegia, diarrhea. and nephritis. Aluminum induces degeneration of the brain and cord, and inflammation of the bowel and kidneys in its elimination by these parts—like the other heavy metals. Alum does not occasion any astringent action in the body outside of the digestive tract, and is excreted by the bowels.

Uses External.—Alum is employed mainly for local surgical purposes. In arresting slight hemorrhages it may be applied in saturated solution on absorbent cotton pledgets, or in the form of burnt alum dusted upon the bleeding surface. Epistaxis may be controlled by the injection of a strong solution into the nostrils or by insufflation of burnt alum. Alum is sometimes used on granulating surfaces of indolent ulcers, or wounds, as a slight caustic, stimulant and antiseptic. It can be employed alone, or as follows:

\[\begin{align*}
R & \\
Aluminis & 5i. \\
Carbonis ligni & 5iv. \\
Acidi salicylici & 5ii. \\
M. & \\
S. & \\
\end{align*} \]

Apply as dusting powder on wounds, galls or ulcers.

The non-official liquor alumini acetatis is a useful astringent application, as a wet dressing diluted with 7 parts of water, in septic infections and boils and carbuncles. Alumen excisecatum will often prevent the escape of synovia from small punctured wounds when applied to their apertures. Solutions (gr.iii.-v. to 5i.) are occasionally instilled into the eye in conjunctivitis, but alum is not generally so satisfactory as boric acid, zinc sulphate, or silver nitrate. in this disease. Alum crystals may be applied with profit to granular lids. Alum is used more frequently in the treatment of stomatitis, or aphthous sore mouth. It is also beneficial in ptyalism. A 5 per cent. solution may be utilized to touch the inflamed oral parts by means of a swab. A spray of the same strength is serviceable for the cure of laryngitis and bronchitis in dogs.

A 2 per cent. solution is appropriate as an injection for otorrhea, or canker of the ear, attacking dogs. A similar solution will relieve leucorrhrea, pruritus vulvae, and prolapsus ani. The following combination, containing dried alum, forms an excellent preparation for application to dead tissue. It causes sloughing of the necrotic mass and is indicated when the use of the knife is inadmissible.
136 INORGANIC AGENTS

Aluminis exsiccati .. 25.0
Acidi arsenosi ... 15.0
Acidi carbolici .. 10.0
Cerati ... 25.0
M. et fiat unguentum.

The following solution (Burow's) is applied as a wet dressing on contused, septic wounds for its astringent and antiseptic action:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminis</td>
<td>12.6</td>
</tr>
<tr>
<td>Plumbi acctatis</td>
<td>15.</td>
</tr>
<tr>
<td>Aquae</td>
<td>100.</td>
</tr>
</tbody>
</table>

M. (filter off ppt. of lead sulphate).
S. Apply externally.

Uses Internal.—Alum is a prompt, safe and non-depressing emetic for dogs. It is suitable in poisoning, or when the secretions are excessive in laryngitis or bronchitis. Teaspoonful doses should be given in solution in syrup every 15 minutes in these latter diseases, until vomiting occurs. Alum in the proportion of 1 dram to the pint of warm water makes an excellent enema for emptying the bowels. Aluminum hydroxide is an antacid and astringent. It combines with acid in the stomach (antacid) and goes into a soluble form when it acts as an astringent in the bowels. It is, therefore, more applicable for internal use in the treatment of diarrhea and dysentery. Other astringents, such as tannic acid in some form, lead acetate, or copper sulphate, are, however, usually more valuable in diarrheal disorders.

Alum is recommended for the cure of acute laminitis given internally (5ii-vi. in ball every 2 hours), but there is no basis for the production of remote contraction of vessels in the foot in the physiological action of the drug. Its use in this manner is purely empirical.

Cerium.

(Cerium is not employed medicinally.)

Synonym.—Cerous oxalate, E.; oxalate de cerium, cerium oxalicum, Fr.; oxalsäures ceroxydul, ceroxalat, G.

Derivation.—Precipitate a solution of ammonium oxalate with a soluble salt of cerium.

Properties.—A fine white, or slightly pink powder, without odor or taste, and permanent in the air; insoluble in water, alcohol or ether.

Dose.—D., 5ss-ii, (2-4).

Action and Uses.—The physiological details concerning the action of cerium are unknown. It is useful in relieving vomiting by mechanically protecting the gastric mucous membrane, and is often combined with bismuth salts. Cerium is absorbed with difficulty from the digestive tract and, as 1 ½ ounces by the mouth do not poison dogs, the dose should be ½ to 1 dram (Baehr & Wessler, 1909). Given intravenously, it produces poisoning resembling that of bismuth.
SECTION IV.

Plumbum, Argentum, Zincum, Cuprum and Bismuthum.

Plumbum.

(Lead is not used in the metallic state in veterinary medicine, except as a last resort.)

Synonym.—Litharge, E.; lithargyrum, P. G.; protoxide de plomb, Fr.; bleiglätte, G.

Derivation.—Made by roasting lead in the air.

Properties.—A heavy, yellowish or reddish-yellow powder, or in minute scales, without odor or taste. On exposure to the air it slowly absorbs moisture and carbon dioxide. Almost insoluble in water; insoluble in alcohol. Reaction faintly alkaline. Lead oxide is valuable only for its preparations.

Preparation.

Emplastra Plumbi. Lead Plaster. (U. S. & B. P.)

(Diachylon Plaster.)

Lead oxide, olive oil and lard, each 1000, boiling water, a sufficient quantity. Basis of other preparations.

Plumb Acetas. Lead acetate. Pb(C\textsubscript{2}H\textsubscript{3}O\textsubscript{2})\textsubscript{2}+3 H\textsubscript{2}O. (U. S. & B. P.)

Synonym.—Sugar of lead, E.; acétate de plomb, sel (sucre) de saturne, Fr.; assigsaures blei oxyd, bleizucker, G.; plumbum aceticum, P. G.

Derivation.—Heat lead oxide in acetic acid and water.

PbO+2 HC\textsubscript{2}H\textsubscript{3}O\textsubscript{2}+2 H\textsubscript{2}O= Pb(C\textsubscript{2}H\textsubscript{3}O\textsubscript{2})\textsubscript{2}+3 H\textsubscript{2}O. Lead acetate crystallizes on cooling.

Properties.—Colorless, shining, transparent, monoclinic prisms or plates, or heavy, white crystalline masses, or granular crystals, having a faintly acetic odor and a sweetish, astringent, afterwards metallic taste. Efflorescent and absorbing carbon dioxide on exposure to the air. Soluble in 1.4 parts of water and in 38 parts of alcohol. Reaction slightly acid.

Incompatibles.—Hard water, alkalies, mineral acids and salts, potassium iodide, opium, vegetable astringents and albuminous liquids.

Dose.—H. & C., 5i, (4); Sh. & Sw., gr.xv-xx, (1-1.3); D., gr.i-ii, (0.06-.12).

Preparations.

Made from lead acetate in which lead exists as the subacetate, Pb\textsubscript{2}O (CH\textsubscript{3}COO).\textsubscript{2}

Liquor Plumbi Subacetatis. Solution of Lead Subacetate. (U. S. P.)

Liquor Plumbi Subacetatis Fortis. (B. P.)

Synonym.—Goulard’s extract, acetum plumbi; plumbum hydrico-aceticum solutum, E.; liquor plumbiei subacetatii, P. G.; sous-acetate de plomb liquide, extract de Goulard, vinaigre de plomb, Fr.; bleiessig, G.

Composition.—An aqueous solution of lead subacetate (approximately), Pb\textsubscript{2}O (CH\textsubscript{3}COO).\textsubscript{2}, containing not less than 18 per cent. of Pb.

Liquor Plumbi Subacetatis Dilutus. Diluted Solution of Lead Subacetate.

(U. S. & B. P.)

Synonym.—Lead Water. Solution of lead subacetate, 40; water to make 1000.

Ceratum Plumbi Subacetatis. (Unguentum, B. P.) Cerate of Lead Subacetate. Solution of lead subacetate, 20; camphor, 2; wool fat, 20; paraffin, 20; white petrolatum, 38. (U. S. P. 1906.)

Plumbi Carbonas. Lead Carbonate. (PbCO\textsubscript{3})\textsubscript{2}, Pb(OH)\textsubscript{2}. B. P.

(Non-official U. S. P.)

Synonym.—White lead, E.; blanc de plomb ceruse, Fr.; bleiweiss, G.; cerussa, P. G.

4 Pb+2 HC\textsubscript{2}H\textsubscript{3}O\textsubscript{2}+2 O\textsubscript{2}+2 CO\textsubscript{2}=(PbCO\textsubscript{3})\textsubscript{2}, Pb (OH)\textsubscript{2}+Pb(C\textsubscript{2}H\textsubscript{3}O\textsubscript{2})\textsubscript{2}.

Properties.—A heavy, white, opaque powder, or a pulverulent mass, without
odor or taste. Permanent in air. Insoluble in water or alcohol. Used only externally.

Plumbi Nitras. Lead Nitrate. Pb (NO₃)₂. (Non-official.)

Synonym.—Plumbum nitricum, azot (nitrate) de plomb, Fr.; salpeter-

Derivation.—Dissolve lead in nitric acid.

Properties.—Colorless, transparent, octohedral crystals, or white, nearly opaque crystals; without odor, and having a sweetish, astringent, and afterwards metallic taste; permanent in the air; reaction acid; soluble in 1.85 parts of water; almost insoluble in alcohol. Only used externally in 1 per cent. solution as an astringent and deodorant in gangrenous surfaces, etc.

Plumbi Iodidum. Lead Iodide. Pb I₂. (Non-official.)

Synonym.—Plumbum iodatum, iodure de plomb, Fr.; jodblei, G.

Derivation.—Treat solution of lead nitrate with that of potassium iodide.

\[\text{Pb (NO}_3\text{)}_2 + 2 \text{KI} \Rightarrow \text{PbI}_2 + 2 \text{KNO}_3 \]

Properties.—A heavy, bright, yellow powder, without odor or taste; permanent in the air; soluble in about 1,300 parts of water; very slightly soluble in alcohol; used only externally.

Preparation.

Unguentum Plumbi Iodidi. Ointment of Lead Iodide. (B. P.) Employed externally to absorb glandular swellings.

Action of Lead Salts.

External.—Soluble lead salts differ somewhat from salts of the other heavy metals in being more astringent and less irritant. This happens because they form a denser precipitate with albumin of the tissues and of secretions. The acetate which is generally used is dissociated slowly in solution in contact with the tissues. The metallic ion coagulates albumin by forming a lead albuminate, so producing a protective pellicle over raw surfaces; while the acid constituent has little effect (lack of irritation). The acetate thus makes the tissues drier, denser and harder—and contracts vessels—but has no action on the unbroken skin.

Internal.—Soluble salts of lead in concentrated solution—and at times insoluble salts—cause gastro-enteritis in large doses. Lead salts are absorbed in medicinal doses whether taken in a soluble or insoluble state. The chemical form of the lead compound at the time of absorption is unknown, probably a soluble albuminate. Lead is deposited in the tissues, especially in the liver and kidney, and is very slowly eliminated in the urine and intestinal mucus, bile, milk and saliva. Lead salts have a marked astringent action on the entire digestive canal and diminish secretions accordingly. After absorption lead salts have no remote astringent action.

Toxicology.—Poisoning not infrequently occurs in animals at pasture, from eating paint, sheet lead, or products of lead or smelting works. The drinking water may be contaminated with lead, especially from new pipes, or lead receptacles in which water has been standing. Hard water is not affected by lead pipes, since an insoluble crust of lead phosphate and sulphate is deposited upon the interior of the pipes. There is an acute and chronic form of poisoning: The first is caused by single large doses of soluble lead salts, and is characterized by gastro-enteritis and colic; rarely there are symptoms of absorption, as convulsions, coma, paralysis and death. The feces are sometimes colored black with lead
sulphide; the vomitus is white from lead chloride. Three groups of symptoms may be briefly tabulated, which occur to a greater or less degree in chronic lead poisoning:

DIGESTIVE SYMPTOMS.
- Lead line on gums.
- Anorexia.
- Colic.
- Thirst.
- Constipation.
- Abdomen retracted, or “tucked up.”

NERVOUS SYMPTOMS.
- Paralysis of tendons—extensors—
 - of extremities.
- Anesthesia.
- Animals stand on knees before.
- Arthralgia.
- Animals stand on toes behind.
- Dizziness.
- General paralysis.
- Delirium.
- Wasting of muscles.
- Tremors.
- Coma.
- Amblyopia.

The nervous symptoms are due to peripheral neuritis and to influence on the brain and cord.

GENERAL SYMPTOMS.
- Dyspnea.
- Edema.
- Pulse accelerated.
- General debility.
- Emaciation.
- Interstitial nephritis.
- Anemia.

Animals die in chronic poisoning from paralysis of the respiratory muscles, or in convulsions. The lead line (gray or black dotted appearance) on the margin of the gums, at their junction with the teeth on the lower jaw, is due to sulphurated hydrogen in the mouth acting upon the lead deposited in the gums, and forming lead sulphide. Chronic poisoning may be very protracted, lasting as long as a year. Susceptibility of animals varies; cattle, sheep and swine being less resistant than horses. The fatal dose of lead acetate is said to be about an ounce and a half for cattle, and 5 ounces for horses. The treatment consists in removing the cause, relieving the symptoms and in hastening elimination. Potassium iodide eliminates lead in a soluble form into the bowels and kidneys. Magnesium sulphate converts lead into an insoluble sulphate in the intestines and then sweeps out the salt. The stomach tube or emetics should be employed in acute poisoning. Alum is the best emetic. This treatment should be followed by the administration of opium and Epsom salt.

Administration.—Lead acetate is given to the larger animals in solution or ball; to the smaller patients in pill; to young animals in solution in milk.

Uses External.—Lead acetate is useful in the treatment of skin diseases, as weeping eczema and erythema, and in excoriations, blistered surfaces, bruises, strains, and burns. An efficient lotion having an astringent and sedative action in such conditions, contains as follows:

R

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquoris plumbi subacetatis</td>
<td>$\frac{1}{4}$iv.</td>
</tr>
<tr>
<td>Tincturae opii</td>
<td>$\frac{1}{2}$i.</td>
</tr>
<tr>
<td>Glycerini</td>
<td>$\frac{3}{2}$ii.</td>
</tr>
<tr>
<td>Aquae</td>
<td>ad Oi.</td>
</tr>
<tr>
<td>M. (Shake.)</td>
<td></td>
</tr>
<tr>
<td>S. External use.</td>
<td></td>
</tr>
</tbody>
</table>
The “white lotion” of veterinary medicine is made by adding 3 drams each of lead acetate and zinc sulphate to a pint of water. It is a favorite astringent, sedative and antiseptic application for strains, bruises, scratches, bursitis and tenosynovitis in horses. Compresses soaked in it are bandaged to the part. Also it is of value as an injection in urethritis, and externally in balanitis of dogs. The stronger solution of lead subacetate should not be employed extensively on raw surfaces or mucous membranes undiluted.

The diluted solution of lead subacetate may be used as an injection for leukorrhœa. Lead acetate should be diluted with 20 to 40 parts of vinegar or water. Lead acetate is not suitable for collyria, if there is any ulceration of the cornea, because a permanent film may be deposited and obscure the sight. Lead iodide, in 10 to 20 per cent. ointment with petrolatum, has proved of service in aiding resolution of induration or caked condition of the udder in acute mammitis, if applied twice daily with thorough massage, before suppuration has set in.

Uses Internal.—Lead acetate is serviceable in the treatment of diarrhoea, dysentery, and hemorrhage from the stomach and bowels. It is frequently prescribed in these diseases with opium, but should not be used over a long period.

Argentum.

Argenti Nitratus. Silver Nitrate. AgNO₃. (U. S. & B. P.)

Synonym.—Nitrate (azotate) d'argent, nitre lunaire, Fr.; silbernitrat, sal-petersaures silberoxyd, G.; argentum nitricum crystallisatum, P. G.

Derivation.—Dissolve silver in nitric acid with heat.

3 Ag + 6 HNO₃ = 6 AgNO₃ + 3 H₂. Evaporate and crystallize.

Properties.—Colorless, transparent, tabular, rhombic crystals, becoming gray, or grayish-black on exposure to light in the presence of organic matter; without odor, but having a bitter, caustic and strongly metallic taste; reaction neutral; soluble in 0.4 part of water and 80 parts of alcohol.

Incompatibles.—Alkalis and their carbonates, acids (except nitric and acetic), chlorides, potassium iodide, astringent infusions and solutions of arsenic.

Dose.—H. & C., gr.v-Ⅹ, (.3-.6); Sh. & Sw., gr.i-ii, (.06-.12); D., gr. ½-.½, (.008-.03).

Argenti Nitratus Fusus. Moulded Silver Nitrate. (U. S. P.)

Synonym.—Lunar caustic, argenti nitratus induratus, E.; argentum nitricum fusum, P. G.; azotate d'argent fondu, F.; gehärteter höllenstein, G.

Derivation.—Melt silver nitrate, 100, with hydrochloric acid, 4, at as low a temperature as possible. Mix and pour into suitable moulds.

Properties.—A white, hard solid, generally in the form of pencils or cones; becoming gray or grayish-black on exposure to light in presence of organic matter; odorless, having a caustic, metallic taste, and neutral reaction. Used only externally.

Silver oxide, cyanide, and iodide are official, but unimportant in veterinary medicine.

Action of Silver Nitrate.

External.—Silver nitrate is more caustic in action than any of the lead, copper or zinc salts (except zinc chloride). When applied externally in the pure state to a mucous membrane, or a raw surface, it forms a white coating of coagulated protein, or silver albuminate. This coating limits the further action of the salt, so that lunar caustic is always superficial and localized in its effect. Silver nitrate is the caustic in most com-
mon use, since it produces a more healthy condition in a granulating wound after its application and separation of the eschar. Silver compounds are powerfully antiseptic because silver itself is actively antiseptic and because the nitrate destroys germs in coagulating their proteid protoplasm. In dilution, silver nitrate is stimulant, astringent, antiseptic and caustic, according to its strength.

Internal.—Silver nitrate is probably precipitated to a considerable extent by the hydrochloric acid of the gastric juice, as the chloride. Some of it is possibly converted into the albuminate, and absorbed as such. When ingested for a long period silver is deposited in the tissues in the form of the oxide, causing dark staining of the skin in man. These stains, occurring when silver nitrate comes in direct contact with the skin, can be removed by a solution containing potassium cyanide, $2\frac{1}{2}$ drams; iodine, 15 grains; and water, 3 ounces; or on fabrics use a solution of 15 grains of corrosive sublimate in 7 ounces of boiled water; add a small teaspoonful of table salt just before using. Soak material in solution for 5 minutes and wash in pure water. Large doses of silver nitrate cause gastro-enteritis with nervous symptoms—paralysis and convulsions—and death from depression of the respiratory centres. Common salt is the antidote, both externally and internally, forming the insoluble chloride. In addition to salt, opium and demulcents should be exhibited in acute poisoning. Silver nitrate in medicinal doses has probably a local stimulating, astringent and alterative action on the mucous membrane of the stomach; to a less degree on the bowels. Elimination may not take place at all—inert organic compounds being deposited in various parts of the body—or may occur slightly from the epithelium of the digestive tract. A chronic form of poisoning by silver nitrate (argyrisμ) is seen in man, following its continued use, and is accompanied by pigmentation of the skin, marasmus, chronic indigestion, with wasting of the testes and mammary glands. A similar condition has been produced in animals, associated with anorexia, weakness, anaemia and emaciation.

Uses External.—An aqueous solution (gr.iii. to $\frac{5}{i}$i.) is most valuable in treatment of catarrhal conjunctivitis, while a stronger preparation (gr.x. to $\frac{5}{ii}$i.) is employed for purulent conjunctivitis, as a stimulant, astringent and antiseptic collyrium. When strong solutions, like the latter, are used, the eye should immediately be flooded with a solution of common salt and water to precipitate the excess of silver nitrate as the insoluble chloride and thus prevent further irritation. Lunar caustic is applied in pencil form to ulcerated surfaces. When these surfaces are touched lightly the caustic stimulates sluggish granulations; when more heavily, it destroys exuberant granulations. In 2 to 4 per cent. solution, silver nitrate is caustic to mucous membranes; in $\frac{1}{2}$ per cent. solution it is stimulant and astringent to mucous membranes.

Boils may be aborted by painting them with a saturated solution of silver nitrate. Pruritus ani, or vulvae, is relieved by painting the parts several times daily with a 4 per cent. solution. A solution (gr.iii. to $\frac{5}{i}$i.) may be used in the form of spray in the treatment of pharyngitis and laryngitis in the dog. In catarrh of the external ear, so common in dogs, the canal should be swabbed with a 5 per cent. watery solution of silver.
nitrate after thorough cleansing with ether, or alcohol and naphtha, to remove dirt and sebaceous matter. In 2 to 6 per cent. solutions silver nitrate is curative in moist patches of eczema in dogs.

Fissures in the skin occurring in sore teats of cows are cured by the application of fused silver nitrate.

Uses Internal.—To insure purity, only the crystals should be employed internally. Silver nitrate is not of much value for internal use except in the digestive tract. Pills containing the silver salt are sometimes given to dogs with diarrhea and ulcer of the stomach. Dysentery may be treated by enemata containing 12 grains of silver nitrate to the ounce of water. If this treatment is followed by much irritation, injections of salt and water should be used afterwards.

Protargol. (Non-official.)

Protargol was first introduced into medicine by Prof. Neisser, in 1897, as a local remedy for gonorrhea in man. It is a fine, yellowish-brown, soluble powder, a combination of a protein substance with silver; odorless, and possessing a strong metallic taste.

Protargol has recently superseded silver nitrate (which contains 64 per cent. of silver) to some extent in medicine because, containing less silver (8.3 per cent.), protargol is decidedly less irritating, is not precipitated by albumin or solutions of sodium chloride, does not discolor the skin and more than equals silver nitrate in certainty and efficiency of action.

Protargol is particularly applicable in veterinary medicine as a bland but powerfully penetrating antiseptic and mild astringent in the treatment of inflammatory conditions of the conjunctival membranes. The drug does not cause the pain, redness, swelling and lacrimation which follows the use of silver nitrate; nor does it lead to the formation of fibrinous coagula and the production of false membranes and opacities of the cornea seen after the application of silver nitrate.

A 10-per-cent. solution of protargol induces less flushing of the eye and discomfort than a 1-per-cent. solution of silver nitrate, and the irritation of a 2 or 4 per cent. solution is not, as a rule, more than would be produced by one-half grain to the ounce solution of zinc sulphate (Cheney).

Protargol is indicated in acute catarrhal and purulent conjunctivitis in from 1 to 400, or 1 to 200 aqueous solutions; usually in one-half per cent. solution in the catarrhal form, two or three times daily, applied with a camel’s hair brush or by instillation; and in the purulent variety, in 2 or 4 per cent. solution with a pledget of absorbent cotton on a probe, or with a camel’s hair brush, in conjunction with frequent boric acid irrigations. Kingston reports favorable results in purpura hemorrhagica in horses from the intravenous injection of one ounce of a 5-per-cent. solution of protargol twice daily.

Argyrol. (Non-official.)

Argyrol represents one of the numerous organic silver compounds, this preparation containing as much as 30 per cent. of the metal combined
with a proteid substance obtained from wheat. It occurs as a brownish powder, soluble in less than its own weight of water, forming dark-brown solutions which stain clothing black, but the stains may be removed by a 1:500 solution of corrosive sublimate. Like protargol, it is not precipitated by the salts of the tissues, nor does it coagulate albumin, so that its action is not neutralized by the tissues—as is the case with silver nitrate; and thus, unlike the latter, it possesses a penetrating power when applied locally. Argyrol is used in from 5 to 50 per cent. aqueous solution for the same purposes to which protargol is adapted. Solutions of argyrol should be freshly made. Argyrol is the most valuable silver substitute we have and so far from being irritating is actually sedative in 10 per cent. solution. In inflammatory diseases of the mucous membranes of the nose, throat, eye, urethra and bladder it has no equal. On account of its markedly irritating properties, silver nitrate has been largely replaced by argyrol and protargol. But neither are antiseptics in any degree, when compared to silver nitrate, and it is impossible to wholly explain their beneficial effects. The percentage of silver in the organic silver compounds does not indicate their antiseptic value (Marshall & Neave).

Soluble Silver. (Non-official.)

Soluble silver, known also as Colloidal Silver, or more commonly as Collargol, is an allotropic form of metallic silver (87 per cent. silver) wholly soluble in water, and discovered by Lea about 1890. It may be used intravenously, subcutaneously, by inunction (as Credé’s ointment, see below), and by the mouth, if first dissolved in the proportion of five parts of collargol with one part of white of egg in one hundred parts of water; or it may be given in pill with sugar of milk. Collargol has been given in the past intravenously in all kinds of infections for its supposed antiseptic action but it has not proved successful and has dropped into disuse. The dose intravenously is 5ss-i (2-4) for horses; dogs, gr.i-ii (0.06-0.12), given in 2 to 5 per cent. aqueous solution. Collargol has been given also by the rectum (H., 5i-ii, in Oi water; D., gr.ii-iv in 5ii-iii water).

Credé’s Ointment, made by incorporating collargol with lard and wax to the extent of 15 per cent., has given good results when rubbed for thirty minutes into the skin (which has previously been scrubbed with soap, water and alcohol) in the treatment of local and even general infections. It often arrests the formation of boils, threatened suppuration of glands, lymphangitis, phlebitis, cellulitis and mastitis. The dose by inunction is 1/2 to 1 ounce for horses, 1/2 to 1 dram for dogs. Collargol appears to be non-toxic when given intravenously or by inunction, if used with reasonable care.

Zincum.

(Zinc is not used in Medicine in the metallic state.)

Synonym.—Chlorure de zinc, Fr.; zinkchlorid, chlorzink, G.; zincum chloratum, P. G.

Derivation.—Dissolve zinc in hydrochloric acid by boiling. The solution contains the zinc chloride with chlorides of iron and lead as impurities. These are
Uses.—Zinc chloride is employed in a paste made into small pieces with flour; or on lint soaked in a saturated solution, dried, and introduced precipitated by adding first nitric acid, then zinc carbonate. Filter and finally evaporate. \(\text{Zn}_2 \cdot 4 \text{HCl} = 2 \text{ZnCl}_2 + 2 \text{H}_2 \)

Properties.—A white or nearly white granular powder, or porcelain-like masses, or moulded into pencils; odorless; it is so intensely caustic as to make tasting dangerous unless the salt be dissolved in much water, when it has an astringent, metallic taste; very deliquescent; reaction acid; soluble in about 0.25 parts of water; soluble in 1.3 parts of alcohol.

Liquor Zinci Chloridi. Solution of Zinc Chloride. (U. S. & B. P.)

Derivation.—Made as above with the addition of water and containing not less than 48.5 per cent. nor more than 52 per cent. of Zn Cl₂.

Properties.—A clear, colorless, odorless liquid, having a very astringent, metallic taste and an acid reaction. Spec. gr. about 1.518 at 25° C. (77° F.). Used as disinfectant in 50 per cent. strength.

Toxicology.—Zinc chloride is a powerful irritant if swallowed in any degree of concentration, and will, therefore, produce gastro-enteritis. Emetics or the stomach tube should be used, followed by demulcients and sodium bicarbonate.

under the skin about the base of tumors to cause their destruction by sloughing. Small skin tumors may be removed by the following paste which mummifies the tissues and prevents hemorrhage:

\[\text{B} \]

Zinci chloridi .. 5i.

Pulveris amyli ... 5iii.

Cocainae hydrochloridi 5ss.

Aquæ .. 5ii.

M.

S. Apply externally.

Stronger pastes spread on gauze or packed in cavities and left 2 or 3 days are used to remove cancer, as follows:

\[\text{B} \]

Zinci chloridi .. ää 5iii.

Pulveris amyli ... ää 5iii.

Pulveris acaciae .. 5i.

Aquæ .. 5i.

M.

S. Apply externally.

It is employed in the form of pencils on unhealthy, granulating surfaces, as in "foot rot," and injected in strong solution into fistulous tracts to destroy their walls. It is not used internally.

Synonym.—White vitriol, E.; sulphate de zinc, vitriol blanc, couperose blanc, F.; zinksulfat, schwefelsaures zinkoxyd, weisser vitriol, G.; zinicum sulfuricum, P. G.

Derivation.—Prepared by dissolving zinc in sulphuric acid. \(\text{Zn}_2 + 2 \text{H}_2\text{SO}_4 = 2 \text{ZnSO}_4 + 2 \text{H}_2 \). Iron and tin exist as impurities, and are removed by chlorine solution and zinc carbonate.

Properties.—Colorless, transparent, rhombic crystals, or as a granular, crystalline powder, without odor, and having an astringent, metallic taste. Efflorescent in dry air; reaction acid; soluble in 0.9 parts of water, in 2.5 parts of glycerin; insoluble in alcohol.

Incompatibles.—Lead acetate, silver nitrate, lime water, alkalies and carbonates, vegetable decoctions or infusions, and milk.
PREPARATED ZINC CARBONATE

Dose.—H. & C., 5i-ii, (4-8); Sh. & Sw., gr.x-xx, (.6-1.3); D., gr.ii-iii, (.12-.2); Emetic—D., gr.x-xy, (.6-1).

Zinci Carbonas Precipitatus. Precipitated Zinc Carbonate. (U. S. P.)

Synonym.— Zinci carbonas, B. P.; precipitated zinc carbonate, E.; carbonate (sous-) de zinc hydrate, hydrocarbonate de zinc, Fr.; kohlensaures zinkoxyd, G.

Derivation.— Solutions of nearly equal weight of sodium carbonate and zinc sulphate are boiled together; dry precipitate. 2 ZnCO₃, 3 Zn(OH)₂? (hydrated basic zinc carbonate) results. This salt is in reality a mixture of zinc carbonate and oxide, containing not less than 60% of ZnO, with water of crystallization.

Properties.— An impalpable white powder, without odor or taste; insoluble in water or alcohol. It is permanent in the air.

Zinci Oxidum. Zinc Oxide. Zn O. (U. S. & B. P.)

Derivation.— Heat the carbonate to redness.

Properties.— A very fine amorphous, white or yellowish-white powder, free from gritty particles, without odor or taste. It gradually absorbs carbon dioxide from the air. Insoluble in water or alcohol.

Dose.— H. & C., 5i-ii, (4-8); D., gr.v-x, (.3-.6).

PREPARATION.

Unguentum Zinci Oxidi. Ointment of Zinc Oxide. (U. S. & B. P.)

Zinc oxide, 200; benzoinated lard, 800. (U. S. P.)

Zinci Acetas. Zinc Acetate. Zn (C₂H₃O₂), + 2 H₂O. (U. S. & B. P.)

Derivation.— Dissolve zinc oxide in diluted acetic acid and boil.

ZnO + 2 HCl, = Zn (C₂H₃O₂), + H₂O. Evaporate and crystallize.

Properties.— Soft, white, six-sided monoclinic plates, of a pearly lustre, having a faintly acetic odor, and, in dilute solutions, an astringent metallic taste. Exposed to the air the salt gradually effloresces and loses some of its acid; reaction acid; soluble in 2.3 parts of water and in 30 parts of alcohol.

Incompatibles.— Same as sulphate.

Dose.— Same as sulphate.

ACTION OF THE ZINC SALTS.

External.— The salts of zinc (except the chloride) have an astringent action on raw surfaces and mucous membranes in precipitating solutions of proteids, as zinc albuminate, notably the sulphate and acetate. Absorption is not followed by poisoning, as most of the zinc is stored in the liver. They resemble other astringents, especially copper salts, and are more irritating than lead acetate or subacetate.

Internal.— In the alimentary tract very large doses of the sulphate or acetate may induce gastro-enteritis, which is to be treated with demulcents and alkaline carbonates in order to form insoluble compounds. Vomiting will relieve carinova; otherwise the stomach tube must be resorted to.

Zinc salts apparently produce no remote effect upon the body when ingested. Given intravenously (double salts) to mammals, zinc causes vomiting, diarrhea, muscular weakness and paralysis. It is eliminated chiefly by the alimentary tract and slightly in the bile and urine. In therapeutic doses the zinc salts are astringent, diminishing secretion in the digestive tract.

USES OF ZINC SALTS.

External.— Zinc sulphate is in common use as an astringent collyrium for subacute conjunctivitis (gr.ss.-ii. to 5i.). It is also employed in the
treatment of canker of the ear in dogs (gr.x to ⅓i.), or as "white lotion" (see plumbi acetas), in this affection.

In diseases of the feet, as in canker of the horse, equal parts of zinc, copper and iron sulphates with 5 per cent. carbolic acid and vaseline q.s. to make a paste, are of value.

The salt is likewise serviceable as a stimulant and astringent solution (gr.ii.-v. to ⅓i.) in moist eczema, ulcers, atonic inflammations of mucous membranes, balanitis and urethritis in dogs, and leucorrhrea.

Zinc carbonate is a much milder astringent than zinc sulphate or acetate. The impure carbonate (calamine) is an ingredient of the popular astringent and antiseptic "pink ointment" of veterinary medicine used for the cure of "scratches" in horses.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Zinci carbonatis (impure)... 5ii</td>
</tr>
<tr>
<td></td>
<td>Aluminis .. 5iss.</td>
</tr>
<tr>
<td></td>
<td>Calcii carb. præcip. .. 5x.</td>
</tr>
<tr>
<td></td>
<td>Creosoti .. 5iss.</td>
</tr>
<tr>
<td></td>
<td>Cere flavii... 3v.</td>
</tr>
<tr>
<td></td>
<td>Adipis .. 3xv.</td>
</tr>
<tr>
<td>M.</td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td></td>
</tr>
</tbody>
</table>

External use.

The lard and wax are first melted together and then the other ingredients are stirred in. Calamine in the form of a lotion is a more cleanly application for house dogs and pets than ointment or paste. The following is useful in dermatitis, erythema and moist eczema attended with itching. The carbolic acid may be omitted when the lotion is applied over a large surface to avoid poisoning by absorption or from the acid being licked off by the patient.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Acidi carbolici.. 1.0 gr.xv.</td>
</tr>
<tr>
<td></td>
<td>Zinci oxidi... 15.0 5ss.</td>
</tr>
<tr>
<td></td>
<td>Calaminæ .. 5.3 gr.80</td>
</tr>
<tr>
<td></td>
<td>Glycerini .. 30.0 5i.</td>
</tr>
<tr>
<td></td>
<td>Liquoris calcis ad... 240.0 5viii.</td>
</tr>
<tr>
<td>M.</td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td></td>
</tr>
</tbody>
</table>

Sig. External use.

Zinc is used externally in the form of a dusting powder, ointment or paste. In eczema, erythema and scratches, the zinc oxide ointment is valuable and can be combined with carbolic acid (gr.x to ⅓i.) or creolin (5 per cent.) to great advantage, when itching is a prominent symptom. Still better than zinc ointment is the addition of calamine 1 part to 7 parts of ointment; or a paste containing zinc oxide, starch and vaseline.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Zinci oxidi... 5iv.</td>
</tr>
<tr>
<td></td>
<td>Pulveris amyli. ..</td>
</tr>
<tr>
<td></td>
<td>Petrolati .. 3v.</td>
</tr>
<tr>
<td>M.</td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td></td>
</tr>
</tbody>
</table>

External use.

Zinc acetate can be used in all cases as a substitute for zinc sulphate. Lassar's paste is used in subacute eczema where stimulation (salicylic acid) is advisable. The formula is as follows:
RO

Acidi salicylici... 5ss.
Zinci oxidi
Amyli ... 33 vi.
Petrolati ... 5 l. 5 v.

M.
S. External use.

Internal.—Zinc sulphate is the best and most prompt emetic for dogs in many conditions, as poisoning. It should be given in tepid water. Zinc oxide is occasionally prescribed in diarrhea, and empirically as a tonic and antispasmodic in chorea and epilepsy. Zinc oxide may be given in powder, pill, or dissolved in alkaline solutions.

ZINC VALERATE. See p. 388.
ZINC PHOSPHIDE. See p. 182.

Cuprum.

(Copper is not used in the metallic state in medicine.)

Synonym.—Cupric sulphate, blue vitriol, blue stone, E.; cuprum sulfuricum pûrum, P. G.; vitriol bleu, sulfate de cuivre, Fr.; kupfervitriol, blauer-vitriol, schwefelsaures kupfer (kupferoxyd), G.

Derivation.—Boil metallic copper and sulphuric acid together. 2 Cu + 2 H₂SO₄ = 2 CuSO₄ + 2 H₂. Dissolve product in hot water and crystallize.

Properties.—Deep blue, triclinic crystals, or as a blue, granular powder; odorless, of a nauseous, metallic taste; slowly efflorescent in dry air; soluble in 25 parts of water; in 500 parts of alcohol; reaction acid.

Incompatibles.—Mineral salts (except sulphates), alkalies and their carbonates, iodides, lime water and vegetable astringents.

Dose.—H. & C., 5i-ii, (4-8); Sh. & Sw., gr.xx-xl, (1.3-2.6); D., gr.i-ii, (.06-.12); Emetic—D., gr.vi-xx, (.36-1.3).

ACTION OF COPPER SULPHATE.

External.—Copper sulphate precipitates protein in solution and is stimulant, astringent or caustic to mucous membranes or raw surfaces, according to the strength applied.

Internal.—In poisonous doses copper sulphate causes salivation, vomiting, gastro-enteritis, and nervous symptoms (convulsions, paralysis and delirium), and finally death from collapse. When injected intravenously copper salts lead to destruction of the blood, and fatty degeneration of the liver, kidneys and heart. Rarely does absorption from the digestive tract cause poisoning, since the salt is either vomited, or absorbed too slowly, or stored in the liver. The treatment consists in emptying the stomach in animals which cannot, or do not, vomit, and the use of magnesia, tannin or yellow prussiate of potash, as antidotes; and demulcents, as milk and white of egg, together with opium. Large doses are emetic to the dog, but should not be used except in phosphorus poisoning. Smaller doses are astringent in the digestive tract. The copper absorbed from the alimentary tract lodges in the liver, kidneys, and thyroid gland. It is eliminated slowly in the urine, bile, intestinal secretions, saliva and milk. Copper is a normal constituent of the tissues and has a strong affinity for hemoglobin attaching itself, on absorption, to the corpuscles as cuprohemol.
Uses External.—Copper sulphate is employed in the solid, crystalline form in granular conjunctivitis, by rubbing the stick over the affected surfaces of the lids.

A solution (gr.-ii. to 5i.) is dropped into the eye for simple conjunctivitis. Copper sulphate is similar in action to zinc sulphate, but more powerful. On ulcerated and granular surfaces it is used as a stimulant and astringent in the following mixture, which is of value in thrush and canker of the feet in horses, and as an application for not too extensive chronic sores and unhealthy indolent granulating surfaces:

R

Cupri sulphatis
Zinci sulphatis .. āā 3ss.
Liquoris plumbi acetatis 5i.

M.

S. Apply externally.

It may also be applied locally with an equal part of dried alum in the form of powder for the treatment of thrush. The disappearance of the moisture and foul odor will soon herald recovery. In foot rot of sheep one part each of copper sulphate and lard, with two of tar, may be prepared by melting and then mixing the ingredients.

Two ounces each of zinc and copper sulphate in one pint of vinegar are curative when injected into sinuses.

Uses Internal.—Copper sulphate is prescribed for its local effect with opium in diarrhea, and injected into the bowel in 2 per cent. solution in ulcerated conditions of the rectum. The sulphate of copper in small doses is believed to be a tonic remedy in anemia and nervous conditions, although without sufficient experimental proof. It is thought to resemble arsenic and to increase the number of corpuscles, firmness of flesh and amount of fat. Copper sulphate is often used as a vermicide in the treatment of lumbricoid worms and ozena, combined with iron.

For horses with roundworms:

R

Pulveris cupri sulphatis.
Pulveris ferri sulphatis āā 5ii.
Pulveris foeniculii
Carbonis ligni .. āā 5iii.

M. et divide in chartulas No. xvi.

S. One powder on feed night and morning. Follow last dose with a dose of aloes and linseed oil.

For sheep 1/4 lb. (avoiddupois) is dissolved in 10 quarts of water as a vermifuge. The dose for lambs of 3 to 6 months is 5vi to 5iss; for sheep of 1 to 2 years, 5iiiss-5iiiiss. A dose of about an ounce and a half (50 mils) of a one per cent. solution of copper sulphate has proved the best remedy against stomach worms of sheep (Hemonchus contortus). It is recommended in purpura, and is given to dogs in the form of arsenite of copper for chorea and epilepsy. Copper sulphate, added to reservoirs of drinking water in the proportion of 1 part to 5 to 50 millions of water, destroys algae but is innocuous to animals. Copper sulphate forms an inert compound with phosphorus. Hydrogen dioxide or potassium permanganate
are safer and more effective antidotes in phosphorus poisoning, as too large doses of copper sulphate are required for this purpose.

Cupri Acetas. Copper Acetate. (Non-official.)

Synonyms.—Verdigris, cupric subacetate, E.; acétate de cuivre, vert-de-gris, F.; grünspau, G.

Derivation.—Exposure of copper plates to pomace or residue resulting from expression of juice from grapes in wine making, or to immersion in pyroligneous acid.

Properties.—Pale-green masses of minute, acicular crystals, sometimes of bright blue hue. Verdigris is the impure article; the pure salt is known as Crystals of Venus. The taste is coppery and odor vinegar-like. Soluble in water.

Dose.—H. & C., gr.15-30, (1-2); Sh. & Sw., gr.5-10, (3-6).

Action External.—It is astringent, stimulant and escharotic according to the strength whether applied to the unbroken skin or to mucous membranes or raw surfaces.

Action Internal.—This salt is an efficient vermifuge for the expulsion of ascarides from the horse. It should be given in doses of gr.15-30 (1-2 Gm.) twice daily with powdered gentian and charcoal, 1 dram of each (4.0 Gm.), for a week and then be followed by a cathartic dose of aloe. It is a poison in large doses, causing gastro-enteritis, convulsions and death. The antidotes are milk, raw eggs and soap.

Bismuthum.

(Bismuth is not employed medicinally in the metallic state.)

Bismuthi Subcarbonas. Bismuth Subcarbonate. (BiO)₂CO₃+H₂O? (U. S. P.)

Synonym.—Bismuthi carbonas, B. P.; carbonate of bismuth, bismuthyl carbonate, E.; sous-carbonate de bismuth, Fr.; wismutsubcarbonat, basisches kohlen-saures wismutoxyd, G.

Derivation.—Made by dissolving pure metallic bismuth in diluted nitric acid, precipitating with ammonia water, and redissolving in nitric acid. This solution is treated with ammonium carbonate, or a solution of sodium carbonate.

2Bi (NO₃)₂+3 Na₂CO₃+H₂O = (BiO)₂ CO₃+H₂O+2 CO₂+6 NaN₂

The precipitated bismuth subcarbonate is filtered and washed.

Properties.—A white, or pale yellowish-white powder, of somewhat varying chemical composition; odorless and tasteless, and permanent in the air. Insoluble in water or alcohol, but completely soluble in nitric or hydrochloric acid, with copious efflorescence.

Dose.—H., 5i-iv, (8-15); D., gr.x-xxx, (6-2).

Bismuthi Subnitras. Bismuth Subnitate. BiO NO₃+H₂O? (U. S. & B. P.)

Synonym.—Bismutum subnitricum, P. G.; bismuthum hydronitricum, magisterium bismuthi, E.; subazotas (s. subnitratas) bismuthicus, sous-azotate de bismuth, Fr.; basisches salpetersaures bismutoxyd, G.

Derivation.—Dissolve pure metallic bismuth in diluted nitric acid. First reaction—Bi⁺+6 HNO₃ = 2 Bi (NO₃)₂+3 H₂; Final reaction—Bi (NO₃)₂+H₂O = BiONO₂+2 HNO₃. Evaporate; add water; wash and dry precipitated bismuth subnitate.

Properties.—A heavy, white powder of varying chemical composition; odorless and almost tasteless, and slightly hygroscopic in the air. Almost insoluble in water, insoluble in alcohol, and readily dissolved by nitric or hydrochloric acid.

Dose.—Same as subcarbonate.

Bismuthi Subsalicylas. Bismuth Subsalicylate. (U. S. P.)

Dose.—D., gr.iv, (24).

Bismuthi Subgallas. Bismuth Subgallate. (U. S. P.)

Synonym.—Dermatol, E.; sous-gallate de bismuth, Fr.; wismutsubgallat, G.
Properties.—An amorphous, bright, odorless, tasteless, and yellow powder; permanent in the air; insoluble in water, ether, alcohol or chloroform; soluble, with decomposition, in warm acids; used externally as a substitute for iodoform; it is antiseptic and astringent; occasionally given internally.

Dose.—D., gr.v-x, (.3-.6).

ACTION OF BISMUTH SUBNITRATE AND SUBCARBONATE.

External.—The insoluble salts of bismuth have a protecting, sedative, astringent and antiseptic action on raw surfaces. If applied over very extensive areas for a considerable length of time, they may cause absorption and poisoning. Bismuth has no action on the unbroken skin.

Internal.—The salts of bismuth are absorbed and eliminated to some extent. When administered continuously in enormous doses, or when absorbed from the skin or given intravenously, bismuth has caused stomatitis, vomiting, diarrhea, weakness, convulsions, blackness of the mucous membranes of the digestive tract, and death. Probably, as ordinarily used, all the bismuth absorbed from the alimentary canal is stored in the liver. In poisoning, however, it irritates the parts which eliminate it—i.e., the kidneys, mouth and the bowels (chiefly the cecum). An odor of garlic appears in the breath after the continuous exhibition of bismuth, owing to traces of tellurium contained in the bismuth. Recently several ounces of bismuth subnitrate have been given at one dose to the human to secure a skiagram of the digestive organs and also have been injected as Beck’s paste to cure suppurating cavities. Poisoning has sometimes occurred following the use of such enormous doses due to the bismuth and also to the transformation of the nitrate into a nitrite. Nausea, vomiting, cyanosis, rapid pulse and respiration, and prostration have been observed in such cases. It is safer to use the subcarbonate or oxychloride when massive doses are given. Two ounces of either may be given internally to man with perfect safety.

As ordinarily used the salts of bismuth are absolutely harmless, although formerly poisoning was not infrequent from their contamination with arsenic. The tongue and feces are stained black by bismuth salts, which are transformed into the sulphide. Bismuth, locally and mechanically, by reason of its weight and insolubility, protects and coats the mucous membrane of the digestive tract, and thus exerts a sedative, astringent and antiseptic action throughout the canal. Bismuth must, therefore, be given, to be effective, in large and frequent doses, and when the stomach is empty. For this reason the drug is not of much value in the treatment of the horse and ruminant, as a sufficient quantity cannot be used economically.

USES OF BISMUTH SubNITRATE AND SubCARBONATE.

External.—Bismuth subnitrate is a very good dusting powder on sores, and for moist skin diseases and ulcerated surfaces. It may be combined with zinc oxide and salol, or used in the form of an ointment in the proportion of 1 to 4. The following is an effective combination to apply to superficial wounds and raw surfaces attended with much secretion:
Bismuthi subnitratris.......................... 50.0 §iii. 5v.
Acidi tannici..................................... 25.0 5vi.
Iodoformi .. 13.0 5iv.
Carbonis ligni 100.0 §iii. 5ii.
M. et fiat pulvis.
Sig. Dust on surface.

It may be employed to advantage in coryza and òzena, by insufflation into the nostrils. A paste made by boiling vaseline in an enameled jar and stirring in bismuth subnitrate, in the strength of 33 per cent., is of great value for curing fistulæ and chronic suppurating cavities when injected warm so as to completely fill them. If one injection does not cure, repeat in a week and then every 4 days for a month. The paste, while warm, is drawn up into a metal or glass syringe. In small fistulae, as about the rectum, long flexible tips may be used to insert in the sinus. More than 100 grams should not be retained in the body (in the human) lest poisoning occur.

In old or thick-walled sinuses or abscesses there is little danger of absorption. In thin-walled and recent abscesses a ten per cent. ointment may be used. When there is indigestion and diarrhea with a marked, blue line about the gums, following injection of a large amount of bismuth, poisoning may occur.

This is stopped by injecting warm oil into the cavity and aspirating the contents some 12 hours later.

This method of Beck completely revolutionized the treatment of sinuses, especially those connected with bone.

Various other suppurating cavities are cured by bismuth injections. Thus empyema, cold and tuberculous abscesses, and sinuses following operations.

The paste should cause a suppurating sinus to discharge a serous fluid.

Causes of failure are due to the presence of a foreign body or sequestrum of bone. Or the paste has not been soft enough to enter all pockets. When large amounts of the paste are required substitute chalk for bismuth. Dermatol (bismuth subgallate) is even more efficient than the subnitrate alone as an antiseptic and astringent dusting powder.

Internal.—Bismuth is one of the best agents to relieve vomiting in dogs, owing to the soothing and sedative effect upon inflamed mucous membranes. It may be given alone or in combination with oxalate of cerium upon the tongue or in the food. It is also a very efficient agent in diarrhea in the dog, being astringent, sedative and antiseptic.

S

Sodii bicarbonatis 5ii.
Bismuthi subcarbonatis............................... 5iii.
Cerii oxalatis 5i.
M. et divide in chartulas No. vi.
S. Give one powder on tongue every hour.

Its use should be preceded by the administration of oil or calomel in diarrhea. Bismuth is given for diarrhea in powder with salol; or in suspension with gum arabic and water, with one drop of carbolic acid to
each dose of bismuth; or better, in capsules, dispensing one grain of carabolic acid and five grains of bismuth. The sedative effect upon the stomach is increased by giving the subcarbonate of bismuth with bicarbonate of sodium, while the sedative effect upon the bowels is enhanced by combining morphee with bismuth subnitrate.

For diarrhea in dogs or cats:

B
Tincture opii camphoratae.
Bismuthi subcarbonatis........................... .55, 28s.
Misturec cacte................................. ad 3i.
M. (Shake.)
Sig. 1/2 to 2 teaspoonfuls every 3 hours according to age and size.

It is generally immaterial whether the subnitrate or subcarbonate of bismuth be selected in any given case. Bismuth salicylate is more powerful as an antiseptic than the other salts. It is useful in diarrhea, intestinal fermentation and indigestion of dogs. The drug should be given in capsules.

SECTION V.

Ferrum.

Metallic iron is official in the form of fine, bright and non-elastic wire, from which are made iron preparations and reduced iron.

Ferrum Reductum. Reduced Iron. (U. S. P.)

Synonym.—Ferrum redactum, B. P.; iron by hydrogen, Quevenne’s iron, ferrum hydrogenio redactum, ferrum ope hydrogenii paratum, E.; ferrum redactum, P. G.; fer reduit par l’hydrogène, Fr.; reducites eisen, G.

Derivation.—Hydrogen gas is passed over freshly made and carefully washed ferric oxide in a hot and closed tube. \(\text{Fe}_2\text{O}_3 + 3 \text{H}_2 = \text{Fe}_3 + 3 \text{H}_2\text{O} \).

Properties.—A very fine grayish black, lusterless powder, without odor or taste; permanent in dry air; insoluble in water or alcohol.

Dose.—H, 3i-ii, (4-8); C, 3i-iv, (8-15); Sh. & Sw., gr.xx-xxx, (1.3-2); D., gr.i-v, (.06-.3).

Ferri Sulphas. Ferrous Sulphate. \(\text{Fe}_2\text{SO}_4 + 7 \text{H}_2\text{O} \). (U. S. & B. P.)

Synonym.—Copperas, green vitriol, vitriolum martis purum, sulfas ferrosus, ferrum vitriolatum purum, E.; ferrum sulphuricum purum, P. G.; sulfate de fer, sulfate ferreux, Fr.; schwefelsaures eisenoxydul, G.

Derivation.—Iron wire is dissolved by boiling in diluted sulphuric acid. \(\text{Fe}_2 + 2 \text{H}_2\text{SO}_4 = 2 \text{Fe}_2 \text{SO}_4 + 2 \text{H}_2\).

Properties.—Pale, Bluish-green, monoclinic prisms, without odor, and having a saline styptic taste; efflorescent in dry air. On exposure to moist air the crystals rapidly oxidize and become coated with brownish-yellow, basic ferric sulphate. When it has thus deteriorated the salt must not be used for any official purpose. Soluble in 1.4 parts of water; insoluble in alcohol.

Dose.—H, 3i-ii, (4-8); C, 3i-iv, (8-15); Sh. & Sw., gr.xx-xxx, (1.3-2); D., gr.i-v, (.06-.3).

Ferri Sulphas Exsiccatus. Exsiccated or Dried Ferrous Sulphate. \(\text{Fe}_2\text{SO}_4 + 3 \text{H}_2\text{O} \). (U. S. & B. P.)

Synonym.—Ferrum sulphuricum siccum, P. G.; sulfate de fer desséché, Fr.; entwässerete schwefelsaures eisenoxydul, G.

Derivation.—Allow ferrous sulphate, 100, to effloresce at a temperature of 104° F. Then heat on a water bath till the product weighs 65.
FERROUS SULPHATE

Properties.—A grayish-white powder, slowly soluble in water.
Dose.—Same as sulphate.

FERRI SULPHAS GRANULATUS. Granulated Ferrous Sulphate.
Fe₂SO₄+7 H₂O. (U. S. & B. P.)

Synonym.—Sulfate ferreux précipité, Fr.; praceiptitres ferrosulfat, G.

Derivation.—Dissolve ferrous sulphate, 100, in distilled water, 100, and add sulphuric acid, 5. Evaporate till the product weighs 150. Pour alcohol, 25, upon it and dry.

Properties.—Pale, bluish-green, crystalline powder.
Dose.—Same as sulphate.

FERRI CARBONAS SACCHARATUS. Saccharated Ferrous Carbonate (U. S. & B. P.)

Synonym.—Ferrum carbonicum saccharatum, P. G.; saccharure de proto-carbonate de fer, Fr.; zuckerhaltiges kohlensaures eisen (ferrocarbonat), G.

Derivation.—Ferrous sulphate, 50; sodium bicarbonate, 35; sugar, 70; sugar of milk, 10; sulphuric acid and water, q. s.

Properties.—Greenish-brown powder, without odor; sweetish and ferruginous. Made by solution, precipitation and washing and drying.
Contains not less than 15 per cent. of FeCo₃.
Dose.—Twice that of iron sulphate.

MASSA FERRI CARBONATIS. Mass of Ferrous Carbonate. (U. S. P.)
Dose.—D., gr.i-v, (.06-3) in pill.

PILULÆ FERRI CARBONATIS. (Blaud’s Pills.) (Ferrous Carbonate, gr.i.)
Dose.—D., 1 to 2 pills.

SYRUPUS FERRI IODIDI. Syrup of Ferrous Iodide. (U. S. & B. P.)

Properties.—Transparent, pale green liquid; having a sweet, strongly ferruginous taste, and a slightly acid reaction. Containing not less than 4.75 per cent. nor more than 5.25 per cent. of FeI₂.
Dose.—H., 5ss-1, (15-30); D., malyzer-x, (.3-2).

FERRI CHLORIDUM. Ferric Chloride. FeCl₃+H₂O. (U. S. P.)

Synonym.—Ferrum sesquichloratum, P. G.; ferrum muriatum oxydatum, ferri perchloridum, sesquichloride (perchloride) of iron, E.; perchlorure de fer, chlorure ferrique, Fr.; eisenchlorid, G.

Derivation.—Solution of ferric chloride, 100 Gm., evaporate to 40 Gm. on water bath. Set aside to crystallize; break into pieces and keep in glass-stoppered bottles in dark.

Properties.—Orange yellow, crystalline pieces, odorless, or with a faint odor of hydrochloric acid, and having a very strong styptic taste; deliquescent; soluble in 0.2 part of water and freely soluble in alcohol; having acid reaction; not used internally.

LIQUOR FERRI CHLORID. Solution of Ferric Chloride. (U. S. P.)

Synonym.—Liq. ferri perchloridi, B. P. An aqueous solution containing ferric chloride (FeCl₃) corresponding to not less than 10 per cent. nor more than 11 per cent. Fe.

Derivation.—Dissolve iron wire, 125, in hydrochloric acid, 680, nitric acid and water to make 1,000. (U. S. P.)

First reaction.—FeCl₃+4 HCl = 2 Fe Cl₂+2 H₂O.
Second reaction.—6 FeCl₃+6 HCl+2 HNO₃ = 3 Fe₂ Cl₆+2 NO+4 H₂O.

Properties.—A reddish-brown liquid, having a faint odor of hydrochloric acid; an acid, strongly styptic taste and an acid reaction.
Dose.—H. & C., 5ii-iv, (8-15); Sh. & Sw., mₓxx-x, (.6-1.3); D., mli-x, (.12-6).

PREPARATIONS.

TINCTURA FERRI CHLORIDI. Tincture of Ferric Chloride. (U. S. P.)

Solution of ferric chloride, 350; alcohol to make 1,000.
Dose.—H. & C., 5i-ii, (30-60); Sh. & Sw., mₓxx-xxx, (1.3-2); D., mli-5i, (.3-4).
Contains 13 per cent. of ferric chloride, or not less than 4.48 per cent. of metallic iron.
Tinctura Ferri Perchloridi. Tincture of Iron Perchloride. (B. P.)

Dose.—Same as Tinctura Ferri Chloridi (U. S. P.)

Liquor Ferri Sulphatis. Solution of Ferrie Subsulphate. (U. S. P.)

Synonym.—Solution of basic ferrie sulphate FeO (SO₄)₂, Monsel’s solution, solution of persulphate of iron, E.; liquor hémostatique de Monsel, Fr.; basischeswefelsaures eisenoxydlösung, Monselsche eisenlösung, G. Contains about 13.6 per cent. of metallic iron.

Derivation.—Ferrous sulphate, 675; sulphuric acid, 65; nitric acid and distilled water, of each a sufficient quantity to make 1,000.

Properties.—A dark reddish-brown liquid, odorless or nearly so; of an acid, strongly styptic taste and an acid reaction; miscible with water and alcohol.

Dose.—H. & C., 5 ss, (15); Sh. & Sw., min x-xx, (.6-.1.3); D., min ii-x, (.12-.6).

It has no value for internal use.

Ferri Hydroxidum Cum Magnesi Oxido. Ferrie Hydroxide with Magnesium Oxide. (U. S. P.)

Synonym.—Ferrum tartaratum, B. P.; tartar ferrous, P. G.; ferri potassiotartras, ferrum tartrizatum, tartras ferico-kalicus, etc., E.; tartrate de fer et de potasse, tartrate martial, Fr.; weinsaures eisenoxyd-kali, eisenweinstein, G.

Properties.—Thin, transparent scales, varying in color from garnet-red to reddish-brown; without odor, and having a sweetish, slightly ferruginous taste; slightly deliquescent in the air; very soluble in water; insoluble in alcohol. Iron and potassium tartrate contains 15 per cent. of metallic iron.

Dose.—D., gr. v-x, (.3-.6).

Ferri et Potassii Tartras. Iron and Potassium Tartrate. (Non-official.)

(Potassic-Ferrie Tartrate.)

Synonym.—Ferrum citricum ammonium, P. G.; ferri ammonio-citras, ferro-ammonium citricum, ammonio citrate of iron, E.; citrate de fer et d’ammoniaque (de fer ammoniacal), Fr.; citronen saures eisenoxyd-ammonium (ammoniak), G.

Properties.—Thin, transparent, garnet-red scales, odorless, and having a saline, mildly ferruginous taste; deliquescent in moist air; soluble in water; insoluble in alcohol. Iron and ammonium citrate contains 16 per cent. of metallic iron.

Dose.—D., gr. v-x, (.3-.6).

Ferri et Ammonii Citras. Iron and Ammonium Citrate. (U. S. & B. P.)

Synonym.—Ferrum citricum ammonium, P. G.; ferri ammonio-citras, ferro-ammonium citricum, ammonio citrate of iron, E.; citrate de fer et d’ammoniaque (de fer ammoniacal), Fr.; citronen saures eisenoxyd-ammonium (ammoniak), G.

Properties.—Thin, transparent, garnet-red scales, odorless, and having a saline, mildly ferruginous taste; deliquescent in moist air; soluble in water; insoluble in alcohol. Iron and ammonium citrate contains 16 per cent. of metallic iron.

Dose.—D., gr. v-x, (.3-.6).

Ferri et Quinins Citras. Iron and Quinine Citrate. (U. S. & B. P.)

Synonym.—Ferri et quinine citras solubilis, chinum ferro-citricum, P. G.; citras ferrico-quinicus, citrate de fer et de quinine, Fr.; citronen saures eisen chinin, G.

Properties.—Thin, transparent scales, of a greenish or golden-yellow color, odorless, and having a bitter, mildly ferruginous taste. Rapidly and completely soluble in cold water, partly soluble in alcohol. Quinine and iron citrate contains 11.5 per cent. of anhydrous quinine and not less than 13 per cent. of metallic iron.

Dose.—D., gr. v-x, (.3-.6).

General Action of Iron and Its Salts.

External.—The local action of iron salts—like those of the other heavy metals—depends upon coagulation of the proteids of the tissues through the formation of albuminate compounds with the metal and the setting free of the acid ions of the salt. Certain salts of iron, depending
upon their acid constituent, are strongly astringent and more or less irri-
tant—as the chloride, perchloride, sulphate, persulphate, and nitrate.
They contract tissue by coagulating albumin, when applied to raw sur-
faces or mucous membranes, and through this means, by compressing the
blood-vessels from without and plugging them from within with clotted
blood, arrest hemorrhage. The astringent salts may also induce some
contraction of the vessels besides. Iron—in the form of liquor ferri
chloridi or liquor ferri subsulphatis—is the most powerful of the metallic
hemostatic agents we possess.

Internal.—Alimentary Canal.—Iron is a food rather than a medi-
cine. It exists as a natural constituent of vegetable foods and of the
body, and is found particularly in the hemoglobin of the blood—to the
extent of about half an ounce in that of the horse. There is a sufficient
quantity in the food to support healthy animals. If iron is ingested by
a normal animal in ordinary doses, it has little effect unless continued
for a long time in considerable quantity, when it may produce indigestion
and constipation. Large doses of irritant and astringent salts, as the
perchloride, may induce gastroentritis by local irritation.

Internally in the stomach the iron salts behave as they do externally.
Acid ions are set free from the iron salt and the metal combines with
albumin. The liberation of the acid ion leads to an astringent action
and, if large doses are ingested, actual irritation. The degree of astrin-
gency is due to the preparation also. Thus ferric chloride is especially
astringent because of the ease of dissociation and corrosive action of the
HCl ion. Ferrous sulphate is only a little less so; while reduced iron,
the oxide, carbonate, double salts and salts of the vegetable acids
(citrates, acetates and tartrates), and albuminates, are very slightly or
not at all astringent. In the case of the salts of the organic acids and
double salts the acid ions are but slowly dissociated, and in that of the
albuminate there is no acid to be freed. Acid salts, as the sulphate, are
more suitable for the horse than the dog. Iron may blacken the tongue
from formation of the sulphide. In the stomach all forms of iron are
converted into chlorides, by the HCl of the gastric juice, and then prob-
ably into albuminates or carbonates in the duodenum.

Iron is naturally absorbed from the organic compounds of the metal
existing in the nucleoalbumins of food, and, either existing in this form or
when given in medicine in the inorganic state, it is probably absorbed
chiefly from the duodenum as the albuminate or carbonate. But in any
event the greater portion escapes from the bowel unabsobered. The route
which iron follows, after absorption, has been quite accurately ascertained
by many experiments. It is taken up from the duodenum by the epithe-
llial cells and leukocytes and carried by the blood into the spleen, in which
it is first deposited. From thence, through the blood, it is conveyed to the
liver and bone marrow. If it is needed for blood-making it is transformed
by many steps into hemoglobin in the liver. But if it is not so needed
it is eliminated by the large intestine and escapes from the bowel in the
form of the sulphide and albuminate—the feces turning dark on exposure
to air.

Constitutional Action.—This is not observed unless iron is given in-
travenously. A salt which will not coagulate blood and which will free its iron ion must be employed—as the tartrate of iron and sodium. Large doses thus given cause vomiting, purging, convulsions, dyspnea and failure of respiration. Albumin and casts may appear in the urine. In other words, there is gastrointestinal and renal irritation succeeded by stimulation and final depression of the central nervous system.

The numerous compounds of iron now manufactured by phar-maceutical concerns under the name of albuminates and peptonates, and supposed to imitate the natural organic forms of iron found in the blood and liver, are not superior to the inorganic salts in many cases and are worthless in others. Some—as ferratin (D., gr.iii-x) and carni-ferrin—are more readily absorbed and less irritating than many of the inorganic preparations and might be of some value in canine practice.

Blood.—In anemia iron is mainly of worth by furnishing building material for blood. It may also stimulate the blood-making organs and in this way perhaps increase the number of red corpuscles. The leukocytes are also somewhat augmented. Iron increases the power of the red corpuscles to hold and carry oxygen from the lungs to the tissues, and to transform it into ozone. Iron is then indirectly an oxidizing agent, stimulating tissue change and vital activity.

Elimination.—Iron is chiefly excreted by the intestinal mucous membrane (nine-tenths), however administered, yet it is also found in minute amounts in the urine (one-tenth), bile, saliva, sweat and tears.

Summary.—Iron is essentially a blood tonic and restorative, increasing the number of red blood corpuscles, the amount of hemoglobin, and aiding nutrition. Externally it is an astrigent, styptic and stimulant.

Uses External.—Liquor ferri chloridi and liquor ferri subsulphatis are sometimes used to stop bleeding from wounds or natural cavities of the body. They may be injected, applied by swab, or on absorbent material, which is packed into the wound or cavity. As a local application in pharyngitis, we use 1 part of the solution of ferric chloride with 4 parts of glycerin. In the same strength, diluted with water, the chloride may be injected into the uterus to stop hemorrhage. Again, a solution, in the strength of 2 drams to the pint of water, is employed as an enema to destroy ascarides. The objection to these solutions of iron is that they form heavy, nasty, tenacious clots, when employed to arrest hemorrhage, and the clots are apt to decompose and favor sepsis. Therefore they should not be used if other means, as ligature, pressure, heat or cold, or adrenalin chloride can be utilized.

Internal.—Reduced iron is one of the best preparations for dogs. It is commonly administered in pill, and often with other tonics, as strychnine, quinine, and arsenic. Reduced iron is non-irritating, non-astringent and non-constipating. It may be placed on the tongue in the form of powder. Ferrous sulphate is one of the two most valuable forms of iron which can be prescribed to the larger animals. The other form is the tincture of ferric chloride. The sulphate is more astringent and irritating than some of the other iron salts, but does not usually cause constipation in the horse. Indeed, when constipation is due to loss of tone in the lower bowel, small doses, by their local stimulant action, may actually
assist peristalsis. The dried ferrous sulphate is prescribed to horses in anemia, and is the most common constituent of tonic powders. It is frequently combined with powdered gentian, nux vomica, arsenic, and bicarbonate of sodium. Sodium bicarbonate is useful in indigestion and lessens the astringent action of sulphate of iron in neutralizing the acid set free from the salt. Nux vomica relieves constipation. A common and useful preparation for the horse is as follows:

R

Sodii bicarbonatis.
Pulv. nucis vomicae...3⅔ 5i.
Ferri sulphatis exsicc.5i.
S. Give one powder on the feed three times daily.

Ferrous sulphate is given in anemia secondary to chronic indigestion, intestinal parasites, leukorrhea, ozena, albuminuria, and in convalescence from acute diseases. Ferrous sulphate is in itself an anthelmintic, but, to get its full effect when used for this purpose in the treatment of round worms in the horse (ascarides), it should be given twice daily on the food for ten days, and then a pint of linseed oil containing three ounces of oil of turpentine is to be administered to complete the cure. In convalescence, iron may well be preceded by alcohol and bitters. Large doses of iron sulphate are indicated in hemorrhage from the bowels, if unassociated with acute inflammation, as in purpura. In the latter disease, sulphuric acid is a synergistic remedy.

The saccharated ferrous carbonate may be given horses if they will not voluntarily take the sulphate of iron on their food. It is a useful, mild, non-astringent preparation for dogs, and may be given in powder, or the mass may be dispensed in pills.

The iodide of iron is thought to be of benefit in man in scrofulous conditions, but as these states do not commonly occur in horses and dogs, the drug is chiefly of value, in the form of the syrup, in rickets, and acts almost as a specific in that form of polyuria afflicting horses during hot weather, and also in mild cases of anasarca and dropsy. The syrup should be prescribed undiluted and water should be added just before administering the preparation. If prescribed with water, the syrup will undergo decomposition if allowed to stand for any length of time. The syrup must be a fresh preparation, else free iodine is formed in it, which will blacken the buccal mucous membrane. When the action of iodine and iron is desirable, it is often better to prescribe them separately.

The tincture of ferric chloride is a very powerful preparation. It contains free hydrochloric acid. Alcohol constitutes three-quarters of its bulk, and there are also some traces of ether. It was formerly thought to be hydrochloric ether, arising from the action of the contained muriatic acid on the alcohol of the preparation; but Weir Mitchell has shown it to be nitrous ether. Ferric chloride is of itself diuretic, apart from any action of nitrous ether in the tincture. The free acid aids digestion in the stomach. The tincture of ferric chloride is locally stimulant and astringent, and generally aids digestion; is diuretic, and in large doses, owing to the alcohol which it contains, is somewhat stomachic. The tinc-
ture is, accordingly, particularly valuable in anemia, dependent upon chronic indigestion in horses and cattle, and in that occurring in convalescence from acute diseases. In such conditions, the preparation stimulates appetite, digestion and renal activity. When given by the mouth, the tincture of the chloride of iron is of local benefit in pharyngitis, combined with chlorate of potash, glycerin and water.

Horses with pharyngitis:

R

Tincturae ferri chloridi.
Potassii chloratis 3ss.
Glycerini ... 3ii.
Aquæ ..ad 3vii.

M.
S. Two tablespoonfuls every 2 hours on tongue.

Also in membranous croup of fowl (roup) in 10 m. doses; and of foals, calves and pigs (5ss.), with an equal amount of potassium chlorate. Iron is prescribed in intestinal hemorrhage (dried ferric subsulphate or Monsel's salt given in 1 to 2 dram doses in gelatine capsules is more effective for this purpose in the larger animals), but there is no remote astringent or styptic effect exerted upon the vessels or tissues. Small doses of the tincture of ferric chloride may be safely dropped, undiluted, upon the tongue of horses or cattle from a small bottle used as a measure. It is frequently conjoined with alcohol and mineral acids. The fluid-extract of quassia or calumba is often combined with the tincture of ferric chloride without incompatibility. The following is a good tonic preparation for horses or cattle:

R

Tincturae ferri chloridi 3iv.
Quininae sulphatis 3iii.
Liquoris acidi arsenosi 3viii.
Aquæ ..ad 3i.

M.
S. Two tablespoonfuls in water t. i. d.

Iron and ammonium citrate and iron and potassium tartrate are mild, non-astringent preparations, suitable for dogs and given in pill. The soluble citrate of iron is sometimes given subcutaneously every other day: H., 5ss.; D., gr. i. in aqueous solution.

The following elegant solution of iron and ammonium acetate (Basham's mixture) may be given to dogs, but Blaud's pills are more convenient:

R

Tincturae ferri chloridi 3i.
Acidi acetici diluti 3ss.
Liquoris ammonii acetatis 3. 5v.
Elixir aromatici.
Glycerini ... 3ii.
Aquæ .. 3ss.

M.
S. Teaspoonful in water t. i. d.

Iron and quinine citrate is a useful combination for dogs, dispensed in pill. It is often employed in canine distemper and chorea. No drug
is given more indiscriminately than iron. Pallor is a poor indication. Blood examination is the only certain guide.

Manganum.

(Manganese is not used in medicine in the metallic state.)

Potash Permanganas. Potassium Permanganate. K\textsubscript{4}MnO\textsubscript{4}. (U. S. & B. P.)

Synonym.—Kalium permanganicum, P. G.; permanganate of potash, E.; permanganate de potasse, Fr.; kaliumpermanganat, uebermangansaures kali, G.

Derivation.—Caustic potash, chlorate of potassium and black oxide of manganese are fused together. \(6 \text{KOH} + \text{KClO}_3 + \text{MnO}_2 \rightarrow 3 \text{K}_2\text{MnO}_4 + \text{KCl} + 3 \text{H}_2\text{O}\). The manganate of potassium is boiled with water till the color changes to purple and the permanganate is formed. \(3 \text{K}_2\text{MnO}_4 + 2 \text{H}_2\text{O} \rightarrow 2 \text{KMnO}_4 + 4\text{KOH} + \text{MnO}_2\). The liquid is neutralized with carbonic dioxide gas and evaporated.

Properties.—Slender, monoclinic prisms, of a dark purple color, almost opaque by transmitted light, and of a blue metallic luster by reflected light; odorless, and having in solution a taste at first sweet, but afterwards disagreeable and astringent; permanent in air; soluble in 13.5 parts of water; it is decomposed by alcohol; reaction neutral.

Incompatibilities.—It is very readily deoxidized in the presence of organic matter.

Dose.—H., gr.xv-xx, (1-1.3) in one pint of water; D., gr.i-ii, (.06-.12); in pill, or tablet, with kaolin.

Action of Potassium Permanganate.

External.—Potassium permanganate, like hydrogen dioxide, is a powerful oxidizing agent. It quickly parts with its oxygen in contact with organic matter, largely in the form of ozone, and is broken up into black oxide of manganese and potassa. Solutions, which are of a purple hue, change into a dark brown color when this transformation occurs, and are no longer of any medicinal value. This action is exceedingly rapid and transient, and its effects correspondingly so on the tissues. For this reason, and because bacteria are so combined with organic matter in the tissues, its action is largely exerted on the latter, and potassium permanganate is, therefore, a better antiseptic than disinfectant. The antiseptic action of potassium permanganate is, moreover, quite superficial, since it parts with its oxygen as soon as it comes in contact with the albumin of the tissues. Outside of the body, permanganate of potash is a disinfectant, but it is too expensive for general purposes. In powder it is slightly caustic, owing to the potassa set free in its decomposition; and in solution is stimulant to the tissues. A solution of permanganate of potash is a deodorizer when in contact with putrid and decomposing matter, but is not of the slightest value as a deodorizer and disinfectant to premises when simply standing in vessels, as frequently advised. There is no danger from absorption of potassium permanganate when applied to the body.

Uses Internal.—Potassium permanganate is occasionally used in human medicine in dyspepsia and flatulence, for its antiseptic action, and in obesity. It is supposed to resemble iron in its effects, and has been used in amenorrhea associated with anemia. Moor, of New York, has shown that potassium permanganate is the best chemical antidote for morphine or opium, chemically destroying them by oxidation; 10 to 15
grains may be given to dogs in 8 ounces of water immediately after poisoning. Horses may be given 2 drams of permanganate of potash in 5 pints of water. In case morphine has been swallowed, solutions of potassium permanganate should be acidulated with vinegar, or diluted sulphuric acid, in order to form soluble compounds in the digestive tract. After morphine or opium have been absorbed into the blood, it is said that potassium permanganate is also antidotal when injected subcutaneously. It is difficult to see, theoretically, how this could be the case, and practically has been proved not to be so.

Uses External.—Potassium permanganate is a valuable antiseptic and deodorizer in solutions varying in strength from one-tenth of 1 per cent. to 4 per cent., and is used in the treatment of sores, wounds, ulcers, abscess, caries, gangrene, fetid ozena, otornha, and leukorrhrea. In the stronger solution it is stimulant as well as antiseptic. It is a useful agent in stomatitis and sore throat, when applied locally by means of a swab. The powder is employed as a caustic upon ulcers. The hypodermic injection of a two per cent. solution of potassium permanganate in the area about snake bite is the best antidote through local destruction of the venom by oxidation. Potassium permanganate is one of the best agents with which to sterilize the hands before operating. A saturated solution is to be recommended for this purpose, and the stains may be removed from the hands by washing them in a saturated solution of oxalic acid, or in a dilute solution of hydrochloric acid.

Potassium permanganate is a test for impure water in changing color in the presence of organic matter. Two ounces of a 1 per cent. solution will clarify and deodorize 100 gallons of stale and putrescent rain water.

SECTION VI.

Hydrargyrum.

MERCURY. Quicksilver.

Synonym.—Mercurius vivas, argentum vivum, E.; mercure, vif-argent, Fr.; quecksilber, G.

Derivation.—Cinnabar, the native sulphate, is roasted or distilled with lime, and condensed.

Properties.—A shining, silver-white metal, without odor or taste; liquid at ordinary temperatures, and easily divisible into spherical globules; insoluble in the ordinary solvents; boils at 3580° C., and is volatilized, yielding not more than 0.02 per cent. of residue; spec. gr., 13.5. When cooled to about 40° C., it forms a ductile, malleable mass.

PREPARATIONS CONTAINING METALLIC MERCURY.

I.—Hydrargyrum cum Creta. Mercury with Chalk. (U. S. & B. P.)

Synonym.—Gray powder.

Mercury, 88 Gm.; honey, 10 Gm.; prepared chalk, 57 Gm.; water, sufficient quantity to make 100 Gm. (U. S. P.)

Mercuric oxide becomes developed by keeping, making the powder more active.

Properties.—A light gray, rather damp powder, free from grittiness, without odor, and having a slightly sweet taste. Contains mercury in fine division by shaking the ingredients together.

Dose.—Foals and calves, gr.x-xv, (.6-1); D., gr.i-x, (.06-.6).
Synonym.—Pillula hydrargyri, B. P.; blue mass, blue pill, pilulæ cœrulææ, E.; pilule de mercure, Fr.; mercurial pillen, G.
Mercury, 33 Gm.; olate of mercury, 1 Gm.; glycyrrhiza, 10 Gm.; althæa, 15 Gm.; glycerin, 9 Gm.; honey of roses, 82 Gm. Contains not less than 32, nor more than 34 per cent. of mercury in a state of fine division. (U. S. P.)
Dose.—D. gr.i-x. (.06-6).

III.—Unguentum Hydrargyri. Mercurial Ointment. (U. S. & B. P.) (Blue Ointment.)
Synonym.—Pomade mercuriale à parties égales, pommades Napolitaine, Fr.; quecksilbersalbe, G.
Mercury, 500 Gm.; lard, 250 Gm.; suet, 230 Gm.; olate of mercury, 20 Gm. Contains 50 per cent. of mercury. (U. S. P.)

Synonym.—Hydrargyrum oxidatum, P. G.; peroxide of mercury, red precipitate, mercuric oxide, E.; deuto-oxide (peroxide) de mercure, oxyde mercureique, précipité rouge, poudre de Jean de Vigo, Fr.; rotheques aluminosiliceous, ruther précipitats (quecksilber-précipitats), G.
Derivation.—Dissolve mercury in diluted nitric acid.
3 Hg₄+16 HNO₃ = 6 Hg (NO₃)₂. (Mercuric nitrate) + 4 NO + 8 H₂O.
Rub mercuric nitrate with metallic mercury and heat.
2 Hg (NO₃)₂ + Hg₂ = 4 HgO + 2 N₂O₅.
Properties.—Heavy, orange-red, crystalline scales, or a crystalline powder acquiring a yellow color when finely divided; odorless, and having a somewhat metallic taste; permanent in the air; almost insoluble in water; insoluble in alcohol.

Preparation.
Unguentum Hydrargyri Oxidi Rubri. Ointment of Red Mercuric Oxide. (B. P.) (Non-official.)
Synonym.—Red precipitate ointment. Red mercuric oxide, 10; water, 10; hydrous wool-fat, 40; petrolatum, 40. (U. S. P. 1905.)

Hydrargyri Oxidum Flavum. Yellow Mercuric Oxide. HgO (U. S. & B. P.)
Synonym.—Hydrargyrum oxidatum via humida paratum, P. G.; hydrargyrum oxidatum praecipitatum (vel flavum) precipitated oxide of mercury, E.; oxyde de mercure jaune (précipité), Fr.; précipitertis (gelbes) quecksilberoxyde, G.
Derivation.—Precipitate an aqueous solution of mercuric chloride, 100, with caustic soda, 40: HgCl₂ + 2 NaOH = HgO + 2 NaCl + H₂O.
Properties.—A light orange yellow, amorphous, heavy, impalpable powder; odorless, and having a somewhat metallic taste; permanent in the air, but turning darker on exposure to the light; almost insoluble in water; insoluble in alcohol.

Preparations.
Unguentum Hydrargyri Oxidi Flavi. Ointment of Yellow Mercuric Oxide. (U. S. P.) B. P. 2 per cent.
Yellow mercuric oxide, 10; water, 10; hydrous wool-fat, 40; petrolatum, 40. Oleatum Hydrargyri. Olate of Mercury. (U. S. P.)
Hydrargyri Oleas. (B. P.)
Yellow mercuric oxide, 25; alcohol, 20; oleic acid to make 100. (U. S. P.)

Hydrargyri Chloridum Corrosivum. Corrosive Mercuric Chloride. Hg Cl₂ (U. S. P.) (Corrosive Chloride of Mercury, Corrosive Sublimate.)
Synonym.—Hydrargyri perchoridum, B. P.; hydrargyrum bichloratum corrosivum, P. G.; perchloride of mercury, bichloride of mercury, E.; Deutchchlorure de mercure, sublimé corrosif, chlorure mercureique, Fr.; quecksilberchlorid, aëtzen- der quecksilbersublimate, G.
Derivation.—Heat a mixture of mercuric sulphate, 20; sodium chloride, 16; manganese dioxide, 1. Hg SO₄ + 2 NaCl + MnO₂ = HgCl₂ + Na₂SO₄ + MnO₂. The bichloride sublimes and is condensed.
Properties.—Heavy, colorless, rhombic crystals, or crystalline masses, or as a white powder; odorless, and having characteristic and persistent metallic taste; permanent in the air; soluble in 13.5 parts of water and in 3.8 parts of alcohol.
Incompatibles.—It is incompatible with most substances.

Dose.—H. & C., gr.v-vii, (3-5); Sh. & Sw., gr.ii, (.12); D., gr.1/30-1/8, (.002-.008).

Hydrargyri Chloridum Mite. Mild Mercurious Chloride. HgCl. (U. S. P.)

(Calomel, Mild Chloride of Mercury.)

Synonym.—Hydrargyri subchloridum, B. P.; hydrargyrum chloratum, P. G.; mild or mercurus chloride, subcloridio or protocolchride of mercury, E.; protoclurour (sous-muriate) de mercure, calomèle, Fr.; quecksilberchlorür, calomel, G.

Derivation.—Heat mercurous sulphate and sodium chloride. Calomel sublimes.

HgCl+2 NaCl = 2 HgCl+Na2SO4.

Properties.—A white, impalpable powder, becoming yellowish-white on being triturated with strong pressure, and showing only small isolated crystals when viewed with a lens having a magnifying power of 100 diameters. Odorless and tasteless; permanent in the air; insoluble in water or alcohol. When strongly heated it is wholly volatilized without melting.

Dose.—H., 5ss-i, (2-4); C., 5v-vi, (20-24); D., gr.ss, (.03), in divided doses; D., gr.iii-v, (.2-.3) in single doses.

Preparation.

Pillule Catharticae Composita. Compound Cathartic Pills. (U. S. P.)

Compound extract of colocynth, 80; calomel, 60; resin of jalap, 20; gamboge, 15; diluted alcohol, q. s. to make 1,000 pills.

Dose.—D., pill 1 to 3.

Hydrargyri Iodidum Rubrum. Red Mercuric Iodide. HgI2. (U. S. & B. P.)

(Biiodiude of Mercury, Red Iodide of Mercury.)

Synonym.—Hydrargyri biiodatum, P. G.; deutoiodide of mercury, mercuric iodide, E.; deut-iodure (bi-iodure) de mercure, iodure mercurique, Fr.; rothes jodqueksilber, quecksilberjodid, G.

Derivation.—Mix aqueous solutions of corrosive mercuric chloride, 40 Gm., and potassium iodide, 50 Gm. The red iodide is precipitated. Filter, wash and dry. HgCl2+2KI = HgI2+2 KCl.

Properties.—A scarlet-red, amorphous powder; odorless, nearly tasteless, and permanent in the air; almost insoluble in water; soluble in 115 parts of alcohol.

Unguentum Hydrargyri Nitratris. Ointment of Mercuric Nitrate (Citrine Ointment). (U. S. & B. P.)

Mercury, 71 Gm.; nitric acid, 17.5 Gm.; lard, 76.0 Gm. (U. S. P.)

Properties.—A lemon-yellow ointment.

Hydrargyrum Ammoniatum. Ammoniated Mercury. HgNH4Cl. (U. S. & B. P.)

(White Precipitate, Mercurium Ammonium Chloride.)

Synonym.—Mercurius præcipitatus albus, E.; oxychlorure ammoniacal de mercure, mercure précipité blanc, Fr.; weisse quecksilber-präcipit, quecksilberchloridamidid, G.

Derivation.—Mix an aqueous solution (1 to 20) of corrosive mercuric chloride, 2000, with ammonia water, 150.

Properties.—White, pulverent pieces, or a white, amorphous powder, without odor, and having an earthy, afterwards styptic and metallic taste; permanent in the air; insoluble in water or in alcohol.

Preparation.

Unguentum Hydrargyri Ammoniati. Ointment of Ammoniated Mercury. (U. S. & B. P.)

Synonym.—White precipitate ointment. Ammoniated mercury, 10; white petrolatum, 50; hydrous wool-fat, 40. (U. S. P.)

General Action of Mercury and Its Salts.

External.—The salts of mercury are antiseptic, germicidal, irritant and—in the case of the soluble salts—caustic, when applied to raw sur-
faces or mucous membranes. Corrosive sublimate is one of the slowest acting, most powerful and frequently used antiseptics. The germicidal action of mercury salts is due to their habit of combining with albumin wherever it exists and forming the albuminate of mercury. Thus they act on bacteria and in so doing destroy germ life. The caustic action of the soluble salts of mercury may be explained by the fact that when the salts are dissociated by contact with the tissues the metallic and acid ions are corrosive. Moreover, like the other salts of the heavy metals, they precipitate the proteids of the tissues with which they come in contact, but, unlike them, the mercury albuminate thus formed is soluble to some extent in the fluids of the body and therefore does not protect the surface from the further action of the salt. The antiseptic effect of corrosive sublimate is lessened by this action since the salt is decomposed in contact with albumin and the coagulated proteid prevents it from reaching germs. By the addition of salt, hydrochloric or tartaric acid to solutions of corrosive sublimate the union of mercury with albumin is materially prevented and such combination (with tartaric acid) is provided in the tablets sold for surgical purposes.

Corrosive sublimate is more irritant to the tissues than carbolic acid, creolin or lysol, and cannot penetrate raw surfaces so well to reach germs (on account of its coagulating proteids), and cannot be used in contact with metallic instruments since mercury is deposited upon them through decomposition of this salt. The salts of mercury kill the lower forms of animal as well as vegetable life, and are valuable in the treatment of parasitic skin diseases. As a rule, antiseptics relieve itching, and the mercury salts are often used to combat this condition. Mercury and its salts are absorbed when rubbed into the unbroken skin, particularly when in combination with oil or grease.

Metallic mercury and its salts (notably the iodide), when rubbed well into the skin with fat, are thought to aid the absorption of inflammatory exudates in underlying parts.

Internal.—The irritant salts of mercury, as the bichloride, iodide, nitrate, and some of the oxides, in large doses, produce gastro-enteritis, vomiting, colic, bloody diarrhea, anuria, or urine holding albumin and casts (nephritis), collapse and death. A subacute form of poisoning also occurs with colic, diarrhea or dysentery and anuria and death may occur after days from gastro-enteritis or nephritis. The immediate treatment consists in giving whites of eggs and milk to form non-corrosive albuminates, and these should be removed by washing the stomach with milk. Afterwards give milk and linseed tea as demulcients. The kidneys are stimulated to elimination by a milk diet and, every 2 hours, by a diuretic mixture of potassium bitartrate (H., ʒi.; D., ʒss.), and milk sugar (H., ʒiv.; D., ʒii.), dissolved in boiling water and given with as much water as possible. Mercury stomatitis is treated by swabbing the mouth several times daily with hydrogen dioxide, diluted with 3 parts of water and containing a little sodium bicarbonate, and by application of tincture of iodine to the gums once or twice daily. Vincent's angina organisms appear to be responsible for the inflammation in tissues of the
mouth lowered in resistance by elimination of mercury. Potassium iodide is given to hasten the elimination of mercury from the body.

The use of mercury, or any of its compounds, if continued for any considerable time, either internally or externally, in such a way as to lead to absorption, may cause a chronic form of poisoning or mercurialism. This condition is characterized by fetor of the breath and soreness of the gums, making mastication painful. The gums are swollen and bleed easily; the tongue swells and salivation ensues. The teeth become loosened, the salivary and parotid glands enlarge, the temperature is elevated, and if the condition continues, there are: ulceration of the mouth (due to irritation produced by mercury eliminated in the saliva), necrosis of the jaw, general weakness, a watery condition of the blood, edema, anemia and cachexia, prostration and death. Local poisoning, as exhibited by paralysis of the hand and forearm, has occurred in a man who applied the ointment of red iodide of mercury to cattle. There is a tendency for mercury to accumulate in the liver and kidneys, chiefly, and also in the tissues generally, when given in large doses, or in smaller doses when continued for a considerable period.

The prevailing fashion of administering calomel in small and repeated doses may lead to mercurialism if purgation does not occur.

Stomach and Intestines.—Calomel and preparations of metallic mercury are most commonly used for their action on the digestive tract. It has been shown by Schaefer (1910) that calomel is transformed in the duodenum by the alkaline juices into a gray salt consisting of the carbonate and oxide. The cathartic action of calomel depends upon the gray salt which is both locally irritating and antiseptic. The same change occurs outside the body when calomel is added to a solution of sodium carbonate.

While calomel acts chiefly on the duodenum, sweeping out the bile, it continues its action on the whole of the small intestine. If the dose is insufficient to sweep out the whole intestinal tract it may empty the contents of the small bowel into the colon, causing putrefaction there of the undigested food. This is one of the reasons for following calomel with a saline to flush out the large bowel. Calomel and mercuric chloride are also intestinal antiseptics.

The mercurial purges have always enjoyed a great reputation in the treatment of so-called biliousness and torpid liver, the supposition being that they stimulated the liver and flow of bile. But experiments on man and animals show that they exert no apparent effect on the liver or biliary secretion. Their indubitable efficacy is due to their cathartic and intestinal antiseptic action, as such conditions (biliousness, etc.) are not owing to liver disorder but to indigestion.

The purgative action of calomel and mercury is assisted by salines (as above), which increase the amount of fluid in the bowels, and aid in the expulsion and prevent the absorption of mercury. The saline should be given four hours after the administration of calomel to cattle.

Blood and Metabolism.—It is stated that calomel may be absorbed unchanged from the intestines by leukocytes to some extent. It is prob-
able, however, that mercury preparations are chiefly absorbed as albuminates and even metallic mercury is oxidized, when in contact with the tissues, and absorbed. Small doses of mercury apparently increase the nutrition and weight of healthy animals and also the hemoglobin and red corpuscles. Mercury is sometimes called an antiphlogistic, as it has been supposed to combat the effect of inflammations. A part of this result may be attributed to the antiseptic action of the salts of mercury in the intestines by preventing fermentation and absorption of toxic material. For want of a better term to explain the beneficial actions of mercury on the tissues, that vague term “alterative” is frequently applied. Mercury (and calomel in particular) is diuretic, by stimulating the secreting cells of the kidneys, or relieving splanchic engorgement by catharsis.

Elimination.—When mercury is given continuously it accumulates in all the organs and is eliminated very slowly, mainly by the cecum and colon (after its absorption), but also by the kidneys, liver, salivary glands, and, in fact, by every conceivable channel. In thus stimulating the eliminative activities of the various glands, mercury has been termed a deobstruent. It has been surmised that its alterative effect depends, in part, upon this action in stimulating—to use the old term—the emunctories.

Summary of Actions of Mercury and Its Salts.

External.—Antiseptic, germicide, irritant, caustic, parasiticide, antipruritic and sorbefacient.

Internal.—Antiseptic, purgative, antiphlogistic, alterative and diuretic (calomel).

Uses of Mercury and Its Salts.

Hydrargyrum cum creta is similar to calomel in its effects, but very much milder, unless it contains the black oxide of mercury, when its action is much intensified. The same may be said of massa hydrargyri. Either preparation may be given dogs as a laxative in indigestion with vomiting and diarrhea; or to foals and calves (in milk or gruel) with intestinal indigestion and diarrhea, particularly if accompanied with jaundice. The oleatum or unguentum hydrargyri are rubbed into the skin to cause resolution of chronic inflammatory swellings, and also to kill animal and vegetable parasites. As the former action is due to absorption, large quantities will lead to poisoning when applied over an extensive surface. We can use other and safer remedies, as creolin, tar or sulphur ointment, for parasiticide. One should not employ an amount of blue ointment greater than 1 ounce for the larger animals; 3 drams for sheep; and 20 to 40 grains for dogs. Blue ointment is commonly diluted with 3 or 4 parts of lard. It is to be remembered in this connection that grease alone will kill lice and other parasites on the skin. On account of their sorbefacient properties, the oleate and blue ointment of mercury are applied over chronically enlarged glands, swollen joints, and thickened tendons. In view of their parasitic action, these preparations are employed to kill the fungus of favus and ringworm, and to
destroy lice and the acari of mange, when inhabiting circumscribed areas. Itching in skin diseases, as chronic eczema and psoriasis, is relieved either by blue ointment or the oleate of mercury.

Hydrargyri Oxidum Rubrum et Flavum.

The official ointments of the red and yellow mercuric oxides are prescribed, as stimulant and antiseptic preparations, in chronic conjunctivitis, corneal ulcers, granular lids and scaly skin diseases. They are also employed on indolent ulcers, swollen glands and old granulating surfaces. When used on mucous membranes, or raw surfaces, the official ointments should be diluted with equal parts of lard.

For chronic conjunctivitis, keratitis and ulcer of the cornea:

\[\text{Hydrargyri oxidi flavi} \quad \text{gr. iv.} \\
\text{Petrolatii} \quad \text{5ss.} \]

M.

S. Apply to eyeball once daily with soft camel's hair brush.

For eczema of lids, blepharitis and granular lids, use twice strength and rub on edge of lids twice daily.

Hydrargyri Chloridum Corrosivum.

External.—Corrosive sublimate is of value mainly as an antiseptic on the unbroken skin. It is germicide in solutions containing 1 part to 500, or 1000, of water. Applied to mucous membranes, or raw surfaces, it is antiseptic in solutions varying in strength from 1-10,000 to 1-1,000.

In the larger cavities of the body, as the vagina, solutions should not be used in strength greater than 1-5000 or 1-3000. Experiments by Harrington and Walker go to show that corrosive sublimate is much less active than commonly believed. A 1-1000 solution requires more than ten minutes' contact to kill common forms of pus cocci, so that dipping the hands for a few seconds in such solution does more harm than good in inducing a false security which does not exist. They conclude by saying that, as the result of their experiments, "corrosive sublimate in any of the strengths commonly employed is a much overrated disinfectant, and under the best of conditions is so uncertain in its action that it would be of advantage to abandon its use altogether in surgery." Post & Nicoll wholly endorse this result. They find tincture of iodine, alcohol (over 50 per cent.), tincture of green soap, and 5 per cent. phenol kill all bacteria in less than one minute. A 1.5 per cent. solution of lysol kills most germs within one minute, while 1-500 corrosive requires more than 10 minutes to kill almost any pathogenic microorganisms. These men are known to be careful and trustworthy investigators and their findings agree with the results obtained by many great surgeons. In view of the ease with which corrosive sublimate combines with albumin, it is best not to rely upon this agent for wound disinfection, but to employ normal salt solution for cleansing, followed by lysol or chlorazene solution. Corrosive sublimate is, however, still regarded as the antiseptic sheet anchor by many surgeons.
for the irrigation of infected wounds and cavities, and for skin disinfection.

For hand and skin disinfection Harrington’s solution of corrosive sublimate is perhaps the most effective of any in existence.

\[
\begin{align*}
\text{B} & \quad \text{Hydrargyri chloridi corrosivi} \quad \text{gr.xii.} \\
& \quad \text{Acidi hydrochlorici} \quad \text{5ii.} \\
& \quad \text{Alcoholis} \quad \text{3xxi.} \\
\text{M.} & \quad \text{S.} \\
& \quad \text{Immerse hands or apply to skin for 2 minutes.} \\
& \quad \text{Wash off hands with 70\% alcohol to remove irritation of above.}
\end{align*}
\]

Mercuric bichloride, even in the weaker solution, is too damaging to the serous membrane of the peritoneal cavity, and there is too much danger of absorption to warrant us in using it in intra-abdominal operations. As a caustic, saturated solutions are injected into fistulous tracts, e.g., fistulae of the withers, “quittor” and “poll evil,” to destroy their so-called pyogenic membranes, and hasten repair, as follows. There is not much danger of absorption when used in this way.

\[
\begin{align*}
\text{B} & \quad \text{Hydrargyri chloridi corrosivi} \quad 5ii. \\
& \quad \text{Acidi hydrochlorici} \quad 3i. \\
& \quad \text{Aquæ hydrochlorici} \quad \text{ad Oi.} \\
\text{M.} & \quad \text{S.} \\
& \quad \text{For injection into fistulae.}
\end{align*}
\]

Corrosive sublimate is very useful in solution as a parasiticide, in destroying lice, ringworm, the spores of pityriasis, and the fungus of favus on the unbroken skin, and also relieves itching in pruritus, prurigo and urticaria, as follows:

\[
\begin{align*}
\text{B} & \quad \text{Hydrargyri chloridi corrosivi} \quad \text{gr.x.} \\
& \quad \text{Glycerini} \quad 5i. \\
& \quad \text{Alcoholis (70\%)} \quad 3viii. \\
\text{M.} & \quad \text{S.} \\
& \quad \text{Apply externally.}
\end{align*}
\]

Apart from the body, corrosive sublimate in solution 1-500 or 1-1000 is one of the cheapest and most effective disinfectants for premises infected with the contagion of glanders, anthrax, etc. The walls and floors of stables (after thorough cleansing and washing with soft soap and boiling water), clothing and all paraphernalia, not metallic, can be disinfected by washing or soaking in solutions of bichloride. Before operations, the operative field should be sterilized by scrubbing with green soap and then with Harrington’s solution, after the hair has been shaved from the part. During an operation, irrigation with corrosive (1-3000) solution or boiled normal salt solution is commonly practised. In epizootic abortion, in addition to quarantining the diseased animals, their discharges and the premises should be disinfected, and both the well and sick female animals should be washed twice daily about the genital regions with a solution of corrosive sublimate. Yellow wash, made by the addition of mercuric bichloride to lime water, is sometimes employed as a stimulant.
application in chronic eczema, and to relieve itching. It contains the yellow oxide of mercury.

R

Hydrargyi chloridi corrosivi.......................... gr.xi.
Liquoris calcis ..5xx.
M. et ft. lotio flava.
S. Use externally.

In purulent conjunctivitis, frequent irrigation with a 1-1000 solution of corrosive sublimate is of the greatest service.

Internal.—Corrosive sublimate is of value in minute doses as a blood tonic, and is recommended as an antiphlogistic agent in inflammatory diseases of serous membranes, as pleuritis, meningitis, and arthritis. It is probably inferior to calomel for this purpose. We at least know that the calomel is an efficient cathartic in inflammatory diseases.

Corrosive sublimate is sometimes employed with success as a counter-irritant and absorbent on exostoses, as follows:

R

Hydrarg. chlorid. corros..................... gr.xvi.
Iodi.
Glycerini ... 6 5iv.
Alcoholis ... ad 5iv.

M.
S. Apply with brush every other day on splint or spavin.

Mercuric bichloride is employed as an intestinal antiseptic in the treatment of dysentery and diarrhea with mucous or vile smelling discharges. In these conditions, irrigation of the rectum with a 1-5000 solution is of advantage. This solution should be drained off through the rectal tube and followed by an injection of plain boiled water.

Administration.—Corrosive sublimate is given in the form of a pill or ball. If exhibited in solution to the large animals, it must be diluted with 2 quarts of water.

Hydrargyi Chloridum Mite.

External.—Calomel is of use in chronic eczema when applied over small patches in its pure state, or as "black wash." The latter consists of one dram of calomel in one pint of lime water, forming the black oxide of mercury, and is a very efficient preparation to relieve itching and promote recovery in chronic eczema, by mild stimulation. Calomel is of benefit when blown into the eye once or twice a week, stimulating and hastening absorption of opacities of the cornea following keratitis. It must not be so used when potassium iodide is being administered internally as mercuric iodide may be formed, resulting in sloughing and destruction of the eyeball. It is the best agent to arrest thrush when worked up into the commisure of the hoof, between the frog and the bars, and retained in place by oakum packing.

Internal.—Calomel is a purgative, intestinal antiseptic, diuretic and alterative. It is also used for its remote antiphlogistic effects. It is particularly adapted to dogs, and is given in a single dose, or often, to better advantage, in half-grain doses, repeated every two hours till purga-
tion occurs. For diarrhea or vomiting in dogs, calomel is useful in removing the source of irritation, in being antiseptic and easily borne by an irritable stomach. As calomel is transformed by the alkaline intestinal secretions into the gray mercuroxide oxide it has been the custom to combine sodium bicarbonate with it in order to facilitate this transformation. The administration of calomel should be followed by oil, salines or other cathartics, if purgation does not occur within twenty-four hours after its ingestion, otherwise mercurialism may occur.

In jaundice, with light-colored feces, gastro-duodenitis or constipation, calomel is a valuable remedy for dogs. In the jaundice occurring as a form of influenza in horses, nitro-muriatic acid is more effective. Calomel is one of the best remedies for the treatment of dysentery unless there is great weakness. It should be continued in repeated small doses till the character of the discharge changes. Foals and calves, with indigestion and diarrhea, may be given calomel to advantage to remove the source of irritation in the digestive tract. Calomel must be combined with a small dose of aloes, or with linseed oil, to form an effective cathartic for the horse. As aloes acts on the large, and calomel on the small intestines, the above combination secures a general purgative influence.

Cattle are given calomel, followed by the administration of salines, to produce free catharsis. As a remedy for round worms, \(\frac{1}{4} \) to \(\frac{1}{2} \) grain each of santonin and calomel, with 5 grains of sugar of milk, are administered to dogs four times, at half hour intervals, and followed by castor oil. Lumbricoid worms in the horse may be treated by conjoining 2 drams of santonin with 1 dram of calomel, given to the fasting animal, and followed by a pint of linseed oil. A useful anthelmintic prescription for the horse for round or tape worm consists of the following:

\[
\begin{align*}
R
\text{Aloes.} \\
\text{Hydrargyri chloridi mitis.} \\
\text{Oleoresinae flicis maris} & \quad \frac{5}{10} \text{gr.} \\
\text{Pulvis zingiberis} & \quad \frac{5}{8} \text{gr.} \\
\text{M. et ft. bolus No. i.} \\
\text{Sig.} & \text{Give to horse after fasting for 24 hours.}
\end{align*}
\]

Calomel was formerly very frequently used, and is occasionally prescribed to this day in the treatment of enteritis, pleuritis, meningitis, peritonitis, pericarditis, and iritis, for its antiphlogistic and alterative action in supposedly diminishing inflammatory exudations.

At the present time these actions are very much questioned, and any beneficial effects accruing from the use of calomel in inflammatory diseases are now ascribed to its action as a purgative and intestinal antiseptic in destroying and eliminating bacteria and toxins from the bowels.

Calomel is of value in inflammatory diseases when given at the onset of the attack. In dropsy (ascites of dogs), calomel (gr.i) sometimes acts as a useful diuretic, when combined with digitalis and squill (gr.i each) in pill form given t. i. d.

\textit{Administration.}—Calomel is given to cattle on the tongue or in gruel; to horses in ball, on the food, or on the tongue; to dogs in pill, tablet or on the tongue; to fowl on the food (gr.i.). The compound cathartic pill
is a good purgative preparation for occasional use. Two or three pills for large dogs; one to two pills for small animals.

Hydrargyri Iodidum Rubrum.

The red mercuric iodide is a favorite remedy in veterinary practice. It causes absorption of morbid exudations through its counter-irritant, local absorbent and alterative effect, in combining the action of iodine and mercury. It is employed with 8 to 10 or 12 parts of lard or vaseline, and is of value in the treatment of periostitis with osseous deposits, especially for splints. Spavin and ringbone are treated with red iodide of mercury alone, but are generally cured more effectively by rest, firing, and blistering. The red iodide of mercury ointment is also of use for enlarged glands, chronic swelling about tendons, joints or bursae; and applied about the throat in chronic laryngitis and "roaring." The ointment is rubbed on splints every third day, or until vesication is produced, and the hair begins to drop out, when its use is stopped for a time. It is useful in chronic rheumatic joints and in induration of the udder in bovines. Like other mercury preparations, the red iodide must not be employed in large quantities over an extensive surface. It is much more irritant locally than blue ointment.

B

Hydrargyri iodidi rubri..................3l.
Adipis ..5l. to 3iss.

M.

Sig. Apply externally. Stronger ointment for spavin, ringbone, splints; weaker for tendons, joints, bursae, glands, throat.

Unguentum hydrargyri nitratis, or citrine ointment, is similar to unguentum hydrargyri ammoniati (white precipitate ointment), but more powerful, and should be diluted with equal parts of lard. These ointments are used for their stimulant action in granular lids, chronic eczema, pityriasis, and for their anti-parasitic effect in ring-worm.

SECTION VII.

ARSENUM.

Arsenic is not used in the metallic state as medicine.

Arsenii Trioxidum. Arsenic Trioxide. \(\text{As}_2\text{O}_3 \) (U. S. P.)

Synonym.—Acidum arseniosum, B. P.; acidum arsenicosum, P. G.; arsenous acid, white arsenic, arsenicum album, arsenic, arsenious anhydrid, E.; acid arsénieux, arsenic blanc, Fr.; arseniciüre, weisser arsenic, G.

Derivation.—Arsenical ores are roasted and purified by sublimation.

Properties.—Occurs either as an opaque, white powder, or in irregular masses of two varieties; one amorphous, transparent and colorless, like glass; the other crystalline, opaque, and white, resembling porcelain. Both are odorless and tasteless. Arsenic trioxide is soluble in water, the amorphous somewhat more so than the crystalline variety. Arsenic trioxide is slightly soluble in alcohol, but freely soluble in glycerin, and is dissolved by hydrochloric acid and alkaline solutions. Frequently the same piece has an opaque, white, outer crust enclosing the glassy variety. Contact with moist air gradually changes the glassy into the white, opaque variety. Faintly acid reaction in solution. When covered
with charcoal in an ignition tube and strongly heated, arsenic trioxide is reduced, and metallic arsenic is deposited on the cooler portion of the tube as a mirror, having a metallic luster, and this mirror is readily dissolved by solutions of calcium or sodium hypochlorite.

Incompatibles.—Lime water, salts of iron and magnesia.

Dose.—H., gr.i-v, (.06-.3); Sh. & Sw., gr.i-ii, (.06-.12); D., gr.1/30-1/10, (.002-.006).

Usual dose for H., gr.ii-iii, (.12-.2).

LIQUOR POTASSII ARSENITIS. Solution of Potassium Arsenite. (U. S. P.)

(Fowler’s Solution.)

Synonym.—Liquor arsenicalis, B. P.; liquor kali arsenicosi, P. G.; arsenical solution, E.; liqueur arsenicale de Fowler, Fr.; Fowlers’ che tropfen, G. Arsenic trioxide, 10 Gm.; potassium bicarbonate, 20 Gm.; compound tincture of lavender, 30 Gm.; distilled water to make 1000 Gm. Strength about 1 per cent. of potassium arsenite.

Dose.—H. & C., 5ii-5i, (8-30); Sh. & Sw., 5i-ii, (4-8); D., mii-x, (.12-.6). Usual dose for H., 58s, (15).

LIQUOR ACIDI ARSENOSI. Solution of Arsenous Acid. (U. S. P.)

(Fowler’s Solution.)

Synonym.—Liquor arsénié hydrochloricus, B. P.; hydrochloric solution of arsenic, E.; liqueur arsenicale hydrochlorique, Fr.; chlorarsenic-lösung, G.

Arsenic trioxide, 10 Gm.; diluted hydrochloric acid, 50 Gm.; distilled water, a sufficient quantity to make 1000 Gm. Strength, about 1 per cent. of arsenous acid.

Dose.—Same as Fowler’s solution.

ARSPHENAMINE (Dioxy-diamido-arsenobenzol dihydrochloride).

Synonym.—“606,” Salvarsan.

Occurs as a fine yellow powder soluble in water, soluble in methyl, less soluble in ethyl alcohol. It is kept in a vacuum in ampoules because it is oxidized and becomes poisonous on exposure to air. It may be given intramuscularly but as it may sometimes cause pain, inflammation and sloughing, it is usually given intravenously. It is dissolved in sterile distilled water (300 mils) and neutralized by adding 23 drops of 15% sodium hydroxide solution to 0.6 Gm. (gr. x) salvarsan. It is chiefly used as a specific in human syphilis, but is efficacious in dourine, surra, nagana and pernicious anemia, and is recommended in pleuro-pneumonia of cattle and petechial fever of horses. If given in the first days of pleuro-pneumonia one dose is said to have reduced the mortality to a fraction of one per cent.

Dose.—H. & C., gr.45-75 (3-.5); D., gr.v-x. (0.3-.0.6), intravenously or intramuscularly.

ATOXYL. Sodium Arsanilate (C₆ H₄ NH As O₂).

A combination of anilin and arsenic, a white, soluble, crystalline powder containing 35.0 per cent. of metal arsenic. Hare states that atoxyl is 1/40 as toxic as Fowler’s solution. Atoxyl is given subcutaneously in ten per cent. freshly prepared solution in trypanosomiases (dourine, surra, nagana), sclerostomiasis, piroplasmosis, anemias and leukemia.

Dose.—H., gr.iv, gradually increased to gr.xv, once daily, or single doses (Gm. 1-3) once in 10 days. Over-dosage has caused blindness.

A reduction product of atoxyl, arseno-phenyl-glycin, a yellow soluble powder, bids fair to supersede atoxyl in trypanosomiases, as it cures apparently by one injection. It is too recent to judge its true value as yet.

SODI CACODYLAE. Sodium Cacodylate. (Na(CH₃)₂ AsO₂)

Sodium cacodylate occurs as white prisms or soluble powder identical in action with arsenic.

Dose.—H., 58s-i, (2-4); D., gr.i-iii, (.06-2), hypodermatically.

It has been used successfully in the treatment of anemias, leukemia, dourine, and other trypanosomiasis, chronic pneumonia, strangles, influenza, chronic skin diseases, mountain and swamp fever, and hemorrhagic septicemia in horses, given subcutaneously (gr. 45) every third day, or oftener.
Action of Arsenical Compounds.

External.—Arsenous acid is a slowly acting caustic on raw surfaces and mucous membranes. It produces considerable pain, and may cause fatty degeneration of the epithelium of the skin, with inflammation of the tissues beneath, and lead to poisoning. In frogs poisoned by arsenic the epidermis peels off very rapidly, owing to degeneration of its lower layers. It is antiseptic and the chief preservative agent in embalming fluids, and is used to kill the protozoan spirochaeta of syphilis and of Vincent's angina and stomatitis.

In small doses arsenic increases subcutaneous fat and causes the coat of hair in animals to become thicker and more glossy.

Internal.—Digestive Tract.—In large amounts, arsenic is an irritant, causing loss of appetite, nausea, diarrhea and digestive disturbance. Similar digestive disorders occur after large hypodermatic doses of arsenic and are due to increased permeability of the capillaries in the walls of the gut, with edema of the bowel, and degeneration and exfoliation of its mucous membrane. In toxic doses arsenic produces gastro-enteritis.

Blood.—Arsenic is absorbed into the blood, and in some forms of anemia increases notably the number of red corpuscles, and to some extent the hemoglobin. Experimentally arsenic increases the formation of leukocytes in bone marrow, and the white cells in the blood, and does not increase the red cells or hemoglobin. It lessens the number of white cells in leukemia.

Circulation.—It is said that arsenic stimulates the pulse rate when given in minute doses. In large doses it has a local depressing action on the heart—and probably on the vasomotor centre—lowering the force and frequency of the heart and reducing blood pressure. The nerve endings, ganglia, and muscle of the heart are alike paralyzed, and this action takes place when the heart is removed from the body. Arsenic enhances capillary permeability, hence the edema of the skin (puffiness of eyelids), and digestive tract in poisoning.

Respiration.—In small doses arsenic quickens the breathing and stimulates the respiratory centre; whereas in lethal amounts the respiration fails through lowered blood pressure and exhaustion.

Nervous System.—The nervous apparatus is powerfully influenced by arsenic. Toxic doses cause paralysis of the spinal tracts, in frogs, with loss of sensation, motion, and reflex action, and the brain and nerves are also depressed. The nerve trunks are chiefly affected in the higher animals. There is peripheral neuritis and trophic changes occur. Medicinal doses of arsenic are stimulant to the nervous system generally.

Bone.—Experimentally arsenic has been found to increase the density of bone in growing animals of poor nutrition, the cancellous tissue being transformed to a certain extent into hard bone—possibly by increase of vascularity in the bone marrow.

Metabolism.—Therapeutic doses probably diminish tissue change and the elimination of urea. Continued dosage diminishes liver activity and glycogen formation, thus more nitrogen is eliminated as uric acid and
less as urea. Poisoning causes degeneration of the bone marrow and anemia, also widespread fatty degeneration of the tissues. Large doses, on the other hand, increase metabolic processes and the escape of nitrogenous waste.

Elimination.—Arsenic is eliminated slowly by most channels, but mainly by the urine and to a less extent by the mucous membrane of the respiratory and digestive tracts. Traces are found in the milk, sweat, tears and saliva. It exists in, and can be recovered from, the bodies of animals years after their death from toxic amounts of arsenic.

Summary.—Arsenic is unfortunately one of the drugs whose physiological action—so far as we know it—does not throw any light, in many instances, upon its therapeutic effects. Clinically arsenic improves the general condition and increases the number of red blood cells or prevents their destruction (by destroying a causative organism of anemia in the blood) in pernicious anemia, and lessens the number of leukocytes in the blood in leukemia, thus producing results directly opposite to experimental findings. In altering the condition of the patient for the better, in some diseases, it is described by that vague and otherwise indefinable term, "alterative."

Toxicology.—The lower animals, as the horse and cow, are proportionately not nearly so susceptible to the poisonous effects of arsenic as the human subject; 1½ grains is the smallest fatal dose reported in man. An amount as large as one dram of arsenous acid in solution is required to cause death in a horse or cow, although much smaller quantities have produced death when repeated a number of times (two daily doses of 45 gr., four daily doses of 30 gr. have proved fatal to horses). One-half ounce to an ounce and a half of white arsenic is the toxic single dose for the horse and cow, and from one to two drams for sheep—with considerable variations. Dogs have been killed by 2 grains; hogs by 15 grains. Mild toxic action is seen following therapeutic doses of arsenic when the physiological limit is reached. This condition is characterized by loss of appetite (nausea and vomiting in dogs), watery discharge from the nose and eyes, puffiness of the eyelids, indigestion with mild colic, and diarrhea. The pulse may be accelerated and harder than normal. The appearance of albumin in the urine is the surest sign that arsenic has been pushed past the safe physiological limit.

Acute Poisoning begins with bilious, mucous, or bloody purging and colic. There is vomiting in dogs. Thirst is excessive; the urine is high-colored and albuminous; the pulse is feeble, small and frequent; the respiration is rapid and difficult from abdominal pain; the extremities are cold, and there is great weakness of the limbs. Collapse, with convulsions and coma, often close the scene in from five to twenty hours to three days.

A sub-acute form of poisoning occasionally occurs after a remission from the acute attack, only to be followed by death in from two to five days. In the interim, cutaneous eruptions may appear. Rarely, death takes place within an hour or two, in coma, collapse or convulsions.

Chronic Poisoning is seen in the human subject living in apartments
furnished with arsenical wall paper or fabrics, or in those working in arsenic, and is observed in animals living in the immediate vicinity of smelters and chemical works, and in connection with drainage of sheep dips on forage, or in pastures contaminated with arsenic from spraying of trees. In this condition there are symptoms similar to those noted above as occurring in the milder form of arsenic poisoning, together with gradual loss of strength and flesh, suppression of milk, nasal ulcers, local paralysis or paraplegia, and anesthesia. A slightly raised, dark red or purplish band \(\frac{1}{6} \) to \(\frac{3}{6} \) in. wide is often seen on the gums at the base of the upper and lower incisor teeth of horses, the hair grows unusually long, the breath has a garlicy odor and there are salivation, drooling and cough, loss of appetite, and constipation with mucus coated feces, followed by diarrhea (Salmon). Fatty degeneration of the liver, kidneys, heart, stomach and muscles, in cases of chronic arsenical poisoning, is found after death.

The post-mortem changes observed after acute poisoning are as follows: The gastric mucous membrane, especially the villous portion in horses, is swollen, softened and covered with patches of a deep crimson or dark brown color. There is rarely ulceration. The upper portion of the small intestines, and in horses sometimes the whole of the intestinal tract, is similarly affected with that of the stomach. There is generally a wide-spread fatty degeneration of the stomach, bowels, internal organs and muscles. Congestion of the trachea and lungs and hemorrhages into the latter are often present.

The treatment of acute poisoning depends mainly upon the use of lavage of the stomach and the official freshly prepared arsenic antidote (ferri oxidum hydratum cum magnesia) in large quantities. If this can not be obtained, an antidote can be prepared by precipitating Monsel's solution, or the tincture of the chloride of iron, with sodium bicarbonate or ammonia. Dialyzed iron may be precipitated with an alkali. In either case the precipitate should be washed in a filter of muslin and given in large amounts. Magnesium oxide alone is an efficient antidote. H. & C., 3\text{ss.}; D., gr.xv., every 15 minutes. If vomiting has not occurred, zinc sulphate should be given dogs and cats, or the stomach tube resorted to, and the stomach well washed out. The after treatment is carried out with castor oil, demulcents, opium and external heat. Sweet spirit of nitre is to be prescribed, with considerable water, to flush out the kidneys. The treatment of chronic poisoning consists in removal of the patient from poisoned forage and perhaps the use of potassium iodide—which is very expensive and of doubtful utility.

Uses External.—A paste containing 1 part each of arsenous acid and gum arabic, with 5 parts of water, is used to destroy warts and morbid growths. Arsenous acid, diluted with 5 parts of lard, may be employed to slough out fistulous tracts. In any case, there is danger of poisoning through absorption, if a sufficient amount of arsenic is used; but, on the other hand, the danger is slight if a large enough quantity is applied to cause rapid sloughing.
For the removal of malignant growths or warts:

\[\text{Arseni trioxid.}\]

\[\text{Pulveris acacæ.}\] \(\ldots\) \(\ldots\) \(\text{gr.lxxv.}\)

\[\text{Cocainæ hydrochloridæ.}\] \(\ldots\) \(\text{gr.xxx.}\)

\[\text{Glycerinis.}\] \(\ldots\) \(\text{gr.xxx.}\)

M. et ìt. paste.

S. Apply externally one-quarter inch thick, cover with patent lint and continue application 24 to 48 hours, then remove and apply poultice to remove slough in 5 to 10 days.

Arsenic has been the principal constituent of so-called “sheep-dips” employed to kill ticks and other parasites in the wool. Finlay Dun recommends \(\frac{3}{2}\) lbs. of arsenous acid with an equal amount of pearl ash, soft soap, and sulphur, dissolved in 10 gallons of boiling water and added to 90 gallons of cold water. This quantity will suffice for dipping 100 sheep. The sheep are submerged, except their heads for a few seconds, and placed on a grating to drain into a tub, from which the water flows back into the first receptacle. The excess of water in their fleeces is squeezed out with the hands and a scraper. Sheep and other animals have been poisoned after dipping, by eating grass and fodder on which they have drained; therefore the sheep should always be kept on clean floors or yards in the open air and sunlight until they have become thoroughly dry. The lime and sulphur dip recommended by the U. S. Agric. Dep’t, or the tobacco and sulphur dip, to be found under Seab (p. 606), is as effective and safer. Arsenic and tar solution is most efficient for destroying ticks and preventing Texas fever in cattle (see p. 584).

Uses Internal.—Arsenic is of the greatest service in the treatment of indigestion in horses associated with malnutrition and staring coat, as follows:

\[\text{Arseni trioxid.}\] \(\ldots\) \(\text{gr.xxx.}\)

\[\text{Pulveris nucis vomicae.}\] \(\ldots\) \(\text{gr.xxx.}\)

\[\text{Sodii bicarbonatis.}\] \(\ldots\) \(\text{gr.xxx.}\)

M. et divide in chartulas No. xxx.

Sig. One powder on the feed 3 times daily.

Arsenic is also of value in atonic diarrhoea, and is used in both the serous and dysenteric varieties. In diminishing tissue change, and in acting as a blood tonic, arsenic is believed to improve the condition, endurance, and wind in horses, and is popularly prescribed by dealers and others.

The classical case of the arsenic-eating peasants of Styria seems to corroborate this view. These people appear to be very robust and healthy. Five grains of arsenic was given experimentally to one of them without producing any untoward effect. Arsenic seems to influence favorably diseased mucous membranes of the respiratory tract, to improve their nutrition, and hasten absorption and repair in diseases of the air passages. Coryza, ozena, chronic cough, asthma, emphysema and “broken wind” are greatly benefited by a course of arsenic, and in chronic conditions the treatment should be sustained for months in small doses.
"Thick wind" and convalescence from acute bronchitis, pneumonia or influenza are favorably influenced by arsenic. Arsenic is one of the best agents we can prescribe in general debility and simple anemia and may be conjoined with bitters or iron.

Debility and anemia of horses:

\[
\text{R} \\
\begin{align*}
\text{Arseni trioxidi} & \text{.. 5i.} \\
\text{Ferri sulphatis.} & \\
\text{Pulveris nucis vomicae} & \text{.. 3i.} \\
\text{Pulveris gentianae radicis} & \text{.. 3viii.}
\end{align*}
\]

M. S. Level tablespoonful on feed 3 times daily.

Anemia, mal-nutrition, dog:

\[
\text{R} \\
\begin{align*}
\text{Arseni trioxidi} & \text{.. gr.ss.} \\
\text{Ferri reducti} & \text{.. gr.xv.} \\
\text{Extracti nucis vomicae} & \text{.. gr.iii.}
\end{align*}
\]

M. Fiant pilulae No. xx.

S. One t. i. d.

Arsenic is indeed the next best remedy to iron in anemia, and, in pernicious anemia and leukemia, it is the remedy offering the greatest chances of improvement, when given in gradually increasing doses until horses are taking as much as one ounce of Fowler's solution twice daily; and dogs one-half a dram.

Arsenic is an efficient remedy for horses with round worms as follows:

\[
\text{R} \\
\begin{align*}
\text{Arseni trioxidi} & \text{.. gr.80} \\
\text{Pulveris nucis arecae} & \text{.. 3i.} \\
\text{Ferri sulphatis exsiccati} & \text{.. 3i.}
\end{align*}
\]

M. et divide in chartulas No. viii.

Sig. One powder on feed each morning, and follow with pint of linseed oil containing 3ii. of oil of turpentine on eighth day.

In dry, scaly skin diseases, arsenic is the most successful internal remedy, but should not be prescribed in moist conditions associated with a proliferation of new cells, or exudate of serum or other liquid. It is particularly useful in chronic squamous, or papular eczema, acne and chronic urticaria, when given for a considerable length of time in small doses.

Arsenic is used in rickets, osteomalacia and rheumatic conditions of joints, its curative effects being to a certain extent accounted for by its physiological action.

In the human subject, arsenic is almost a specific in chorea, but does not seem to yield such good results in that disease in dogs, usually associated with distemper. Fowler's solution should be given to dogs with chorea, in doses of two or three drops three times daily, and gradually increased till the physiological limit is reached. The same treatment should be tried in diabetes mellitus in dogs. Large single doses of arsenous acid (3ss.) are sometimes given with calomel (3i.) and aloes (3iv.), in a ball to horses to kill round worms.

Administration.—Arsenic is given to horses as Fowler's solution, or arsenous acid, on the food. If continued for a long time, arsenic must
be prescribed in small doses once daily, or in larger doses once in two or three days. Arsenic is exhibited to dogs in tablet or pill, and as Fowler’s solution. The administration of Fowler’s solution secures more rapid and accurate results than that of white arsenic.

Antimonium.

(The metal antimony is not used in medicine.)

Antimonii et Potassii Tartras. Antimony and Potassium Tartrate.

K (SbO) \(\text{C}_4\text{H}_6\text{O}_4+\frac{1}{2}\text{H}_2\text{O} \) (U. S. P.)

Synonym.—Antimonium tartaratum, B. P.; tartar emetic, tartarated antimony, E.; tartarus stibiatus, P. G.; tartrate de potasse et d’antimoine, émétique, tartre stibié, Fr.; brechweinstein, G.

Derivation.—Make a paste with cream of tartar, antimony trioxide and water. Set aside 24 hours, boil in water 15 minutes and crystallize. 2 K H\(\text{C}_4\text{H}_6\text{O}_4+\text{Sb}_2\text{O}_3\)=2 K (SbO) \(\text{C}_4\text{H}_6\text{O}_4+\text{H}_2\text{O} \).

Properties.—Colorless, transparent crystals of the rhombic system; or a white, granular powder, without odor, and having a sweet, afterwards disagreeable, metallic taste. The crystals effloresce on exposure to air. Soluble in 12 parts of water; insoluble in alcohol.

Dose.—H. & C., 5ii-iv, (8-15); emetic, pigs, gr.iv-x, (0.24-0.6); D., \(\frac{1}{10}-\frac{1}{2} \), (.006-.03); emetic D., gr.i-ii, (.06-.12).

Preparation.

Syrupus Scillu: Compositus. Compound Syrup of Squill. (U. S. P.)

Synonym.—Hive syrup. Fluidextract of squill, 80 mls; fluidextract of sene-ga, 80 mls; antimony and potassium tartrate, 2 Gm.; distilled water, 10 mls; syrup to make 1000 mls.

Dose for Dog.—\(\text{m}v-\text{xxx}, (.3-2) \).

Action of Antimonii et Potassii Tartras.

Tartar emetic is the only antimony compound suitable for internal use. The sulphide and oxide of antimony are insoluble, save in the hydrochloric acid of the gastric juice, and are not so certain or reliable in their action as tartar emetic. Kermes mineral and golden sulphur, containing variable amounts of antimony trisulphide and trioxide, are even more uncertain and unreliable than antimony sulphide or oxide.

External.—Tartar emetic is irritant, and when rubbed into the skin produces a pustular eruption and often sloughing and destruction of tissue.

Internal.—**Stomach and Bowels.**—Tartar emetic is a gastro-intestinal irritant, causing salivation and nausea in small doses, vomiting and diarrhea in large quantities; while toxic amounts are followed by vomiting (in carnivora), serous or bloody purging, great depression of the circulation and respiration, muscular weakness, collapse and death.

Uneasiness, nausea, colic and death have been reported in horses only after enormous doses of tartar emetic by the mouth. The horse and ruminants are comparatively insusceptible to the action of tartar emetic. The writer has observed a cow, however, in which nausea and actual vomition occurred, following a therapeutic dose of kermes mineral in elec-
tuary.

Tartar emetic is a powerful but slowly acting emetic (attended with a good deal of nausea) in dogs. Tartar emetic has been recovered in the
first vomitus following its intravenous injection. It also expels the contents of a bladder artificially replacing the normal stomach. These results go to show that tartar emetic acts both as a specific emetic upon the vomiting centre, and locally as a specific irritant and an emetic upon the mucous membrane of the stomach. Tartar emetic is eliminated in great part by the mucous membrane of the alimentary canal.

Circulation.—The principal action of antimony is exerted upon the heart and vessels. The heart muscle is weakened and vascular tension markedly lowered by large doses of tartar emetic. This action depends upon the influence of antimony on the cardiac muscle itself, and possibly upon the vagus nerve-endings in the heart. Vascular tension is lowered through depression of the heart and of the peripheral vasomotor nerves or muscle of the vessel walls. Whether the vasomotor centre is also depressed is uncertain. The pulse is reduced in force and frequency by large doses of tartar emetic. Following lethal amounts, the heart becomes flabby and relaxed, and death occurs in diastolic arrest. The preceding remarks apply only to the action of tartar emetic upon carnivora.

Antimony was formerly a very popular drug when general depressant and depletant treatment was in vogue, because of its powerfully depressing action upon the circulation.

Respiratory Organs.—Small doses of antimony increase secretion of bronchial mucus. Toxic amounts weaken the respiratory movement by lowering the functional activity of the respiratory and vagus centres, and cause a copious outpouring of serous and mucous secretion into the bronchial tubes, which has the effect of drowning an animal in its own secretions. This action is only seen in horses after intravenous injection of toxic quantities of tartar emetic. The respiration is slow and labored in poisoning.

Nervous System.—Large doses of antimony depress the functional activity of the brain and sensory tract of the spinal cord. Larger doses produce loss of reflex action and anesthesia, owing to the influence of antimony upon the sensory side of the cord; while in toxic amounts, antimony is a general paralyzant to all the spinal centres and to the motor nerves.

Muscles.—In carnivora and man, antimony lessens muscular strength and relaxes spasm through its depressing action upon the motor nerves and muscular tissue.

Elimination.—Antimony is mainly eliminated by the mucous membrane of the stomach and bowels, but also by the kidneys, bronchial mucous membrane, and other channels.

Toxicology.—The symptoms are those described under “Action on the Stomach and Bowels.” The fecal discharges in man are copious and of the rice water appearance characteristic of Asiatic cholera. If vomiting is not free, zinc sulphate should be given, or the stomach washed out. Tannic acid should be administered as a chemical antidote, together with the use of external heat, alcohol, digitalone, strychnine and morphine subcutaneously, and demulcients by the mouth.

Uses External.—Tartar emetic is used in ointment, in the strength of 1–4, over chronically enlarged and rheumatic joints of cattle. It is
also employed over the sides of the chest in cattle, to produce counter-
irritation and pusulation in the strength of 1 part to 12 of lard.

Internal.—The therapeutic value of tartar emetic is limited mainly
to canine practice. Antimony is still prescribed largely by the Germans
as a general and circulatory depressant and expectorant for horses. Gen-
eral depressant treatment has gone out of vogue and is not usually indi-
cated in inflammatory affections, and even if it were, antimony does not
exert such an action in any considerable degree upon horses or ruminants.

Aconite is a much more valuable and efficient circulatory depressant
than antimony for the horse. There are three indications for antimony
in canine practice: 1st, as an emetic; 2nd, as a general depressant in
inflammatory diseases and in strong patients; 3rd, as an expectorant in
acute bronchitis. The first indication is generally attained more promptly
and safely by zinc sulphate. The second and third indications may be
combined by prescribing antimony in the first, or dry stage of acute
bronchitis in dogs, in the form of hive syrup. For example:

B

Syr. Scillæ Co.
Sp't's. Äther. Nitrosi...............................caa 5ss.
S. Teaspoonful every 2 hours.

Antimony may be employed as an emetic in bronchitis to clear the
stomach and upper part of the respiratory tract of secretions. Ipecac is,
however, a better and safer agent in dogs for this purpose, and antimony
is generally counter-indicated in the second, or exudative stage of bron-
chitis.

Bronchitis in horses:

B

Antimonii et potassii tartratis.
Ammonii chloridi.................................caa 5ss.
M. et divide in chartulas No. viii.
S. One powder on the feed t. i. d.

Tartar emetic is useful in cattle to overcome paresis and impaction
of the rumen.

The Germans prescribe tartar emetic very commonly to horses as a
parasiticide against round worms and tape worms. Four or five drams
are given in a pail of water to the fasting animal, and followed by the
administration of a dose of oil. Tartar emetic has recently been given
intravenously in trypanosomiasis, its action resembling arsenic prepara-
tions.

SECTION VIII.

Phosphorus.

Phosphorus. Phosphorus. P. (U. S. & B. P.)

Synonym.—Phosphore, Fr.; phosphor, G.

Derivation.—Digest bones in sulphuric acid, or treat bone ash with sulphuric
acid; filter and evaporate. Ca₃(PO₄)₂ (bone ash) + 2 H₂SO₄ = Ca H₄ (PO₄)₂
(acid calcium phosphate) + 2 Ca SO₄.

Heat acid calcium phosphate, charcoal, and sand together, and distil over
phosphorus into water.
Heat breaks up $\text{Ca}_4 (\text{PO}_4)_2$ into $\text{Ca}_2 (\text{PO}_3)_2$ (calcium metaphosphate) + 2 H_2O.

Then: $2 \text{Ca}_2 (\text{PO}_3)_2 + 2 \text{SiO}_2 + 10 ^\circ\text{C} \rightleftharpoons \text{P}_4 + 2 \text{Ca Si O}_3 + 10 \text{CO}$.

Properties.—A translucent, nearly colorless solid, of a waxy lustre, having at ordinary temperature about the consistency of beeswax. By long keeping, the surface becomes red and occasionally black. It has a distinctive but disagreeable odor and taste, but should not be tasted except in a state of great dilution. When exposed to the air it emits white fumes which are luminous in the dark, and have an odor somewhat resembling garlic. On long exposure to the air, it takes fire spontaneously. Sp. gr. about 1.830 at 10° C. It melts at about 44° C. Almost insoluble in water, to which it imparts its characteristic disagreeable odor and taste. Sparingly soluble in fixed oils, soluble in 400 mils of dehydrated alcohol, 17 mils of chloroform, 102 mils of absolute ether, 31.5 mils of benzene, and in 0.9 mil of carbon disulphide. Besides the official form there are several other alllotropic forms of phosphorus, including the red, or amorphous, the black, and the crystallized metallic phosphorus.

Red phosphorus is non-poisonous, owing to its insolubility preventing its absorption in the digestive tract.

Dose.—H., gr.i-ii, (.06-.12); C., gr.ii-iii, (.12-.18); Sh. & Sw., gr.1/100-1/20, (.0006-.008); D., gr.1/100-1/20, (.0006-.008).

PREPARATIONS.

Oleum Phosphoratum. Phosphorated Oil. (B. P.)

Phosphorus, 1 Gm.; expressed oil of almond and ether, of each a sufficient quantity to make 100 Gm. (U. S. P. 1890.)

Properties.—A clear, yellowish liquid, having the odor of phosphorus and ether. The ether in this preparation evaporates in time and the strength is proportionately, and perhaps dangerously, increased.

Dose.—H., 3ii-iii, (8-12); D., m.i-v, (.06-3).

Pilulae Phosphori. (U. S. P.)

Each pill contains gr.1/100 of phosphorus.

Pilulae Phosphori. (B. P.)

2 per cent. phosphorus.

Dose.—D., pills, i-ii.

Action of Phosphorus

Internal.—The sole physiological action of phosphorus which would suggest, and in some manner explain, its therapeutic use is that on bones. Phosphorus, when given in small doses to growing animals, apparently stimulates the bone-making cells (osteoblasts) and the growth of denser bone, both from cartilage and periosteum. In older animals the lamellae of spongy tissue are made thicker and, in fowl, the narrow cavity may be wholly obliterated by the deposition of hard bone through the ingestion of phosphorus. If calcium salts be withheld from the food the activity of the osteoblasts continues but the new bone is soft and of the nature of bones in rickets. The precise mode of action of phosphorus on normal and diseased bones (ricks and osteomalacia) has yet to be determined.

There appears to be clinical evidence that phosphorus is a nerve stimulant and, in man, it is said that large doses cause mental exhilaration, and increased capacity for work, and excite sexual desire. Experiments with phosphorus on animals show no special action of the drug on the nervous system. Phosphorus is absorbed largely in an unchanged condition in solution in fatty matter in the bowels and as vapor. Some of the phosphorus is probably converted in the bowels and blood into phosphuretted hydrogen (PH_3) and further oxidized into phosphoric
Acid in the body. Its fate is unknown, but some phosphorus is eliminated as vapor from the lungs and some in organic compounds in the urine.

The toxic action of phosphorus differs decidedly from its therapeutic effect and so does the action of pure phosphorus from its compounds. The action of phosphates, phosphoric acid and hypophosphites is not at all that of phosphorus.

Most of the hypophosphites are eliminated unchanged in the urine and do not act as phosphates, as formerly believed. They appear to have little more influence than sodium chloride, except the iron salt, where the metallic ion acts as other iron compounds. Phosphoric acid stimulates digestion and secretin formation, like other mineral acids, but is inferior in this respect to hydrochloric acid. It has been given internally for its supposed action as a phosphate, but the organic phosphate compounds of the body cannot be built from the inorganic salts. Lecithin owes its value to its phosphorus content (4%). On the market it is a yellowish white mass derived from yolk of eggs. It is essential in building the nuclein content of cells and has been given in anemia. Ordinary food is rich in lecithin, especially grains, eggs and milk, so that lecithin is commonly not indicated in disease when the diet is ample.

Calcium hypophosphate, lactophosphate and glycerophosphate act similarly to calcium phosphate (page 127).

Toxicology.—The symptoms of poisoning do not ordinarily appear until some hours after ingestion of toxic doses (15 to 20 grains of phosphorus poison horses; 1½ to 4 grains are toxic for dogs). Then abdominal pain, nausea and vomiting (in those animals in which it is possible) and purging occur. The breath, vomitus and fecal discharges may be luminous, and have the odor of phosphorus. There is fever, anorexia and thirst. This condition is followed by an intermission in which the patient appears to be recovering, only to be succeeded by jaundice, hemorrhages (due to fatty degeneration of vessels and blood poor in fibrinogen), nervous symptoms, as delirium, coma and convulsions, and death. The urine rarely becomes albuminous in animals, but contains leucin and tyrosin. The heart muscle is directly paralyzed by lethal doses.

Grave, destructive metabolic changes (autolysis) occur in the tissues especially the liver. There is general fatty degeneration of the viscera and muscles. The blood is disorganized, and there are widespread ecchymoses. Jaundice follows closure of the common, or hepatic duct, or smaller biliary tubules (owing to proliferation of interstitial tissue, seen also in the stomach and kidney), and disorganization of the blood. There is rapid atrophy of the liver, and phosphorus poisoning in man is often indistinguishable during life from acute yellow atrophy of the liver. Nitrogenous elimination is increased. Imperfectly decomposed products of metabolism, as leucin and tyrosin, occur in the urine; also an excess of urea and ammonia and often blood, bile and fat and sarcolactic acid. It is a matter of dispute whether the fat deposited in the cells of the tissue is formed there (fatty degeneration), or is conveyed thence from that already existing in the subcutaneous tissue. Chronic poisoning, attended with necrosis of the jaw and other symptoms, and occurring among
workers in phosphorus, is unlikely to occur in the lower animals. Acute poisoning is treated by emptying the stomach with a stomach tube or by giving copper sulphate; the latter forming an insoluble phosphide of copper. Cathartics should also be administered. Permanganate of potash (H., 5ii. in 2 qts. of water; D., gr.xv. in Oss. water) or hydrogen dioxide should be employed as antidotes, for their oxidizing action. Old turpentine is usually recommended as the antidote, but only the French variety is of any value, and that is generally unobtainable. Demulcents and opium are in order after evacuant and antidotal treatment has been carried out, but oil should never be given in phosphorus poisoning, as it assists the solution and absorption of the poison.

Uses.—Phosphorus is indicated as a stimulant to the growth of bone in rachitis, after fractures, and in osteomalacia; as a nerve stimulant and tonic in conditions of nervous exhaustion and impaired vitality, due to excessive activity of the sexual organs or otherwise. It is used empirically in treatment of boils, acne, and scaly eczema, epilepsy, chorea and paralysis, and has been prescribed with alleged advantage as a general stimulant in pneumonia.

Administration.—Phosphorus may be given in pill or ball, with cacao butter, or in the official preparation to dogs, and in a saturated alcoholic solution to horses. Phosphide of zinc represents the action of phosphorus, and yields phosphuretted hydrogen in its decomposition in the body. It may be given to dogs (gr.1-10) in the form of pills.

SECTION IX.

Chlorine.

CHLORUM. Chlorine. Cl. (The gas is not official.)

Calc Chlorinata. Chlorinated Lime. Ca Cl₂ O₃, Ca Cl₂. (U. S. & B. P.)

Synonym.—Calc chlorata; calcaria chlorata, P. G.; chloride of lime, hypochloride of calcium, calcium hypochlorite, bleaching powder or bleach, E.; chlorure de chaux, poudre de Tennant, ou de Knox, Fr.; chloralk, bleichkalk, G.

A preparation often improperly called “chloride of lime.” It should contain not less than 30 per cent. of available chlorine. Preserve in air-tight containers, in a cool, dry place.

Derivation.—Pass chlorine gas over calcium hydrate, when chlorinated lime, a mixture of calcium chloride and hypochlorite results: 2 Ca(OH)₂+2 Cl₂ = Ca Cl₂ O₃·Ca Cl₂+2 H₂O. It may also be regarded as a mixture of lime and chlorine: 2 Ca(OH)₂+2 Cl₂ = 2 Ca O₂, 2 Cl₂+2 H₂O.

Properties.—A white, or grayish-white granular powder, having the odor of chlorine and a repulsive, saline taste. It becomes moist and gradually decomposes on exposure to air, and, when in such condition, must not be used or dispensed. In water or in alcohol it is only partially soluble. It evolves chlorine on exposure to the air or on addition of an acid. Chlorinated lime possesses an alkaline reaction and bleaching properties.

Dose.—Only of value externally.

Preparation.

Liquor Calcis Chlorinata. Solution of Chlorinated Lime. (B. P.)

This solution should yield about 3 per cent. of chlorine.

Liquor Sodæ Chlorinatae. Solution of Chlorinated Soda. (U. S. & B. P.)

Synonym.—Liquor sodae chloratae, Labarraque’s solution, E.; chlorure de soude liquide, liqueur de Labarraque, Fr.; chlornatron lösung, bleichflüssigkeit, G.
An aqueous solution of chlorine compounds of sodium, containing not less than 2.5 per cent. of available chlorine.

Derivation.—Monohydrated sodium carbonate, 70; chlorinated lime, 100; water to make 1,000.

Properties.—A clear, pale, greenish liquid, having a faint odor of chlorine and a disagreeably alkaline taste.

Dose.—Only of value externally.

Action and Uses of Chlorine.

Chlorine gas, in the presence of organic matter and moisture, unites with the hydrogen of water and sets free nascent oxygen. When chlorine comes in contact with sulphuretted hydrogen, it removes and destroys the compound. Chlorine is thus a powerful oxidizing disinfectant agent and deodorizer. One-quarter of 1 per cent. of chlorine in solution is an effective germicide. When chlorine gas is inhaled undiluted, it is an irritant to the respiratory tract, producing sometimes spasm of the glottis, or severe bronchitis, and at other times a condition of narcotism, with death from paralysis of the respiratory center. In contact with living tissues, chlorine replaces the hydrogen of proteid compounds and forms hydrochloric acid with the hydrogen thus set free. The symptoms of poisoning are explained by the local irritation of the hydrochloric acid thus formed. In dilute form it is stimulant, antiseptic, and deodorant in relation to the body. Chlorine gas may be generated from salt and black oxide of manganese, 1 part each; with commercial sulphuric acid and water, 2 parts each.

The spores of most bacteria are killed after three hours' exposure to a moist atmosphere containing 0.3 per cent. of chlorine gas. Chlorine may be used to advantage in this manner as a substitute for sulphur fumigation. Chlorinized lime varies much in strength. To be of any value it should be so irritating to the eyes that it cannot be held near the face. It owes its medicinal value to the hypochlorite of lime which it contains. If the compound is very moist, it is because calcium chloride preponderates. Chlorinated lime is often employed as a deodorizer, standing about premises in vessels, but is of no practical value unless it comes directly in contact with bacteria or sulphuretted compounds which it is desirable to destroy. It is the best and cheapest germ destroyer we possess for disinfecting premises and other appurtenances, apart from the body, as walls and floors of buildings, fecal and other discharges, sewers, privies and cesspools. A 10 per cent. solution is to be employed on the floors, walls and other parts of buildings. The pure compound may be mixed with manure and discharges. Chlorinated lime has the disadvantages of destroying the fertilizing value of manure, however, and of keeping floors constantly wet through its deliquescent properties. Even a 1 per cent. solution is germicidal, and may be employed to wash blankets, harness and other paraphernalia. It is said not to harm woolen or cotton fabrics, in the latter solution. Chlorinated lime is a useful disinfectant in privy vaults when the contents are kept continually covered with chlorinated lime. The water supply of over 600 American cities is sterilized by “bleach” (by making a 1 to one or two million solution). The best method consists in dissolving a quarter pound tin of high quality chlori-
nated lime in a gallon of water. This will sterilize 8000 gallons of any ordinary clear river or well water in 15 minutes. Then, to combine with any free chlorine left in the water, and so remove it and its taste, a gallon of sodium thiosulphate solution (containing $\frac{1}{2}$ lb. of the salt) is added to the 8000 gallons of drinking water. A 1 to 1,000 solution of bleach is most effective in sterilizing all dairy utensils in place of steam (Winslow, Amer. Vet. Review, Aug. 1915). Upon the body, a 2 or 3 per cent. solution of chlorinated lime is employed as a stimulant, deodorant, and antiseptic for decubitus, foul-smelling and gangrenous sores, severe burns and indolent ulcers. It it used in 10 per cent. solution as a parasiticide in ringworm and scabies. A 1 per cent. solution forms a valuable wash in ulcerative stomatitis. Chlorinated lime may be prescribed, with an equal amount of lard, upon ulcers when a stimulating action is desired. Chlorinated lime (gr.xv. in $\frac{1}{3}$i. of water) is one of the most effective antidotes for snake bite, when injected in several places in the region of the lesion. Its internal administration is undesirable. The solution of chlorinated soda is a slight caustic, deodorizer and antiseptic preparation on indolent, sloughing, foul-smelling surfaces. It may be prescribed in sore throat, or ozena, as a spray, or injected into the uterus, vagina or rectum. It is commonly diluted with 8 to 10 parts of water. Chlorinated lime has been found the most powerful antiseptic in surgery of the Great War. It is used in powder (known as cupad), made by grinding it up in a mortar and mixing it with an equal weight of boric acid. Or, is used in solution, made by shaking 25 Gm. of cupad with a liter of water, allowing it to stand for a few hours and filtering. This is known as eusol, and is employed for wet dressings or for irrigation of wounds, while cupad is used as a dusting powder. Also see Dakin's solution, chlorazene, and dichloramine-T, p. 510.

Bromine.

Bromum. Bromine. Br

Derivation.—From seaweed and mineral springs.

Properties.—Heavy, dark, brownish-red liquid, volatilizing with the production of an irritating vapor. Soluble in 30 parts of water, and readily soluble in alcohol and ether. Of no value in veterinary medicine.

Potassii Bromidum. Potassium Bromide. K Br. (U. S. & B. P.)

Synonym.—Kalium bromatum, P. G.; bromure de potassium, Fr.; brom-kalium, G.

Derivation.—Obtained from liquor potassae, bromine, and charcoal by the same process described in making potassium iodide (p. 190).

Properties.—Colorless, or white, cubical crystals, or as a granular powder; odorless, and having a strongly saline taste. Permanent in the air. Soluble in about 1.5 parts of water and in 250 parts of alcohol.

Dosage.—H. & C., $\frac{3}{5}$i-ii, (30-60); Sh. & Sw., $\frac{3}{5}$i-iv, (8-15); D., gr.v-3i, (.3-4).

*Sodi Bromidum.** Sodium Bromide. Na Br. (U. S. & B. P.)

Synonym.—Natrium bromatum, P. G.; bromure de sodium, Fr.; bromnatrium, G.

Derivation.—Similar to potassium bromide. Liquor sodae is used instead of liquor potassae.

Properties.—Colorless, or white, cubical crystals, or a white, granular powder;

Ammonii bromidum, lithii bromidum, calci bromidum and strontii bromidum are also official. These salts are given in the same doses as sodium bromide.
odorless, and having a saline taste. From air the salt attracts moisture without deliquescing. Soluble in 1.1 parts of water, and in 16 parts of alcohol.

Dose.—Same as potassium bromide.

Action of the Bromides.

External.—None.

Internal.—**Digestive Tract.**—The bromides, when ingested in concentrated form, may induce nausea and vomiting through irritation of the stomach produced by withdrawal of water from the gastric mucosa. This “salt action” is common to other salines. In a large, single dose, the bromides cause in horses muscular weakness, dulness and staggering gait, and slow respiration. The urine is increased in quantity and sexual desire diminished. Bromism may be produced in man, or the lower animals, by the continuous administration of the bromides. This condition is characterized by general weakness and unsteady gait, mental dulness, indigestion, fetid breath, cutaneous anesthesia, loss of sexual power, and occasionally an acneform eruption. Death has never been caused in man by the bromides.

Nervous System.—The bromides are essentially depressant to nerve tissue. Therapeutically, this depressing action is seen particularly in relation to the motor centres of the middle region of the cerebral cortex; to the intellectual areas in the anterior cerebral region (in man); and to lessening reflex action. The whole nervous system is depressed (except the medulla), but the motor tract in the brain and the sensory nerves are the first to succumb to the influence of the bromides. Intellection is clouded, and dulness and mental apathy are observed in man after large amounts. Reflex action is diminished owing to interference with the passage of impulses from the sensory to motor cells of the cord, and, later, to depression of the sensory nerves. Finally, with the continuous administration of large doses the motor area of the spinal cord, the motor nerves and muscles fall under the depressing action of these agents.

Circulation.—Potassium bromide is a powerful depressant to the heart in toxic doses. Medicinal doses injected into a vein induce weakness of the heart, but therapeutic amounts, given by the mouth, exert no appreciable effect upon the circulation. The depressing action of potassium bromide upon the heart is due wholly to the potassium ion; the bromine ion is not a heart depressant. There is practically no difference in the action of therapeutic doses of potassium, sodium, strontium, or ammonium bromides. Ischemia of the pia is seen under the influence of bromides. This is the result of depression of the cerebrum and sleep, and not the cause of sleep. The old idea that the beneficial action of the bromides, in relieving nervous excitability and in causing sleep, was due to the production of vasomotor spasm and cerebral anemia, is now exploded.

Temperature.—The temperature falls, following the action of toxic amounts of the bromides, owing to lessened muscular movements.

Sexual Organs.—The bromides diminish sexual desire and power. In so doing they either depress the spinal centres or lessen peripheral sensibility of the genito-urinary tract.
Elimination.—The bromides are eliminated unchanged by all channels and are found in the sweat, urine, milk, saliva, intestinal secretions, etc. Elimination begins immediately but may not keep pace with continuous administration, and bromism may occur.

Uses Internal.—The bromides, being particularly useful in the treatment of functional nervous diseases, do not possess nearly the value in veterinary medicine that they have in human practice. Moreover, their use is limited mainly to canine disorders, as bromides have little influence upon diseases of horses.

Bromides are especially indicated in irritation of the motor area of the cerebral cortex (convulsions), in general nervous excitability, in meningitis, and in conditions due to exalted reflex action in dogs.

The bromides are indeed the best agents we can use to prevent convulsions in dogs. They should be combined with chloral and given, if necessary, per rectum.

Dogs with convulsions:

B
Chloralis .. 3i.
Sodii bromidi .. 3iv.
Aqua .. 3ii.

M.
S. Teaspoonful in water and repeat in an hour.

The bromides are useful in canine chorea, in connection with Fowler’s solution. With chloral the bromides are antidotes to strychnine poisoning. Sexual excitement in all animals may be allayed by the bromides. The bromides are occasionally of value in reflex cough, palpitation of the heart, and asthma, but are inferior to other agents in these disorders.

Potassium bromide is recommended in the treatment of tetanus of the horse, but lobelia, belladonna and cannabis indica are generally more effectual. If the bromides are used they should be given with chloral. Ammonium and sodium bromide are commonly said to be less depressant in large doses to the heart than the potassium salt, and strontium bromide less disturbing to the stomach in dogs. There does not appear to be sufficient scientific basis for either of these statements (see above).

Iodine

Iodum. Iodine. (U. S. P.)

Synonym.—Iodinum, U. S. P. 1870; iodium, P. G.; iode, Fr.; jod., G.

Derivation.—Iodine is a non-metallic element (halogen) existing in combination in the animal, vegetable and mineral kingdoms. It occurs in seaweed, from which it is obtained by distillation. It is also mined in the form of iodates and iodides.

Properties.—Heavy, bluish-black, brittle rhombic plates, having a metallic luster, a distinctive odor, and a sharp acrid taste. It is soluble in 2,950 parts of water, and in 12.5 parts of alcohol; freely soluble in chloroform, ether, and in aqueous solutions of iodides. Iodine volatilizes on heating with the formation of a purple vapor. With starch, a solution of iodine forms an insoluble blue compound.

Dose.—H. & C., 5ss-i, (2-4); Sh. & Sw., gr.x-xx, (0.6-1.3).

Not often used in solid state.
PREPARATIONS.

Liquor Iodi Compositus. Compound Solution of Iodine.

(U. S. P.)

Iodine, 5; potassium iodide, 10; water to make 100. (1-20.)

Dose.—H. & C., 5ii-iv, (8-15); D., ml-x, (32-6). Should be given in one quart of water to the larger animals.

Tinctura Iodi. (U. S. P.)

Iodine, 70; potassium iodide, 50; water, 50; alcohol to make 1,000.

Dose.—H. & C., 5ii-iv, (8-15); D., ml-x, (.06-3).

Tinctura Iodi. (B. P.)

Dose.—Same as U. S. P. tincture.

Unguentum Iodi. (4 per cent.) (U. S. & B. P.)

Too weak for most veterinary purposes.

Action External.—Iodine is one of the most effective and valuable of antiseptics for surgical purposes. The tincture will kill all pathogenic bacteria in vitro within one minute, whereas a 1 to 1000 solution of mercuric bichloride requires more than half an hour to destroy the same microorganisms. Moreover, the tincture has unusual penetrating power on the dry skin, finding its way into the hair follicles and cutaneous glands.

The tincture of iodine is perhaps the most efficient and popular disinfectant for use in sterilizing the skin for operations. But the skin must be dry or the sterilizing effect of the iodine is inhibited. Iodine must not be applied to the wetted skin because the wetting causes the epithelial cells to swell and thus prevents the iodine from penetrating into the sebaceous and sudoriparous glands, the very action upon which the special germicidal action depends. The tincture is also of much worth as an antiseptic on wounds and denudation of the skin caused by harness, bruises, etc. (see p. 513). Iodine acts as a slow, moderate and prolonged irritant upon the skin and mucous membranes. The yellow stain produced by iodine may be removed by ammonia water, alkalies and sodium hyposulphite. A small amount of iodine is absorbed through the unbroken skin, and it is thought to have a special resolvent and alterative action over and above that of other counter irritants. Whether this be true or not, its easy mode of application makes it a very convenient counter-irritant for local uses.

Action Internal.—Iodine produces gastro-intestinal irritation and inflammation in large doses; and in toxic quantities induces colic, vomiting in animals capable of the act, and purging and salivation. The pulse becomes rapid and weak; there is often suppression of urine, and occasionally nephritis. Widespread fatty degeneration has been found after fatal poisoning in the lower animals. If there is much starchy material in the bowels, the fecal discharges may be of a bluish color. Aphrodisiac action has been noted in man, following small doses of iodine. The treatment of acute poisoning is embraced in the use of starch by the mouth, or raw eggs, external heat; strychnine, digitalone, alcohol, and atropine subcutaneously. Chronic poisoning by iodine and iodides (iodism), in man, commonly causes symptoms analogous to a severe cold in the head, with pain over the frontal sinus, sore throat, running at the eyes and nose, gastric indigestion, together with an acneform, and occasionally purpuric or furuncular eruption.
These more frequent symptoms of iodism occur more often after the administration of potassium iodide than after that of iodine. The physiological action of the iodides is similar to that of iodine, which is transformed into iodides in the body. But the iodides are usually preferred for internal use since they are locally so much less irritating. Both iodine and potassium iodide are readily absorbed from mucous membranes, and are found in all the tissues and fluids of the body. Iodine is absorbed as iodides and, perhaps, in loose combination with albumin (iodoalbuminates)—and eliminated as iodides by all the usual channels, as well as by the mucous membranes. The kidneys eliminate the greater amount, but iodine is found in the saliva and gastric juice after it has ceased to be present in the urine. The activating effect of iodine on the thyroid gland probably accounts for much of its influence on the body. Iodine is essential for normal thyroid activity. Glandular hyperplasia (colloid goitre) is a physiological reaction to a deficiency of iodine. The iodine content of the gland varies inversely with the degree of enlargement. Giving iodine in simple goitre in puppies causes reduction of the glandular hyperplasia. An excess of iodine ingested in goitre will produce the same symptoms (hyperthyroidism) as occur in morbid conditions where an excess of thyroid secretion is formed (exophthalmic goitre in man), i.e., rapid heart, tremors, wasting, excitement, etc.

Uses External.—Iodine is of most value applied externally, or locally. In sterilizing the skin for an emergency operation the hair should be clipped and shaved dry and the tincture of iodine applied without washing of the skin.

For other operations the skin may be scrubbed with soap and shaved and dried before applying the tincture. The tincture should always dry on the skin before the operation is begun. The routine method in human surgery for sterilizing the skin, accepted by leading surgeons, consists in first cleansing the skin with gasoline to remove the grease and then applying the tincture of iodine in full or half strength. Half strength should be used on mucous membranes, as the vagina. Potassium iodide is administered internally because it is not irritating to the digestive organs. Although potassium iodide does not exactly represent the action of iodine, yet it is usually preferable for the reason just stated. Potassium iodide renders iodine soluble, and prevents its precipitation in fluids within and without the body; it is therefore combined with iodine, when concentrated solutions are desirable. Six parts of potassium iodide and twelve parts of iodine are added to one hundred parts of water, or ointment, to make a suitable counter-irritant preparation for the horse.

<table>
<thead>
<tr>
<th>R</th>
<th>Potassii iodidi</th>
<th>Iodi</th>
<th>Cerati</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Sig. External use.

A useful tincture for veterinary purposes contains 15 parts of iodine and 18 parts of potassium iodide in 100 parts of alcohol.
For resolvent purposes:

<table>
<thead>
<tr>
<th>R</th>
<th>Iodi</th>
<th>Potassii iodiidi</th>
<th>Alcoholis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>18</td>
<td>100</td>
</tr>
</tbody>
</table>

M.
S. Apply externally.

Iodine is employed in aqueous and alcoholic solution, or in ointment, as above, either painted upon or rubbed into the skin over enlarged glands, rheumatic swellings about the joints or upon the chest in chronic pleuritis. It is also of value in strains, bruises, periosteal inflammation and muscular rheumatism. In the horse, severe sprains and inflammation of joints, bones, and periosteum, are treated more satisfactorily by blistering agents. Iodine is a valuable disinfectant and parasiticide in alopecia areata, and particularly in ringworm and favus in dogs, when the tincture is applied locally. Iodine is applied externally, in the form of the tincture, on patches of chronic mange and eczema.

Iodine is often recommended for erysipelas, but is inferior to phenol for this purpose. In obstetric work the tincture of iodine should be applied to the cord after it has been ligated and trimmed, and reapplied every few days, to prevent septic infection with metastases in the joints. Lugol’s solution, diluted with water to make 0.25% strength, is useful as a uterine douche in metritis of cows. Improvement in periodic ophthalmia in horses has followed injections of one to three mils each of Lugol’s solution and glycerine into the fat over the eyeball at 10-day intervals. Iodine is injected into joints, synovial saes, abscesses, and cavities of the body to promote healing through its antisepctic and irritant action; to cause adhesive inflammation, and in this manner to close cavities and to prevent the accumulation of fluids in them. The official tincture (5i-ii.) is commonly used for injections.

The tincture of iodine may be injected undiluted directly into the substance of enlarged glands, in amounts varying from 15 to 30 drops, to assist their absorption. If the tincture is injected into the subcutaneous tissue, abscess may ensue. In goitre in dogs, calves and lambs, injections of tincture of iodine (m x.) may be made every other day for 10 to 20 times—if painting on the tincture externally and potassium iodide or dessicated thyroid glands (gr.i in capsules thrice daily) internally are unsuccessful. Ozena may be treated to advantage by irrigation with a solution containing one dram of the tincture of iodine to the pint of normal salt solution. In inflammation of the upper air passages, iodine is sometimes beneficial as a stimulant and antisepctic inhalation, which is produced by adding one-half a dram of iodine to the pint of boiling water.

Uses Internal.—Iodine is thought to act more satisfactorily than potassium iodide in the treatment of diabetes insipidus or polyuria of the horse, in which it often appears to be a specific. One ounce twice daily, intratracheally, of Dieckerhoff’s solution (iodine, 1; potassium iodide, 5; water, 100) has given good results in purpura of horses.

Administration.—Iodine may be combined with gentian and iron in the form of a ball, as recommended by Finlay Dun, or better, given as Lugol’s solution, which is less irritating and more active.

Synonym.—Jodkalium, G.; kalium iodatum, P. G.; iodure de potassium, Fr.

Derivation.—Iodine is dissolved in hot liquor potassæ: 6 I + 6 K O H = 5 K I + K I O₂ + 3 H₂O. The evaporated residue is heated with charcoal to remove O from K I O₃ (Potassium Iodate). KIO₃ + 3 C = KI + 3 CO. The result is purified by crystallization.

Properties.—Cubical crystals, either transparent and colorless or more or less opaque and white, or as a white, granular powder, having a pungent, saline, afterwards bitter taste. Permanent in dry air, but slightly deliquescent in moist air. It is soluble in 0.7 part of water; in 22 parts of alcohol, and 2 parts of glycerin.

Dose.—H., 3ii-iv, (8-15); C., 5vi, (24); Sh. & Sw., gr.xv-xxx, (1-2); D., gr.ii-x, (12-6).

Synonym.—Iodure de sodium, Fr.; jodnatrum, G.; natrium iodatum, P. G.

Derivation.—Made from sodium hydrate in the same manner as potassium iodide.

Properties.—Colorless, cubical crystals, or as a white, crystalline powder, odorless and having a saline taste. In moist air sodium iodide deliquesces, or at first cakes and then deliquesces, and frequently undergoes decomposition, assuming a brown tint. Soluble in 0.55 parts of water and in 2 parts of alcohol.

Dose.—Same as potassium iodide.

Syrupus Acid. Hydriodicæ. Syrup of Hydriodic Acid. (U. S. P.)

Contains 1.3 to 1.45 per cent. of H I.

Derivation.—Diluted hydriodic acid, 125; water, 300; syrup, 575.

Properties.—A transparent, colorless, or not more than pale, straw-colored, syrupy liquid; odorless, and having a sweet and acidulous taste.

Dose.—D., m xv-3i, (1-4).

Action External.—Potassium iodide is not absorbed unless rubbed into the skin with fat, and is not a local irritant, and therefore possesses very little value as an external application.

Action Internal.—Potassium iodide and iodine are both described by that unsatisfactory term, alterative. In certain diseases, as in rheumatism, iodine and the iodides alter nutrition and cause absorption of exudates in some unknown manner; hence the term alterative. Potassium iodide forms in the tissues soluble double salts with the metals and therefore is the antidote in chronic lead, arsenic, mercury and zinc poisoning in aiding their elimination. It is often taught that potassium iodide liberates iodine in the tissues, and that the latter forms soluble compounds with albumin, which are then readily eliminated; thus explaining the effect of potassium iodide in aiding resolution of morbid exudation and inflammatory thickenings. Free iodine is certainly formed in the body as it escapes into the stomach after administration of iodides. Iodides produce untoward symptoms (iodism) in medicinal doses more often than most other drugs. Those most characteristic resemble influenza in there being pain over the frontal sinus, running of the eyes and nose, sore throat, tenderness of the teeth and gums, and sometimes glandular swelling about the throat and parotids. An aeciform, or more rarely, furuncular or purpuric eruption may occur. Often these unfortunate symptoms appearing with small doses may disappear with large ones. Arsenic and alkalies given with iodides lessen the likelihood of iodism. The sodium iodide is less irritating than the other salts. Occasionally there is fever.

Iodides stimulate thyroid activity and are to a certain extent taken
up by the gland. Indeed it is probable that much of the therapeutic effect of iodides on the circulation is attributable indirectly to thyroid action. Thus in arteriosclerosis, and high blood pressure, where the drug is commonly used, it is thought to increase the blood flow in the vasa vasorum (vascular dilatation from thyroid action), and also to lessen viscosity of the blood itself.

Occasionally chronic iodism takes the form of hyperthyroidism with anemia, emaciation, nervousness and tachycardia.

Iodides increase the fluidity of nasal, pharyngeal and bronchial secretion.

Supposed elimination of free iodine from the mucous membranes and skin is said to account for irritation of these parts after prolonged and excessive doses (iodism). Like other salts of the alkalies (see sodium chloride) the iodides are diuretics and, in concentration, may cause nausea and vomiting. The iodides are rapidly absorbed and mostly eliminate as such chiefly by the urine; but also by mucous membranes, and in milk, sweat, tears, etc. Some 80 per cent is excreted in 24 hours. If the drug is used for a considerable period the dose must be cut down as some of the iodides accumulate in the body.

Uses Internal.—Potassium iodide is useful in causing absorption of enlarged, lymphatic glands, and its action should be assisted by the application of iodine or red mercuric iodide externally. Potassium iodide in small doses, diminishes congestion and increases the fluidity and amount of secretion in acute laryngitis, acute and subacute bronchitis, and appears to possess an alterative action in improving the condition and nutrition of the bronchial mucous membranes. It resembles ammonium chloride in the latter respect. It is also of value in bronchial asthma, pulmonary emphysema, and chronic bronchitis, unassociated with copious secretion. Chronic pleuritis, pericarditis, and ascites¹ are treated with potassium iodide, which assists absorption, and occasionally exerts a diuretic effect. Tardy resolution of pneumatic consolidation is hastened by potassium iodide. Endocarditis with cardiac hypertrophy is said to be benefited by potassium iodide and digitalis.

Champignon, or scirrhus cord of horses, is sometimes cured by the sorbafacient powers of potassium iodide in full doses. Potassium iodide is the best remedy in colloid goitre of dogs, calves and sheep when tincture of iodine is used externally (see p. 193). In regions where the young are born with goiter small doses of iodine or iodides given pregnant animals may prevent such an occurrence. “Roaring” and “thick wind” may be cured by the administration of potassium iodide. Potassium iodide is the drug commonly given for aneurism. Probably it is only of use when this is of syphilitic origin and not in animals. Potassium iodide is the best remedy known for actinomycosis. It should be given to the larger animals in doses of three drams daily, or in the same dose as Lugol’s solution, until iodism appears, when the dose may be reduced to one-half this amount and continued two to six weeks. Iodine or Lugol’s solution may be used in preference to potassium iodide on account of the great expense of the latter salt. Potassium iodide is one of the many remedies prescribed in chronic rheumatism. Potassium
iodine has given good results in the treatment of periodic ophthalmia in horses with the first attack. They are given one ounce daily for two or three days, and kept in the dark with cold compresses over the eyes. Potassium iodide has a clinical reputation for its power to aid absorption and resolution in inflammation or effusions of the brain or cord, in hemiplegia, paraplegia and meningitis.

Summary.—Iodine and potassium iodide resemble one another in many respects. Iodine is a local irritant, potassium iodide is not. The known physiological action of potassium iodide and iodine does not explain their medicinal uses. In combating certain diseases, in an inexplicable manner, they are known as alternatives. In man, iodine is superior to potassium iodide in the treatment of scrofula. In the horse, iodine is considered of more value in the treatment of diabetes insipidus; while in both man and the lower animals, potassium iodide is regarded as more valuable in chronic rheumatism. In subacute rheumatism, one prescribes equal parts of sodium salicylate and iodide. The action of iodine in benefiting local disorders, when applied externally, is due to its counter irritant effect, rather than to absorption.

Administration.—Potassium iodide is given in solution. Sodium iodide and syrup of hydriodic acid are simply substitutes for potassium iodide.

Thyroideum Siccum. Dried Thyroids. (U. S. P.)

Synonym.—Glandulae Thyroideae siccae.

Dose.—Dogs, gr. 1/2-ii, (.03-.12), twice daily, on food or in capsules.

The thyroid glands of animals which are used for food by man, freed from connective tissue and fat, dried and powdered and containing not less than 0.17, nor more than 0.23 per cent of iodine. A yellowish, amorphous powder, having a slight characteristic odor, and containing the active ingredient of thyroid tissue; partially soluble in water. One part of the dried glands represents approximately 5 parts of the fresh glands. As the therapeutic activity of the glands depends chiefly upon their iodine content a standard of not less than 0.2 per cent of iodine has been adopted for commercial preparations.

Action.—A condition of cachexia in which the cutaneous tissues swell and other abnormalities occur (myxedema), after total removal of the thyroid gland, was found to be overcome by feeding thyroid tissue. Likewise the same condition occurring spontaneously in the human adult and cretinism in children, from absence of thyroid tissue, are cured by administration of thyroid gland. This was the beginning of the therapeutic use of the thyroids. It was later discovered that iodine is the main inorganic constituent of the thyroid gland and that its functional activity depends largely upon this element. Nevertheless it is true that individual persons and animals may possess thyroid glands wholly wanting in iodine without any interference with health. When the thyroid is removed from such individuals the same severe symptoms occur as are observed after removal of thyroids with high iodine content. There is evidently some essential principle in the thyroid gland besides iodine since no other preparation of iodine, other than the gland itself, has
any value in the treatment of myxedema and cretinism. Iodine may be as effective as the thyroid gland in the treatment of simple or colloid goitre, however. Iodine given as medicine or in food is capable of being assimilated and stored in the thyroid gland. The dried glands of dogs contain from 0.03 to 0.27 per cent of iodine; in sheep, the percentage varies from 0.048 to 0.883; in man, from 0.03 to 0.9 per cent.

Large doses of thyroid gland given continuously to animals over a considerable period produce a fairly uniform syndrome, as follows: anemia, emaciation, weakness (especially of the hind legs), sweating, nervousness, tremors of the muscles and tongue, a tendency to fever, rapid pulse, diuresis, exophthalmos, and dilated pupils. Many of these symptoms indicate stimulation of the sympathetic system. In exophthalmic goitre of the human, where an excess of thyroid secretion enters the blood, the symptoms resemble an overdose of the gland (hyperthyroidism).

Emaciation is due to destruction of fat and protein. Protein loss, and increased nitrogen elimination in the urine, are directly dependent upon the iodine content of the thyroid gland administered. In the absence of iodine neither occurs. Destruction of fat follows enhanced oxygen consumption in the body owing to the action of the thyroid gland (see antipyretics, p. 51). Emaciation is also due to diuresis and augmented elimination of fluids from the system. Whether this is caused by direct action of the thyroid substance on the kidneys, or otherwise, is unknown. The normal function of the liver and muscles to store sugar is inhibited by thyroid overdose, and glycosuria may result.

Rapidity of the pulse, one of the most frequent toxic symptoms following large doses of thyroid gland, may be attributed to stimulation of the heart muscle or accelerators. A large dose of thyroid gland injected intravenously may slow the heart from vagus stimulation.

Thyroid feeding tends to promote the growth of normal bone (Bircher) and many surgeons have found that it hastens the union of fractures.

Thyroid action may be summarized as stimulating oxidative changes and metabolism, and affecting particularly the nervous system. Thyroid secretion is the great metabolic stimulant in the body. Toxic doses have caused a loss of half an animal's weight in 24 hours. The tissues are consumed as by fire.

Uses.—The most remarkable success which attends the use of thyroid medication in cretinism and myxedema in human practice has no analogous field in veterinary medicine. In goitre in young animals thyroid treatment may be of benefit but usually iodide of sodium or potassium given internally will be found more valuable. In mild cases the application of a 10 per cent ointment of iodine twice daily by friction on the gland, or even the painting of tincture of iodine frequently on the gland will suffice.

Thyroid administration is also used in obesity of dogs. It is rather uncertain in effect, sometimes proving successful while at other times it is a failure. Thyroid gland is also indicated in rickets, osteomalacia and, in delayed union in fractures.
IODOFORMUM. Iodoform. C H I₃. (U. S. & B. P.)

Synonym.—Iodoformium, P. G.; iodure de formyle, Fr.; jodoform trijodmethan, G.

Derivation.—Alcohol, potassium carbonate, iodine, and water are heated together. C₂H₅OH + K₂CO₃ + I₂ = 2 CH₃I + 2 KI + 2 CO₂ + 3 H₂O.

Iodoform contains over 90 per cent. of iodine.

Properties.—Fine, lemon-yellow, powder or in lustreless crystals of the hexagonal system; having a peculiar, very penetrating and persistent odor, and an unpleasant and slightly sweetish taste suggestive of iodine. Nearly insoluble in water; soluble in 60 parts of alcohol, and in 7.5 parts of ether. Very soluble in chloroform, benzine, fixed and volatile oils.

PREPARATIONS.

Unguentum Iodoformi, Ointment of Iodoform (1-10). (U. S. & B. P.)

Suppositoria Iodoformi. (B. P.)

(Each containing 8 grs. of iodoform.)

Action External.—Iodoform is an antiseptic, local anesthetic, stimulant, protective, and dessicant agent. While iodoform does not inhibit the growth of germs outside the body—many of the bacteria growing in iodoform itself—it is nevertheless a valuable antiseptic. This result may probably be accounted for by the decomposition of iodoform on moist wounds, with the liberation of iod-albuminates and diiodoacetylene; by its absorption of exudates on which germs live, and possibly by neutralizing toxins. Iodoform is particularly useful in septic and suppurating wounds. When applied over extensive surfaces, absorption and poisoning may occur. The symptoms of iodoform poisoning are most diverse.

Symptoms of gastro-intestinal irritation are seen in poisoning in dogs, as vomiting, diarrhea and albuminuria, together with nervous symptoms, as convulsions, stupor and sleep. The pulse may be very rapid or infrequent; the temperature high or normal. Iodoform is in part absorbed unchanged, but the greater part is transformed into free iodine and iodides in the body. Fröhner states the poisonous dose for dogs is 15 grs. for each kilo of live weight. One dram will poison a dog weighing ten pounds. 1½ ounces have killed a cow. Ecchymoses are found after death on the heart and kidneys, and there is congestion of the meninges.

The symptoms of poisoning are peculiarly diverse since the effects are due both to iodoform and to iodides and iodine set free in the body. The rapid pulse is due to stimulation of the thyroid gland by iodine. The mania and delirium characteristic of iodoform poisoning in man are not seen in animals. The application of iodoform to wounds is sometimes followed by an erythematous eruption and fever. Iodine is eliminated in the urine in iodoform poisoning and can easily be discovered by the starch test. General fatty degeneration of the internal organs is found after death. The local dessicant effect of iodoform on raw surfaces assists the antiseptic action, and the local anesthetic properties combine to make iodoform the best antiseptic powder we possess, barring the odor.

Action Internal.—The internal action of iodoform possesses no therapeutic value. Care must be observed to prevent animals licking off iodoform from the surface of the body.
Elimination.—Iodoform is eliminated in the form of iodine and iodies by all the secretions, chiefly by the urine as iodides.

Uses External.—Iodoform is of value applied over suppurating and septic surfaces, sores, and ulcers, where it hinders the growth of bacteria, stimulates unhealthy granulations, relieves pain, possibly neutralizes toxins, and certainly produces a vile odor. For this reason one of its substitutes should be employed when an antiseptic powder is desirable for use upon dogs living in or about dwellings. Iodoform is commonly employed in its purity. It may be mixed in any proportion with boric acid, or with tannic acid (1-8), for its astringent effect. It is valuable in foul of the foot in cattle, or in foot rot in horses, with equal parts of alum or tannic acid. Combined with collodion (1-15), it forms a useful dressing for sealing small wounds or abrasions upon the hands. The anesthetic action of iodoform is taken advantage of to relieve pain in fissure of the rectum, and hemorrhoids. Zuill recommends the following combination by insufflation in the early stages of inflammation of the frontal sinuses:

Iodoform, magnesia, silver nitrate—equal parts.

Three grains may be used in suppositories for the smaller animals. Iodoform may cause healing in abscess—injected into the cavity with glycerin or vaseline—(1-10), using 2-4 drams of the mixture for smaller animals, or 1 ounce for the larger animals. In retained placenta and metritis of cows, Williams advises placing a capsule containing an ounce of iodoform in the uterus. Iodoform is very efficacious in the treatment of local tuberculous lesions. Iodoform combined with lard or oil (1-10), is an excellent agent for burns which are not so extensive as to endanger the patient through absorption and iodoform poisoning.

For closing small wounds:

<table>
<thead>
<tr>
<th>B</th>
<th>Iodoformi .. 5i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.</td>
<td>Collodii .. 5ii.</td>
</tr>
<tr>
<td>S.</td>
<td>Apply externally with camel's hair brush.</td>
</tr>
</tbody>
</table>

Antiseptic, astringent dusting powder:

<table>
<thead>
<tr>
<th>B</th>
<th>Iodoformi .. 5i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.</td>
<td>Acidi tannici ... 5i.</td>
</tr>
<tr>
<td>S.</td>
<td>Apply externally.</td>
</tr>
</tbody>
</table>

Iodolum. (Non-official.) Iodol. C₄I₃NH.

Synonym.—Tetralodopyrrol.

Derivation.—Action of iodine on pyrrol in solution in alcohol. Contains 88.9 per cent. of iodine.

Properties.—Crystalline, shining, light, grayish-brown powder. Tasteless and odorless. Practically insoluble in water; soluble in 9 parts of alcohol, and in ether and fatty oils. The surgical use of iodol has led to poisoning through absorption, but the latter is so slow that the danger is exceedingly slight. Iodol is suitable for all purposes in which iodoform is indicated. It is too expensive for general use, but is preferable for application to dogs, on account of its lack of odor.

Aristololum. (Non-official.) Aristol. C₂₅H₂₆O₂I₃.

Synonym.—Dithymol diiodide, E.; diiododithymol, Fr.; dithymoldijodid, G.
Aristol is now official as thymol is iodidum, thymol iodide.

It is more correctly dithymol-diiodide, obtained by the condensation of two molecules of thymol and the introduction of two atoms of iodine into the phenolic groups of the thymol; it contains 45 per cent. of iodine.

Properties.—A bright, chocolate-colored or reddish-yellow, bulky powder, with a very slight aromatic odor.

Insoluble in water and glycerin; slightly soluble in alcohol; readily soluble in ether, chloroform, collodion, and in fixed and volatile oils.

Aristol is inferior as an antiseptic to either iodoform or iodol. It is used with some benefit in dry, sealy skin diseases in powder or ointment. Aristol is useful on sores, wounds and ulcerations which have a tendency toward dryness as it seems to increase moisture. Other antiseptic dusting powders include acetanilid, bismuth subnitrate, salol and boric acid. Acetanilid has been shown to be a good antibacterial agent. It is cheap and may be applied pure, and it is an efficient substitute for iodoform. A few cases of poisoning have been reported following its extensive surgical use. Bismuth subnitrate and salol may induce poisoning when used over large surfaces. They are dessicants and feeble antiseptics. Boric acid is harmless and mildly antiseptic.

Orthoform. Orthoform. (Non-Official.)

Orthoform is the methyl-ester of meta-amido-paraoxy-benzoic acid. It occurs as a white or dirty yellow, light powder, sparingly soluble in water and alcohol but more so in glycerin and solutions of the mineral acids. It may be combined with iodoform, aristol, boric acid, salicylic acid, carbolic acid, turpentine and iodine without incompatibility.

Action.—Externally, orthoform exerts a powerful anesthetic effect on raw surfaces, but has little action on intact mucous membranes and none on the unbroken skin. It is also a mild antiseptic, of about the same value as boric acid. It is but feebly toxic and poisoning does not occur unless large quantities are applied over abraded surfaces. In the dog, 15 grains per 2 pounds of body weight have proved toxic when given by the mouth; and 7½ grains per 2 pounds of live weight are required to induce fatal poisoning. It appears to be a cerebro-spinal paralyzant in these large doses. The anesthetic action of medicinal doses is usually prolonged, varying from a few hours to two or three days. Orthoform has been used extensively in human medicine for the past few years, and cases of poisoning have been of rare occurrence and none fatal, although as much as two or three ounces have been applied on ulcerated surfaces in a week's time. Occasionally the drug produces an erythema or dermatitis owing to peculiar susceptibility of the patient. On the other hand, orthoform has been used successfully in the treatment of dermatitis following poisoning in the human.

Uses.—Orthoform is valuable chiefly for its power in relieving pain when applied to raw surfaces. It is an excellent application for burns. In superficial burns, orthoform may be combined to advantage with ichthyol, of each 10 per cent., in lanolin. In burns of the second and third degree, the use of orthoform and boric acid, equal parts, forms an excellent remedy. Orthoform is serviceable in relieving pain and irritation of ulcers, hemorrhoids and fissures of the rectum. In human practice it is
largely employed in connection with diseases of the nose, ear and throat to arrest pain after operations, and in ulceration and inflammation of these parts, as sore throat. Nasal gleet in horses should be benefited if not cured by the insufflation of the powder. Orthoform is commonly used in ointment containing 10 to 20 per cent. of the drug. It may be blown pure into cavities or applied as a saturated solution in collodion. It may be sprayed on a part with an atomizer in 5 per cent. solution with equal parts of alcohol and water. It has been injected into the bladder in cystitis mixed with water. In ulceration of the stomach, orthoform will give relief owing to its local anesthetic action. It may be administered mixed with water and syrup in the dose of 0.5-1.0 (7\(\frac{1}{2}\)-15-gr.) for dogs. It is an expensive drug at present.

SECTION X.

Sulphur.

OFFICIAL VARIETIES.

SULPHUR SUBLIMATUM. Sublimed Sulphur. S. (U. S. & B. P.)

Synonym.—Flowers of sulphur, flores sulphuris, E.; fleur (crème) de soufre, Fr.; schwefelblumen, schwefblüthe, G.

Derivation.—Obtained from native sulphur by sublimation.

Properties.—A fine, yellow powder, having a slightly characteristic odor and a faintly acid taste. Insoluble in water; slightly soluble in absolute alcohol; soluble or partially soluble in carbon disulphide, olive oil, benzine, benzol, oil of turpentine and many other oils; also in ether, chloroform, and in boiling, aqueous solutions of alkaline hydrates.

PREPARATIONS.

Sulphur Lotum. Washed Sulphur. S. (U. S. P.)

Synonym.—Sulphur depuratum, flores sulphuris loti, P. G.; soufre lavé, Fr.; gereinigte schwefel, G.

Derivation.—Obtained from sublimed sulphur, which is treated with diluted ammonia water to wash out sulphurous and sulphuric and other impurities.

Properties.—A fine, yellow powder, without odor or taste. Solubility, same as sublimed sulphur.

Senna, 180; glycyrrhiza, 236; washed sulphur, 80; oil of fennel, 4; sugar, 500.

Dose.—Dogs (laxative), 5ss-i, (2-4).

Unguentum Sulphuris. Sulphur Ointment. (U. S. & B. P.)

Washed sulphur, 150; benzoinated lard, 850 (U. S. P.).

Synonym.—Lac (magisterium) sulphuris, milk of sulphur, E.; soufre précipité, lait de soufre, Fr.; schwefelmilch, G.

Derivation.—Obtained from a solution of sublimed sulphur, 100; in boiling calcium hydrate, 50; by precipitation with hydrochloric acid. Calcium sulphide and hyposulphite are formed. 12 S + 3 Ca O₂H₂ = 2 Ca S₂ + Ca S, O₅ + 3 H₂O. Then: 2 CaS₂ + Ca S₂ O₅ + 6 H Cl = 3 Ca Cl₂ + 12 S + 3 H₂O.

Properties.—A fine amorphous powder, of a pale yellow color, without odor or taste. Solubility same as sublimed sulphur.

Dose (of sublimed, washed or precipitated sulphur).—H. & C., ʒii-iv, (60-120); Sh. & Sw., ʒi-ii, (30-60); D., ʒs-iv, (2-15).

Larger doses laxative; smaller for constitutional action.

Precipitated sulphur is the best preparation for internal use, as it occurs in a finer state of division and is more readily acted upon by the digestive juices. It may contain traces of sulphides or sulphureted hydrogen, owing to the method of preparation.
Action External.—Sulphur has no action upon the skin when applied in the pure state. The ointment is the most effective parasiticide in destroying mites which produce mange, grease, and scab. Sulphur does not kill mites as readily as a sulphide which is formed by the addition of an alkali. When sulphur ointment is rubbed into the skin it causes considerable irritation and an artificial eczema. Sulphur is converted into sulphureted hydrogen and sulphurous acid by living tissue, and this transformation may occur to some extent when sulphur is rubbed into the skin with fat.

Action Internal.—Digestive Organs.—Sulphur is not acted upon by the stomach, but is somewhat dissolved by the alkaline intestinal juices, and converted in part into sulphaides (10 to 20 per cent. of sulphur is absorbed as sulphaides) and sulphureted hydrogen. The sulphaides, together with sulphureted hydrogen, are absorbed into the blood. Minute traces of sulphureted hydrogen are eliminated by the lungs and skin, while oxidation of sulphaides occurs in the tissues and they are eliminated as sulphates and unknown organic sulphur compounds. The sulphaides and sulphureted hydrogen act as laxatives, and in all probability sulphur itself exerts a mild, mechanical irritation upon the bowels. Peristaltic motion and intestinal secretions are both slightly increased. The fecal discharges are soft and pasty, and offensive flatus containing sulphureted hydrogen escapes from the intestines after the administration of sulphur.

Constitutional Action.—Sulphur acts remotely during its elimination in stimulating the functions of the skin and respiratory mucous membranes,—so-called alterative action. Sulphur causes disorganization of the blood, and depresses and paralyzes the central nervous system after the continuous administration of colossal doses. Ordinary therapeutic quantities of sulphur have no effect of this kind.

Uses External.—Sulphur is mainly of service externally as a local stimulant and parasiticide in skin diseases. The female mite, which produces mange (acariasis), bores under the epidermis and lays her eggs in the burrows, while the male insect remains upon the surface. It is essential, therefore, to remove the epidermis in order to expose the ova and female to the action of sulphur. The hair should be first shaved and the parts soaked and scrubbed with green soap and water. All cloths or brushes used in this operation should be burned or disinfected by boiling. Sulphur acts most efficiently in ointment, as fat fills up the burrows and deprives the insects of air. The official ointment is used in mange and eczema, but a combination with an alkali is more serviceable, unless there is active irritation of the skin. The following ointment is recommended:

\[
\begin{align*}
R & \\
& \text{Sulphuris loti} & \frac{5}{11} \\
& \text{Potassii carbonatis} & \frac{5}{1} \\
& \text{Aqua} & \frac{5}{11} \\
& \text{Adipsis benzoinati} & \frac{5}{1}
\end{align*}
\]

M. S. Use externally.

This prescription is also useful in scab of sheep, and, diluted with
16 parts of lard, is curative in chronic eczema and grease. Sulphur is, however, chiefly used in dips for scab of sheep with lime (see p. 606).

In obstinate cases of ringworm, itching, or mange, the following preparation is of value:

R

Sulphuris præcipitati.
Olei cadini... 33s.
Saponis mollis.
Adipis .. 3i.
M.
S. External use.

True follicular mange in the dog, if extensive and of long duration, is practically incurable by any drug. Sulphur ointment is of benefit in chronic eczema and acne, for its local stimulant and alterative action. For the treatment of foot rot in sheep the U. S. Agric. Dep't. advises the following, and also in other forms of necrobacillosis, after removing scabs and necrotic tissue by the curette:

R

Sulphuris loti ... 3x.
Cresolis ... 5v.
Adipis .. 5C.
M.
S. Use externally.

Uses Internal.—Sulphur is commonly used for its mild laxative action in convalescence, pregnancy and in the treatment of young animals and dogs suffering with constipation and hemorrhoids. It may be of service in chronic bronchitis with copious secretion. Sulphur is frequently prescribed internally for its action in chronic diseases of the skin, and is thought to exert a beneficial alterative action. Sulphur is also recommended in chronic rheumatism.

Disinfectant Action.—When sulphur undergoes combustion, sulphurous anhydride (SO$_2$) is evolved, and the latter combining with water forms sulphurous acid (H$_2$SO$_3$) and sulphuric acid gas (H$_2$SO$_4$).

Sulphurous and sulphuric acid gas are strongly germicidal but dry sulphur dioxide (SO$_2$) is practically without disinfectant action. Sulphurous acid owes its germicidal action to two properties. Chiefly to its being a powerful reducing agent, by which it is oxidized into sulphuric acid, and also to the acidity of both compounds. In withdrawing oxygen from organic matter it is poisonous to protoplasm in general and to bacteria in particular. Bacteriological experiments, however, show that dry, sulphur fumigation, as ordinarily employed for disinfection, is of little worth for destroying disease germs. To be effective for killing bacteria there should be moisture in the air to convert SO$_2$ into SO$_3$ and H$_2$SO$_4$. Generally formaldehyde disinfection is more efficient, but for killing animal life sulphur is much superior, as formaldehyde may not injure animals at all. Thus, for killing flies, fleas, mosquitoes, bedbugs, lice, mice and rats in barns, granaries, houses and ships, sulphur should be used. Sulphur destroys household fabrics, ornaments and utensils, but metal may be protected from its corrosive influence by a thin coating of vaseline.
Cracks are covered by pasting paper over them, which may afterwards be washed off. The premises should be kept sealed 12 hours. Five pounds of flowers of sulphur should be used for each 1,000 cubic feet of air space. Flowers of sulphur to the depth of two inches is put in pans 12 to 18 inches wide at the bottom, and with sides four or more inches high. Alcohol is poured over the sulphur to insure its combustion, which is started by throwing a lighted match upon the alcohol. The pans should float in two inches of water in larger pans to avoid fire and to supply moisture by evaporation of the water.

In employing sulphur as a disinfectant, animals must of course be removed from the premises. The burning of one pound of sulphur in 1,000 cubic feet of space will produce one per cent. of SO₂ gas in the atmosphere. For killing insects and animals moisture is not desirable so that the pans containing sulphur may be placed directly upon sand or bricks.

Sulphurous anhydride has been employed for its local antiseptic and stimulant action, in inflammatory diseases of the upper air passages in horses. For this purpose it is burned in such quantities that the vapor is capable of being inspired because largely diluted with air. With such dilution the antiseptic action is lost, and there is danger of producing considerable irritation, and the procedure is of doubtful value. The same treatment has been pursued in verminous bronchitis of lambs and calves, caused by the Strongylus filaria and S. micrurus. Chloroform inhalation is more efficient.

Potassa Sulphurata. Sulphurated Potassa. (U. S. & B. P.)

Synonym.— Sulphuret of potassium, liver of sulphur, E.; foie de soufre, Fr.; schwefelleber, G.; kalium sulphuratum, P. G.

Derivation.— Powdered and dried potassium carbonate, 200, is mixed with sublimed sulphur, and heated in a crucible. Potassa sulphurata is a mixture of potassium thiosulphate and trisulphide. 3 \(\text{K}_2\text{CO}_3 + 8 \text{S} \rightleftharpoons \text{K}_2\text{S}_3\text{O}_7 + 2 \text{K}_2\text{S}_2\text{O}_3 + 3 \text{CO}_2 \).

Properties.— Irregular pieces of a liver-brown, when freshly made, changing to greenish-yellow and finally to gray through absorption of moisture, oxygen, and carbon dioxide from the air (containing a mixture of potassium carbonate, hyposulphite and sulphate). It has a very strong odor of hydrogen sulphide, and a bitter acid and alkaline taste. Soluble in water, usually leaving a slight residue. Alcohol dissolves only the sulphides.

Dose.— H. & C., 3ii-iv, (8-15); D., gr.ii-x, (.12-.6).

Action Internal.— Sulphurated potassa is composed chiefly of potassium trisulphide \((\text{K}_2\text{S}_3) \) and of potassium thiosulphate \((\text{K}_2\text{S}_3\text{O}_7) \). Its action is that of the sulphides generally. These give off \(\text{H}_2\text{S} \) in the bowel, which leads to purging and local irritation. When injected into a vein the sulphides induce two notable phenomena in toxic doses. First, they cause convulsions in mammals—owing to action on the cerebrum—and, in lethal doses, paralysis of the respiratory and vasomotor centres. Second, they produce alteration in the hemoglobin of the red corpuscles with formation of a body like methemoglobin and called sulpho-hemoglobin. In frogs this happens during life but in mammals apparently comes on immediately after death. Externally the sulphides in solution dissolve the horny epidermis and hair, and lead to irritation of the skin after prolonged action.
The sulphides undergo oxidation in the blood and escape in the urine as sulphates and organic sulphur compounds and in the breath and sweat as hydrogen sulphide. Sulphurated potassa has been administered internally as a substitute for sulphur, but is only of value externally.

Action and Uses External.—Sulphurated potassa is one of the most serviceable agents we possess in the treatment of chronic forms of skin diseases, as acne, mange, lichen, but particularly eczema of the horse and dog. It is locally stimulant, alterative (?), and parasiticide. There is only one drawback to its general use, which is its exceedingly disagreeable odor. Peruvian balsam is frequently substituted for this reason in the treatment of skin diseases in dogs. A solution, "yellow lotion," is used in different strengths (1-8 to 1-15), according to the amount of stimulation which the skin will endure. The "yellow lotion" is a good agent for killing lice upon the skin. The following prescription will be found of benefit in eczema in canine practice:

```plaintext
R.
Potassae sulphuratae .......................... 5iiss.
Chloralis ....................................... 5ss.
Ol. anisi ........................................ mlii.
Aqua ad .......................................... 3iv.
```

M.
S. External use.

The chloral relieves itching and the anise disguises to some extent the odor of hydrogen sulphide.

SECTION XI.

Acids.

Acidum Hydrochloricum. Hydrochloric Acid. HCl. (U. S. & B. P.) (Muriatic Acid.)

Synonym.—Acidum muriaticum, s. hydrochloratum, s. chlorhydricum, E.; acide chlorhydrique, s. muriatique, Fr.; salz saurer, G.

An aqueous solution containing not less than 31 per cent. nor more than 33 per cent. of HCl. (U. S. P.)

Derivation.—Distil together sulphuric acid, sodium chloride and water. The resulting hydrochloric acid gas is passed into distilled water, while acid sodium sulphate remains in the retort and is further acted upon by sodium chloride. Na Cl + H₂S O₃ = H Cl + Na HSO₃; then: Na HSO₃ + Na Cl = H Cl + Na₂SO₄.

Properties.—A colorless, fuming liquid, having a pungent odor and an intensely acid taste. Spec. gr., about 1.155 at 25° C. Miscible, in all proportions, with water and alcohol.

Incompatibles.—Alkaline and other carboxytes, and lead and silver salts.

Preparations.

Acidum Hydrochloricum Dilutum, Acidum Nitrohydrochloricum, Acidum Nitrohydrochloricum Dilutum.

Acidum Hydricloricum Dilutum. Diluted Hydrochloric Acid. (U. S. & B. P.) (Diluted Muriatic Acid.)

Derivation.—Hydrochloric acid, 100; distilled water, 220. Diluted hydrochloric acid contains 9.5 to 10.5 per cent. of absolute hydrochloric acid. (U. S. P.)

Properties.—It does not fume in the air and is without odor. Spec. gr., 1.049. Otherwise corresponds to hydrochloric acid. (U. S. P.)

Dose.—H., 5i-ii, (4-8); C., 5ii-iv, (8-15); Sh., 5ss-i, (2-4); Sw. & D., ml-x-xxx, (.6-2).
Acidum Sulphuricum. Sulphuric Acid. \(\text{H}_2\text{SO}_4 \). (U. S. & B. P.)

Synonym.—Oil of vitriol, E.; acide sulphurique, huile de vitriol, Fr.; schwefelsäure, vitriolöl, G.

A liquid composed of not less than 92.5 per cent. by weight of absolute sulphuric acid, and not more than 7.5 per cent. water.

Derivation.—Sulphurous anhydride, generated by roasting iron pyrites, or sulphur, is passed into leaden chambers. Nitric acid is introduced with steam, and the sulphurous anhydride undergoes oxidation and hydration. \(2 \text{HNO}_3 + 2 \text{SO}_2 + \text{H}_2\text{O} = 2 \text{H}_2\text{SO}_4 + \text{N}_2\text{O}_4 \).

The nitrous acid combines with oxygen and water in the air, and is re-transformed into the nitric acid, acting continually as a carrier of oxygen to sulphurous anhydride.

Properties.—A colorless, odorless liquid, of oily consistence, very caustic and corrosive. Spec. gr. about 1.83. Miscible, in all proportions, with water and alcohol, with evolution of much heat; the acid must be added with great caution to the diluent. (U. S. P.)

Incompatibles.—Alkalies and carbonates, calcium and lead salts.

Preparations.

Acidum Sulphuricum Dilutum, Acidum Sulphuricum Aromaticum.

Acidum Sulphuricum Dilutum. Diluted Sulphuric Acid. (U. S. & B. P.)

Derivation.—Sulphuric acid, 50; distilled water, 420.

Properties.—Diluted sulphuric acid contains 9.5 to 10.5 per cent. of \(\text{H}_2\text{SO}_4 \).

Spec. gr. about 1.067. (U. S. P.)

Dose.—H., 3i-ii, (4-8); C., 5ii-iv, (8-15); Sh., 5sii-i, (2-4); Sw. & D., m\(\times\)xxx, (6-2).

Acidum Sulphuricum Aromaticum. Aromatic Sulphuric Acid. (U. S. & B. P.)

Synonym.—Tinctura aromatica acida, P. G.; elixir vitrioli Mynslichti, elixir of vitriol, E.; élixir vitrilique, teinture (alcoolé) aromatique sulphurique, Fr.; säure aromatisch tinctur, G.

Derivation.—Sulphuric acid, 109; tincture of ginger, 50; oil of cinnamon, 1; alcohol to make 1,000. (U. S. P.)

Properties.—Aromatic sulphuric acid contains 19 to 21 per cent. of \(\text{H}_2\text{SO}_4 \), partly in form of ethyl sulphuric acid. Spec. gr. about 0.983. (U. S. P.)

Dose.—H., 5ss-i, (2-4); C., 3i-ii, (4-8); Sh., m\(\times\)v-xxx (1-2); Sw. & D., m\(\times\)v-xv, (6-1).

Acidum Nitricum. Nitric Acid. \(\text{HNO}_3 \). (U. S. & B. P.)

Synonym.—Acide azotique, Fr.; salpetersäure, G.

An aqueous solution containing not less than 67 per cent. nor more than 69 per cent. of \(\text{HNO}_3 \).

Derivation.—Seven parts of sodium or potassium nitrate are distilled with four parts of sulphuric acid and water. \(\text{KNO}_3 + \text{H}_2\text{SO}_4 = \text{KH}_2\text{SO}_4 + \text{HNO}_3 \).

Properties.—A fuming liquid, very caustic and corrosive; it has a peculiar, somewhat suffocating odor. Spec. gr. about 1.403. (U. S. P.)

Incompatibles.—Alkalies and carbonates, iron sulphate, lead acetate and alcohol.

Preparations.

Acidum Nitricum Dilutum, Acidum Nitrohydrochloricum, Acidum Nitrohydrochloricum Dilutum.

I. Acidum Nitricum Dilutum. Diluted Nitric Acid. (U. S. 1905 & B. P.)

Derivation.—Nitric acid, 100; distilled water, 580. Diluted nitric acid contains 10 per cent., by weight, of absolute nitric acid. Spec. gr. about 1.054. (U. S. P.)

Dose.—H., 3i-ii, (4-8); C., 5ii-iv, (8-15); Sh., 5ss-i, (2-4); Sw. & D., m\(\times\)v-xxx, (8-2).

II. Acidum Nitrohydrochloricum. Nitrohydrochloric Acid. (U. S. P.)

(Nitromuriatic Acid.)

Synonym.—Acidum chloro-nitrosum, P. G.; aqua regia s. regis, acide chloro-azotique s. chloro-nitreux, eau Regales, Fr.; salpetersalzsäure, königswässer, G.

Derivation.—Nitric acid, 18.0; hydrochloric acid, 82.0. Chemical composition uncertain.
Properties.—A golden yellow, fuming and very corrosive liquid; it has a strong odor of chlorine. The strong acid should always be freshly prepared and should be used in preference to the diluted acid. It may be made off hand by mixing 4 parts of nitric acid with 16 parts of hydrochloric acid. The mixture should remain in an open bottle not more than half full, until the fumes pass off.

Dose.—H., mXX-xx, (1.3-2.6); D., mIII-v, (2-3).

III. Acidum Nitrohydrochloricum Dilutum. Diluted Nitrochloric Acid.

(U. S. & B. P.)

(Diluted Nitromuriatic Acid.)

Derivation.—Nitric acid, 10; hydrochloric acid, 45.5; distilled water, 194.5.

Properties.—A colorless, or pale yellow liquid; it has a faint odor of chlorine and a very acid taste. Completely volatilized by heat. (U. S. P.)

Dose.—H., 3i-ii, (4-8); C., 3ii-iv, (8-15); Sh., 5ss-i, (2-4); Sw. & D., mV-xxx, (3-2).

Acidum Phosphoricum. Phosphoric Acid. H₃PO₄. (U. S. & B. P.)

A liquid composed of not less than 85 per cent. nor more than 88 per cent. of H₃PO₄.

Synonym.—Acide phosphorique, Fr.; phosphorsaure, G.

Derivation.—Heat phosphorus with diluted nitric acid till nitrous fumes cease. P₄+5 HNO₃+2 H₂O=3 H₃PO₄+5 NO.

Properties.—A colorless, odorless liquid, of a syrupy consistence; it has a strongly acid taste. Spec. gr. not below 1.72. Miscible, in all proportions, with water or alcohol. (U. S. P.)

Preparation.

Acidum Phosphoricum Dilutum. Diluted Phosphoric Acid. (U. S. & B. P.)

Derivation.—Phosphoric acid, 100; distilled water, 765. (U. S. P.) An aqueous solution containing not less than 9.5 per cent. nor more than 10.5 per cent. of H₃PO₄. Spec. gr. about 1.057.

Dose.—H., 3i-ii, (4-8); C., 3ii-iv, (8-15); Sh., 5ss-i, (2-4); Sw. & D., mV-xxx, (3-2).

Acidum Aceticiun. Acetic Acid. C₂H₄O₂. (U. S. & B. P.)

Synonym.—Acetum purum; acetum destillatum, P. G.; acide acétique, Fr.; essigsäure, G.

An aqueous solution containing not less than 36 per cent. nor more than 37 per cent. of C₂H₄O₂ or CH₃COOH.

Derivation.—Distillation of dry sodium acetate with sulphuric acid and crystallization of the distillate. 2 Na C₂H₄O₂+H₂SO₄=2 HC₂H₃O₂+Na₂ SO₄.

Properties.—A clear, colorless liquid, having a strong characteristic vinegar-like odor, a sharply acid taste and a strongly acid reaction. Spec. gr. about 1.045. Miscible with water or alcohol in all proportions.

Preparation.

Acidum Aceticiun Dilutum. Diluted Acetic Acid. (U. S. & B. P.)

Synonym.—Acide acétique dilué, Fr.; verdünnte essigsäure, G.

Derivation.—Acetic acid, 120; distilled water, 610. Diluted acetic acid contains 5.7-6.3 per cent. of C₂H₄O₂. Spec. gr. about 1.008. Not employed internally except in the form of official aceta. Vinegar is impure diluted acetic acid, made by destructive distillation of wood, or by acetous fermentation and oxidation of alcoholic solutions, as cider.

C₂H₅O H+O₂=CH₂O₂+H₂O. A temperature of 80° F., and the presence of the ferment or mould (Mycoderma aceti), are necessary.

Synonym.—Acidum aceticiun, P. G.; acide acétique crystallisé, esprit de vinaigre, vinaigre glacial, Fr.; essesseig, G.

Derivation.—Same as acetic acid.

Properties.—A clear, colorless liquid of a strong vinegar-like odor, and a very pungent, acid taste. Contains not less than 99 per cent. of C₂H₄O₂. Not used internally.

Synonym.—Acide tartrique, acide de tartre, Fr.; weinstein, weinstein-säure, G.

Derivation.—Boil acid potassium tartrate or argol (incrustation in wine
casks) with chalk to form calcium tartrate. 2 K H C₄H₆O₆+Ca C O₃ = Ca C₄H₆O₆+K₂C₂H₂O₆+H₂O+CO₂. Add calcium chloride, which precipitates more calcium tartrate, and decompose with sulphuric acid. H₂SO₄+Ca C₂H₂O₆ = C₆H₆O₆+Ca CO₃.

Evaporate solution. Calcium sulphate crystals separate and are removed, while tartaric acid crystallizes on further evaporation.

Properties.—Colorless, translucent, monoclinic prisms, or as a white, granular or fine powder; odorless, having an acid taste, and permanent in the air. Soluble in 0.75 parts of water, and in 3.3 parts of alcohol. Not commonly used in veterinary medicine.

Dose.—H, 5ii-iv, (8-15); D., gr.x-xxx, (.6-2).

Synonym.—Acidum citri S. limonum, S. limonorum, acide citrique, acide du citron, Fr.; citronensäure, G.

Derivation.—Usually prepared from the lemon (Citrus limonum), or lime (Citrus bergamia). Boiling lemon juice (containing 7 per cent. of citric acid) is treated with chalk to form calcium citrate. 2 H₂C₂H₂O₆+3 Ca CO₃ = Ca₃ (C₂H₂O₆)₂+3 CO₂+3 H₂O.

Calcium citrate is boiled with sulphuric acid and the resulting citric acid is obtained by filtration, evaporation and crystallization. Ca₃ (C₂H₂O₆)₂+3 H₂SO₄ = 2 C₂H₂O₆+3 Ca SO₄.

Properties.—Colorless, translucent, right-rhombic prisms, or as a white powder; odorless, having an acid taste; efflorescent in warm air. Soluble in 0.5 part of water and in 1.8 parts of alcohol.

Dose.—H, 5ii-iv, (8-15); D., gr.x-xx, (.6-1.3).

Preparation.

Syrupus Acidii Citrici. Syrup of Citric Acid. (U. S. P.)

Citric acid, 10; water, 10; spirit of lemon, 10; syrup to make 1000.

Dose.—Ad lib.

Acidum Lacticum. Lactic Acid. C₅H₁₀O₄. (U. S. & B. P.)

Synonym.—Acide lactique, Fr.; milchsäure, G.

An organic acid, usually obtained by subjecting milk-sugar or grape-sugar to lactic fermentation. A liquid containing lactic acid and lactic anhydrides, equivalent to a total of not less than 85 per cent. nor more than 90 per cent. of C₅H₁₀O₄.

Properties.—A colorless, or slightly yellow, syrupy liquid, nearly odorless, having an acid taste, and absorbing moisture on exposure to the air. Spec. gr. about 1.206. Freely miscible with water, alcohol, or ether.

Dose.—H, 5ii-iv, (8-15); D., m.xxx-5i, (2-4).

Other acids to be found in other sections.

Action External.—The concentrated mineral acids are powerful escharotics, but in dilution are stimulant, astringent, rubefacient, or vesicant, according to their strength. Acids have a great affinity for the alkaline juices of the tissues and blood, and weak acid solutions are thus neutralized. Strong acids coagulate albumin, probably by combining with alkalies, which hold albumin in solution, and precipitating especially the globulins of the tissues. When mineral acids are present in abundance the albumin first coagulated is afterwards dissolved (except nitric acid), and the corrosive action of the acids is extensive. Acids further destroy tissue by combining with water, for which they have also a great affinity, particularly sulphuric and phosphoric acids. The former withdraws water to such an extent that the tissues are carbonized and blackened. Sulphuric acid is more destructive of tissue and acts more extensively than the other mineral salts. Nitric acid is less caustic, and hydrochloric acid is the least corrosive. Nitric acid stains the parts yellow, and hydro-
chloric, white. The vegetable acids, as citric and tartaric acids, are slightly caustic, but are irritant to the skin, and still more so to raw surfaces and mucous membranes. An ounce of tartaric acid has caused death in man through its local effect. The action of the caustic alkalies is more widespread than that of the mineral acids. Diluted sulphuric and nitric acids are astringents, because of their power of constricting tissues, and also hemostatics in causing compression of blood vessels by contracting the tissues about them. Nitric acid is commonly employed externally, because its effect is limited by its own eschar, which is not dissolved by an excess of acid.

Hydrochloric acid has no astringent effect and is not used externally for its caustic properties. The acids are antiseptic, but are less appropriate than other agents in most cases, on account of their irritant action. Free hydrochloric acid as it exists in the gastric juice (0.2-0.3 of 1 per cent.) is a powerful antiseptic and even germicide.

Action Internal.—Alimentary Canal.—The classical experiments of Pawlow have materially altered our conceptions of the action of acids. We have shown (p. 19) that indirectly, by stimulating the formation of secretin in the stomach and intestines, they excite the activity of all the glands giving rise to the secretions concerned with digestive activity. They all aid digestion. Hydrochloric acid is particularly serviceable in gastric anacidity, being the natural acid of the gastric juice. The mineral acids also possess a certain degree of antiseptic action on the contents of the digestive tract. Diluted acids are called refrigerants in imparting a sense of coolness to the skin and mucous membrane of the mouth, and, by augmenting the secretion of saliva, relieve thirst in fever. The acids exert a local stimulant and astringent action upon the intestinal canal. Nitric acid is particularly a stimulant, sulphuric acid an astringent.

Constitutional Action.—Almost all living matter possesses an alkaline or neutral reaction. An animal dies from acid poisoning even before its blood becomes neutral. The constitutional action of acids is seen after absorption of dilute solutions. Acids are immediately converted into salts—as acid can not exist as such in the tissues or blood. In the case of herbivora the fixed alkalies of the tissues and blood thus neutralize acid as it is absorbed. When the alkalies of the blood and tissues are consumed the animal dies. Herbivora are very susceptible to acid poisoning, as in them the lessened alkalinity of the blood renders it unable to carry carbonic acid from the tissues to the lungs.

Carnivora are more resistant to acid poisoning because they possess a protective power whereby they are able to liberate free ammonia from their tissues and thus neutralize absorbed acid and save—to a considerable extent—the fixed alkalies in their blood and tissues.

The symptoms of acute acidosis include: dyspnea, twitching, convulsions, coma, depression of the heart and vaso-constrictor centres, collapse and death by asphyxia and respiratory failure before the blood becomes even neutral. There is diminished carbon dioxide content in the blood explaining the peculiar dyspnea, gasping for breath, and later short, shallow, feeble breathing. The acid-neutralizing power of the
blood depends not only upon alkalies but also on protein, urea, and other nitrogenous bodies.

Acid is absorbed from the digestive tract as acid salts and in this form is eliminated by the kidneys, which may lead to renal irritation and the presence of albumin and blood in the urine.

The urine of herbivora therefore becomes strongly acid and contains large quantities of the salts of the alkalies; that of carnivora holds an excess of ammonia and—to a less degree—an increase in potassium and sodium salts.

The organic acids are also absorbed as salts of the alkalies but medicinal quantities do not reduce the alkalinity of the blood or render the urine acid. Large amounts may cause acute acidosis as from inorganic acids.

They are oxidized into carbonates in the blood and may alkalize the urine by their elimination as alkaline carbonates. The vegetable salts are infrequently used in veterinary medicine. The effect of the mineral acids on the body is due almost wholly to their hydrogen ion, to which they owe their activity. Acids in excess in the body are a cause of urticaria.

Diluted phosphoric acid relieves thirst and forms an agreeable cooling drink in fevers. Phosphoric acid is used as a tonic and reconstituent, but experiments have shown that phosphorus compounds of the body can not be built from inorganic forms of phosphorus.

Poisoning.—If acid be spilled on the skin, alkalies should be applied, and in case of sulphuric acid the excess of acid should first be rubbed off, and then large quantities of very dilute alkaline solutions or soapsuds should be employed to avoid evolution of heat when the acid combines with water. When acids are swallowed, there is excoriation and sloughing of mucous membranes, difficulty in swallowing, vomiting of dark brown material and mucus (in animals capable of the act), severe colic, pain on movement, constipation, or, rarely, bloody diarrhea. Occasionally some acid flows into the larynx during deglutition and edema and suffocation rapidly ensue. There is inflammation of the upper part of the digestive canal, thirst, and collapse, with weak pulse and cold extremities. Softening, sloughs, hemorrhage and perforation of the mucous membrane of the mouth, gullet and stomach and small intestines are found post mortem.

Treatment.—Soapsuds, lime water, magnesia, or other alkalies. Carbonates may be dangerous from escape of too much CO₂ gas and rupture of stomach. Demulcents, as milk and white of egg. Opium and stimulants. Give an enema of hot sodium bicarbonate solution, or a 3.5% solution of sodium carbonate, intravenously, to prevent systemic acidosis.

Uses External.—Strong mineral acids are used as caustics. One part of sulphuric acid is mixed with three parts of sulphur, or asbestos, to form a paste for the destruction of morbid growths.

The application of sulphuric acid is somewhat dangerous, as it is difficult to limit the action, and it is not by any means the best escharotic, nor so good as nitric acid, which produces less extensive destruction of tissue, and is a useful agent for the removal of tumors, for the cauteriza-
tion of bites inflicted by rabid animals, and for the treatment of foul, sloughing wounds or foot-rot.

The action of nitric acid may be limited by surrounding the part to which the strong acid is applied with oil, or by washing the acid off with soapsuds. Glacial acetic acid is frequently employed to remove warts and small excrescences. It is not so powerful as sulphuric or nitric acid. The acids in weak solution (3i.-Oi.) are useful in relieving irritation of the skin, as in urticaria, for their astringent action upon piles, and to stop slight hemorrhages. Vinegar diluted with 3 parts of water may be used for the same purposes. Nitric acid (Mv.-xxx. to 3i. of water) is a good antiseptic and astringent application to indolent ulcers, wounds, or, in the mouth, for ulcerative or mercurial stomatitis.

Uses Internal.—The acids are all of value in digestive disorders. Hydrochloric acid is useful in fever, to relieve thirst and aid digestion, when a few drops may be put in the drinking water. Hydrochloric acid is especially indicated for gastric indigestion with deficiency in the secretion of gastric juice, in convalescence, and for fermentation and tympanites in chronic gastritis. This applies to chronic tympany with diarrhea in cattle when one to two drams may be given in the drinking water twice daily with salt and powdered nux vomica on the feed. Hydrochloric acid should be given after feeding, and is often combined with biters. It acts as an antiseptic in addition to aiding digestion. Hypersecretion of hydrochloric acid, or hyperchlorhydria, is said to be characterized by acid reaction of the secretion in the mouth, and a desire to lick alkaline earthy matters. It is best treated by alkalies after feeding. All the acids are serviceable in the treatment of diarrhea and intestinal indigestion. Aromatic sulphuric acid (with opium) is more particularly valuable as a remedy for watery purging. Nitric and nitrohydrochloric acids are of more use in diarrhea with indigestion, jaundice, and disordered hepatic functions. The latter acid is often combined with nux vomica in the treatment of intestinal indigestion, and is a valuable remedy in catarrhal jaundice of dogs. The mineral acids are of service in preventing the formation of phosphatic calculi in horses.

Sulphuric acid is utilized in acute lead poisoning, as an antidote, to form insoluble sulphates in the bowels. The acids are given for their remote astringent action in arresting or preventing hemorrhage (purpura) from internal organs, and in diminishing excessive sweating and mucous discharges; but are inferior to other agents in the treatment of these conditions.

Administration.—The acids should be all thoroughly diluted with water for internal use.

Acidum Picricum. Picric Acid. C₆H₂(NO₂)₃OH. (Non-Official.)

Synonym.—Acidum carbazoticum, carbazotic or nitrophenesic acid, trinitrophenol, E.; acide picrique, carbazotique, nitroxanthique, Jaune-amer, Fr.; pikrin säure, trinitrocarbol säure, weltersches bitter, G.

Derivation.—Picric acid is made by mixing together equal parts of phenol and sulphuric acid and adding, to the resulting phenolsulphonic acid, nitric acid in a thin stream with constant stirring as long as nitrous fumes are given off.

Properties.—Picric acid occurs in bright yellow, inodorous scales or needles and, on being rapidly heated, will explode. It is soluble in 86 parts of water at
59° F., in 25 parts of boiling water which results in forming a saturated solution on cooling which contains about 1.2 per cent. of picric acid. It is readily soluble in chloroform and ether.

Action Internal.—When given internally picric acid stains the skin, mucous membranes and urine yellow and, in large doses, causes nausea, vomiting and purging, convulsions, hemolysis and death in collapse. It is eliminated as picric acid. Its use in medicine is chiefly confined to its external action.

Action External.—Picric acid is a powerful germicide. Ehrenfried found the saturated aqueous solution fifty times more powerful than a one per cent. solution of phenol. While slightly irritating in saturated solution it soon produces a marked analgesic action which is persistent.

Solutions coagulate albumin and on raw surfaces a scab is quickly formed through coagulated serum. This effect is valuable on clean, fresh wounds and in granulating wounds and ulcers which are free from pus.

On suppuring surfaces the scab formed may only confine the pus. There is no agent in surgery which stimulates so effectually the process of epidermization or the formation of new skin. Picric acid possesses great osmotic power, solutions permeating rubber gloves.

Uses External.—Picric acid is commonly employed by dissolving it in the proportion of 3 drams to the quart of boiling water and the resulting sterile, saturated solution is then ready for use. It has been applied with success to sterilize the unbroken skin for operations. Its greatest field of usefulness lies in the treatment of burns of the first and second degree. After cleansing the burns with tincture of green soap and water and lysol solution, and pricking vesicles, strips of sterile gauze soaked in the saturated solution are applied and covered with sterile, absorbent cotton and bandage. On the third day the dressing is removed, after wetting with picric acid solution, and reapplied to remain a week. The same application is useful in fresh lacerated wounds and in ulcers and granulating surfaces, after suppuration has ceased.

The saturated solution is sometimes used to allay pruritus and as a stimulant in chronic eczema.

Uses Internal.—The potassium salt—potassium picrate—is occasionally administered as an anthelmintic for round and tape worms. Young pigs, gr. iv-viii, (.24-.5); lambs, gr.vii-xx, (.5-1.3).

Acidum Boricum. Boric Acid. H₃BO₃. (U. S. & B. P.)

Synonym.—Boric acid, E.; acide borique crystallisé, Fr.; börsäure, G.

Derivation.—Made by evaporation and crystallization of solutions obtained by passing steam issuing from rocks in volcanic regions of Italy, through water; or by the action of hydrochloric or sulphuric acids upon borax. Na₃B₂O₃ (borax) + 10 H₂O + 2 HCl = 4 H₃BO₃ + 2 NaCl + 5 H₂O. Recovered by filtration and recrystallization.

Properties.—Transparent, colorless scales, of a somewhat pearly lustre, or, six-sided triclinic crystals, or a light, white, very fine powder, slightly unctuous to the touch; odorless, having a faintly bitterish taste, and permanent in the air. Soluble in 18 parts of water and in 15.3 parts of alcohol; also soluble in 4.6 parts of glycerin. It is feebly acid.
ACTION OF BORIC ACID AND BORAX 209

Dose.—H., 3ii-iv, (8-15); foals and calves, gr.xx-xxx, (1.3-2); D., gr.v-xv, (3-1).

PREPARATION

Glyceritum Boroglycerini. Glycerite of Boroglycerin. (U. S. P.)

Synonym.—Glycerinum acidi boricii, B. P.; glycerite of glyceryl borate, solution of boroglyceride. Boric acid, 310; glycerin to make 1,000. Solution prepared by heat (302° F.).

Unguentum Acidii Borici. (10 per cent.) (U. S. & B. P.)

Synonym.—Borax, B. P., P. G.; natrum biboricum, boras, boras sodicus, E.; borate de soudre, Fr.; natrium pyroborat, G.

Derivation.—Natural deposits of the crude article occur as incrustations on the shores of lakes in Nevada and California, which are purified by calcination and crystallization. Borax is also made by boiling boric acid with sodium carbonate. 4 H₂BO₃+Na₂CO₃ = Na₂B₄O₁₀+CO₂+6 H₂O.

Properties.—Colorless, transparent, monoclinic prisms, or a white powder, inodorous and having a sweetish, alkaline taste. Slightly efflorescent in warm, dry air. Soluble in 20.4 parts of water at 77° F., and in 0.5 part of boiling water; insoluble in alcohol. At 176° F. it is soluble in one part of glycerin. Borax is slightly alkaline.

Action of Boric Acid and Borax

Boric acid and borax are essentially mild, non-irritating antiseptics but not germicides. These agents are practically harmless, as ordinarily employed, yet death in man has been reported from absorption of a 4 per cent. solution of boric acid used for irrigation of the large cavities of the body, and fatalities have resulted from its external use and from the ingestion of quantities of boric acid.

Three drams of boric acid may be given daily to dogs, without causing any untoward effect. In man, boric acid poisoning has been exhibited by feeble pulse, subnormal temperature, vomiting, erythema and swelling of superficial parts, muscular weakness, involuntary evacuations, coma, and disordered respiration. Boric acid is eliminated by the urine, sweat, saliva and feces. Borax tends to alkalize the urine, but neither borax nor boric acid are diuretics.

Boric acid and borax, like other antiseptics, relieve itching and destroy parasites upon the skin. Boric acid exerts an antiseptic action upon the contents of the digestive tract and upon the urine. It is thought to possess some emmenagogue action. Outside the body it has been shown (Post & Nicoll, Bernstein, 1907-10) that a saturated solution of boric acid neither kills, nor materially checks, the growth of pathogenic bacteria after 24 hours. It does inhibit saprophytic bacteria and fungi to some extent. The suppositious germicidal action of boric acid on the body has not been demonstrated experimentally.

The value of boric acid and borax is chiefly surgical. They are employed more commonly upon the mucous membranes of the eyelids, mouth, nose, vagina, urethra and bladder, for their non-irritating, antiseptic properties, and also to relieve itching and to destroy parasites upon the skin. Boric acid is in more frequent use than any other agent in simple catarrhal conjunctivitis, and may be combined to advantage with cocaine as follows:
B
Cocaine Hydrochlor.. gr.v-x.
Aqæ ad... 3i.

M.
S. Eye lotion.

Borax is perhaps more appropriate in the mouth, being alkaline. It is applied by swab, in saturated solution, for aphthous and other forms of stomatitis. A saturated solution (4 per cent.) of boric acid is useful as an injection for ozena, cystitis and vaginitis. Borax in saturated solution assuages pruritis ani and vulvae, and is employed as an application for ringworm. Boroglyceride is indicated for burns and wounds.

One of the very best non-toxic wet dressings for wounds and ulcers consists of saturated aqueous boric acid solution with equal parts of alcohol. The following combination forms a soothing, protective dusting powder of chafed surfaces, intertrigo, erythema and moist eczema in dogs:

B
Acidi borici.. 3i.
Zinci oxidi .. 3ss.

M.
S. Apply externally as dusting powder.

Boric acid is prescribed in 10 per cent. ointment for burns, eczema and psoriasis. It is perhaps the best remedy for canker of the ear in dogs (otitis externa). The ear should be syringed out with a 2 per cent. solution, dried with absorbent cotton, and powdered with pure boric acid. The internal uses of boric acid are unimportant. It has been recommended and given as an emmenagogue, and as an intestinal antiseptic in fermentative diarrhea of foals and calves. Boric acid is often administered in human medicine to acidify the urine and disinfect the genito-urinary tract, although not so efficient as urotropin.

SECTION XXII.

Class I.—Carbon.

Carbo Ligni. Charcoal. (U. S. & B. P.)

Synonym.—Wood charcoal; charbon végétal, Fr.; holzkohle, G.

Derivation.—Soft wood charred by piling it in heaps, igniting, and covering it with sand and turf to prevent rapid combustion.

Properties.—A black, odorless and tasteless powder, free from gritty matter. Insoluble in water or alcohol.

Dose.—H. & C., 5i-ii, (30-60) ; Sh. & Sw., 5ii-iv, (8-15) ; D., gr.xx-5i, (1.3-4).

Action.—Charcoal is essentially a deodorant and absorbent. It possesses the power to absorb gases like other porous substances. Ordinarily it holds oxygen and when it comes in contact with decomposing matter it gives up its oxygen and at the same time absorbs the gaseous products of the decomposing substance. In this way it hastens fermentation by oxidation and, while not a sufficiently powerful oxidizer to act as a germicide or antiseptic, yet it may favor the growth of
aerobic rather than anaerobic organisms. The latter particularly produce foul-smelling and toxic bodies. So it may be seen that charcoal acts directly to absorb gases and indirectly to prevent the formation of the more undesirable fermentations. It was formerly thought that charcoal only acted as an absorbent in the dry state, but it is almost as efficient when wet.

Charcoal is not absorbed and escapes from the bowels unchanged. There is no material difference between the action of wood and animal charcoal. Externally charcoal acts as a dessicant, deodorant, and, indirectly, as an antiseptic by absorption of the body fluids on which germs subsist. If administered continually in large quantities charcoal may produce mechanical obstruction in the bowels, and it is therefore employed in conjunction with laxatives.

Uses External.—Charcoal is applied as a dusting powder with astringents and antiseptics upon ulcers, galled and raw surfaces. The following combination is useful:

- **B.**
 - Aluminis exsiccati.......................... 3i.
 - Acidi salicylici................................ 5ii.
 - Carbonis ligni................................... 3ss

- **M.**
 - S. Apply externally as dusting powder.

It is also used in flaxseed meal poultices upon foul, sloughing parts.

Uses Internal.—Charcoal is employed occasionally in indigestion, chronic gastric and intestinal catarrh, and diarrhea, accompanied by flatulence and mucous discharges. Charcoal possesses the power of attracting and holding alkaloids in its substance, and so may be used in large doses as an antidote in poisoning by alkaloidal drugs, as opium, nux vomica and aconite. Its action is slow, and other means, as tannic acid, emetics and the stomach tube, are more efficient.

Carbonis Disulphidum. Carbon Disulphide. C S₂. (U. S. P. 1905.)

Synonym.—Carbonis bisulphidum, B. P.; bisulphide of carbon, E.; carboneum sulphuraturn, P. G.; sulphure de carbone, Fr.; schwefelkohlenstoff, G.

Derivation.—Obtained from carbon and sulphur by distillation.

Properties.—A clear, colorless, highly refractive liquid; very diffusive, having a strong, characteristic, but not fetid odor, and a sharp, aromatic taste. Soluble in 526 parts of water; very soluble in alcohol, ether, chloroform, and fixed volatile oils. Spec. gr. 1.256 to 1.257. Carbon disulphide vaporizes readily and is highly inflammable.

Actions and Uses.—Carbon disulphide is a rapid and powerful anesthetic when inhaled, and also locally, when applied in spray upon the skin. It produces muscular weakness, coma, and, rarely, convulsions in toxic doses. It has been used as a counter-irritant in the form of vapor, to cause absorption of enlarged lymphatic glands. Carbon disulphide is given in gelatine capsules to horses to destroy the larvae of the bot fly (Estrus equi). Two capsules containing 10 grams each for a horse and 8 grams each for a colt should be given two hours apart and followed in 12 hours by a pint of linseed oil. Walking the patient prevents colic. Round worms are also killed by this agent.
Class 2.—Alcohol, Ether and Chloroform.

Alcohol. C₂H₅OH. (U. S. P.)

Synonym.—Spiritus rectificatus, B. P.∗; spiritus vini rectificatus, spirit of wine, rectified spirit, E.; alcohol, Fr.; weingeist, G.; spiritus, P. G.

Alcohol is derived directly from fruit sugar, and indirectly from starch. The grains, as wheat, rye, corn and potatoes, supply starch most economically. The starch in these substances is converted into glucose by heating with very dilute sulphuric acid, or by fermentation with malt. Glucose is further acted upon by yeast containing the Torula cerevisiae, which converts 15 per cent. of glucose into alcohol and carbonic dioxide. C₆H₁₂O₆ = 2 C₂H₅OH + 2 CO₂.

The weak alcohol resulting is subjected to repeated distillation until sufficiently pure and concentrated. In the natural fermentation of fruit sugar in grape juice, during the formation of wine, the amount of alcohol is self-limited to 15, rarely 20 per cent., since the ferment is killed by an amount of alcohol greater than this.

Derivation.—The official alcohol is derived from rectified spirit, by maceration, first with anhydrous potassium carbonate, then freshly fused calcium chloride, and finally by distillation.

Properties.—A liquid composed of about 92.3 per cent., by weight, or 94.9 per cent., by volume, of ethyl alcohol (C₂H₅O H), and about 7.7 per cent., by weight, of water (U. S. P.). A transparent, colorless, mobile and volatile liquid, having a slight, characteristic odor, and a burning taste. Spec. gr. about .816 at 15.6 C. (60° F.). Miscible with water in all proportions and without any trace of cloudiness. Also miscible with ether or chloroform. It is readily volatile at low temperatures, and boils at 78° C. (172.4° F.). It is inflammable and burns with a blue flame.

Dose.—H. & C., 5i-iii, (30-90); Sh. & Sw., 5ii-iv, (8-15); D., 5i-ii, (4-8).

Preparation.

Alcohol Dilutum. Diluted Alcohol. (U. S. P.)

A liquid containing from 41 to 42 per cent., by weight, or from 48.4 to 49.5 per cent., by volume, of absolute ethyl alcohol (C₂H₅O H). (U. S. P.)

Derivation.—Alcohol, 500; distilled water, 500.

Alcohol Dehydratum. Dehydrated Alcohol. (U. S. P.)

Synonym.—Alcohol absolutum. Absolute alcohol, C₂H₅O H. (B. P.)

Ethyl alcohol, containing not less than 99 per cent., by weight, of C₂H₅O H.

Derivation.—Percolation of the purest alcohol through quicklime, out of contact with the air, and redistillation in vacuo.

Properties.—Transparent, colorless, mobile and volatile liquid, having a characteristic odor, and a burning taste. Very hygroscopic. Spec. gr. not higher than 0.798 at 15.56° C.

Alcohol Deodoratum. Deodorized Alcohol. (Non-official.)

A liquid composed of about 92.5 per cent., by weight, or 95.1 per cent. by volume, of ethyl alcohol (C₂ H₃ O H), and about 7.5 per cent., by weight, of water.

Derivation.—Distillation of alcohol with about 2 per cent. of pure fused sodium acetate.

Properties.—Similar to alcohol, except as regards odor.

Spiritus Frumenti. Whisky. (Non-official.)

Synonym.—Eau-de-vie de grains, Fr.; kornbranntwein, G.

Derivation.—An alcoholic liquid obtained by the distillation of the mash of fermented grain (usually of mixtures of corn, wheat and rye), and at least four years old.

Properties.—An amber-colored liquid, having a distinctive odor and taste, and a slightly acid reaction. Its specific gravity should not be more than 0.945, nor less than 0.924, corresponding, approximately, to an alcoholic strength of 37 to

∗Rectified spirit (B. P.) contains 90 per cent. of pure alcohol by volume (85.65 per cent. by weight). There are four official dilutions in the B. P. containing 70, 60, 45 and 20 per cent. of alcohol by volume respectively.
BRANDY

47.5 per cent. by weight, or 44 to 55 per cent. by volume. Contains no more than traces of fusel oil. The alcoholic liquors owe their flavor or bouquet to ethers which are only developed in course of time. The amyllic alcohol, or fusel oil in whisky is therefore converted into ethers, which give the characteristic flavor to whisky.

Dose.—H. & C., 5ii-iv, (60-120); Sh. & Sw., 5i-ii, (80-60); D., 5i-iv, (4-15).

Spiritus Vini Gallici. Brandy. (Non-official.)

Synonym.—Spirit of French wine, E.; eau-de-vie, cognac, Fr.; Frantzbranntwein, G.

Derivation.—An alcoholic liquid obtained by the distillation of the fermented unmodified juice of fresh grapes, and at least four years old.

Brandy is somewhat astringent and is often not made from the distillation of wine, but is a factitious preparation. Native brandy is said to be purer, but is usually inferior in flavor to that of foreign manufacture. Brandy contains 39-47 per cent. of absolute alcohol by weight; 46-55 per cent. by volume.

Dose.—Same as that for whisky.

Spiritus Junipéri Compositus. Compound Spirit of Juniper. (U. S. P.)

Derivation.—Oil of juniper, 8; oil of caraway, 1; oil of fennel, 1; alcohol, 1,400; water to make 2,000.

Compound spirit of juniper is similar to gin in its therapeutical action. Contains about 15 per cent. more alcohol. Gin is made by distillation of fermented malt and juniper berries. Gin differs from the other alcoholic preparations therapeutically in being more diuretic.

Dose.—Same as that for whisky.

Rum. (Non-official.)

Rum is made from a fermented solution of molasses by distillation. It contains, by weight, from 40 to 50 per cent. of absolute alcohol. Rum does not differ physiologically from alcohol. There is no authoritative Latin name for rum.

Dose.—Same as that for whisky.

The Pharmacopoeia formerly directed that white wine should contain from 7 to 12 per cent., by weight of absolute alcohol. California hock and Reisling, Ohio Catawba, sherry, muscadel, Madeira and the stronger wines of the Rhine, Mediterranean, and Hungary, come within the pharmacopoeial limits. Wines containing more than 14 per cent. of alcohol, are usually fortified, _i. e._, have alcohol or brandy added to them, and much imported sherry (_vinum xericum_), port, and Madeira contain 15 to 25 per cent., by weight, of absolute alcohol.

Native claret, Burgundy, Bordeaux, and Hungarian wines may be included within the former pharmacopoeial limits of red wine. Port (_vinum portense_) is fortified with brandy during fermentation, and contains 15 to 25 per cent. by weight, of absolute alcohol. Port is astringent from tannic acid in the grapes, skins and stalks, or the astringency may be due to logwood.

Red wines are said to be rough when containing tannic acid and therefore are astringent. Dry wines are those which contain little sugar. The wines develop ethers with age, and these improve their flavor and action.

Champagne contains about 10 per cent. of absolute alcohol and carbonic acid gas, which acts as a local sedative upon the stomach. Ale, stout and beers contain from 4 to 8 per cent. of alcohol, together with bitters and malt extracts. Cider contains 5 to 9 per cent. of absolute alcohol. Alcohol is the solvent most commonly employed in pharmacy, dissolving alkaloids, resins, volatile oils, balsams, oleo-resins, tannin, sugar, some fats and fixed oils.
Action External.—When applied in dilution to mucous membranes, raw surfaces or wounds, alcohol is a stimulant and local anesthetic; while in concentration, it is irritant and even caustic, coagulating mucus and albumin. If alcohol is allowed to evaporate from the unbroken skin, cooling of the surface and contraction of the superficial blood-vessels ensue, with diminished secretion of sweat; but when alcohol is rubbed into the skin, it is absorbed, takes up water, hardens the integument and causes temporary vascular dilatation. Alcoholic aqueous dilutions containing 60 to 70 per cent. of absolute alcohol are among the most valuable skin disinfectants, equal in germicidal action to 3 per cent. carbolic acid solution. Absolute alcohol, or the undiluted commercial alcohol, has no germicidal action on dry bacteria, and alcohol in less than 40 per cent. strength is too weak.

Action Internal.—Alcohol acts locally upon the mucous membrane of the alimentary canal, as described above, and if swallowed in concentration it produces congestion and white patches in the mouth by coagulating albumin upon the mucous membrane. The secretion of saliva is increased. In small doses the more powerful alcoholic liquors, as whisky and brandy, aid digestion by stimulating locally the taste buds and appetite, and reflexly and locally, the gastric circulation, secretion, movement and absorption.

Alcohol, above 10 per cent. dilution, tends to inhibit the action of the digestive ferment—gastric and pancreatic—and in so far antagonizes its beneficial influence on gastric digestion just noted. So, while often aiding digestion, alcohol may fail on this account in some cases.

In large amounts, alcohol causes inflammation of the walls of the stomach and perverts the normal secretion into a mucous discharge. Alcohol is slightly astringent in the digestive tract, and may relieve pain by its local anesthetic action upon the stomach, and spasm, by stimulating the nervous mechanism controlling the stomach and bowels, and so co-ordinating the peristaltic movements.

Circulation.—The reputation of alcohol as a circulatory stimulant has been much dimmed by the results of many experimenters who have found it has no stimulating action on the heart whatever. Still more recent work shows that alcohol, after absorption, has a mild stimulating action on the heart muscle, and when nutrition is low—probably by providing the heart muscle with assimilable nutriment.

The reason for the supposition that alcohol is a heart stimulant was based on its action in increasing the pulse rate in man. In animals diluted alcohol does not affect either the rate or force of the heart, except in poisonous doses, when the pulse is slowed and weakened, owing to weakening of the cardiac systole and the dilatation of the heart cavities. In man the increased pulse rate is attributable to reflex irritation in the mouth, possibly to stimulation of the heart muscle or depression of the vagus center, and to muscular and mental activity produced by alcohol.

The blood pressure is not materially altered by medicinal doses of alcohol after absorption. Alcohol raises blood pressure, however, after
section of the cord cuts off vasomotor action. Marked dilatation of peripheral vessels following the use of alcohol, is seen in the flushing of the face in man.

Redistribution of blood occasioned by alcohol appears to be of signal value in certain morbid conditions, as chills. In fever the slowing of the pulse, sometimes produced by alcohol, is thought to be due to its quieting effect on the central nervous system.

There is a momentary stimulation of the heart (increased blood pressure) induced by the ingestion of strong alcoholic solutions inacting reflexly on the circulatory centres through irritation of the upper alimentary mucous membrane before absorption.

Large doses of alcohol depress and paralyze the vaso-constrictor centres and heart muscle. Alcohol harms the white blood cells—nature's defence against infections (Metchnikoff).

Respiration.—The respiration is not appreciably influenced by medicinal doses of alcohol in animals. In man slight reflex stimulation occurs, with increase in rate, owing to peripheral excitation of the upper alimentary tract. Enormous doses paralyze the respiratory centres.

Temperature.—The temperature, both in health and fever, may be lowered by alcohol, because alcohol causes relaxation of the peripheral blood-vessels and loss of heat by radiation from the skin. The larger the quantity of alcohol ingested, the greater the fall of temperature.—In alcoholic narcosis, vasomotor paralysis and lessened movements lead to great loss of heat, particularly if the animal be at the same time exposed to cold. In small doses, alcohol may sometimes increase the temperature in man by leading to excitement and muscular movements, but the sensation of warmth perceived in man following the use of alcohol is generally fallacious, and is simply due to flushing of the vessels of the skin and stomach. Some of the lowest temperatures ever observed have been in drunken persons exposed to cold.

Tissue Change.—Metabolic activity is not altered to any degree by the action of alcohol in small amounts. In large quantities alcohol lessens the oxidation and destruction of poisonous substances in the liver, and induces hepatitis and cirrhosis, after long periods. As a food, in normal condition, it is undesirable on account of its toxic properties.

Deductions drawn from the action of alcohol on tissue change as shown by carbonic dioxide and urea elimination are faulty. Alcohol increases or diminishes tissue change and oxidation only in proportion as it stimulates or interferes with muscular movement. Under the influence of alcohol more nitrogen escapes as uric acid and less in the form of urea.

Nervous System.—Moderate doses momentarily stimulate, while excessive quantities depress and paralyze the nervous system. This action is similar to that exerted upon the circulatory organs. The local effects of alcohol upon the peripheral nerves resembles the action after absorption upon the system generally. The nervous system is affected in nearly the same order and manner as by anesthetics, and the same stages may be observed. The stages include the stimulant, depressant and paralytic.
The law of dissolution is demonstrated by alcohol, as the more highly organized centres, and those more recently developed in the process of evolution are the first to succumb, and following out this order the medulla, the first of the higher centres to be developed, is the last to be influenced by the drug. In accordance with this law the cerebrum is first acted upon. The period of excitement is brief and is due in a considerable degree to the increased cerebral circulation and flushing of the brain. It is essential to emphasize the fact that by far the most apparent and decided action of alcohol is one of depression upon the nervous system as a whole. Many experimenters—as Schmiedeberg and Bunge—affirm that alcohol acts only as a depressant to the nervous system from the very outset. An increasing mass of evidence corroborates this view. The apparent enhanced mental activity in man is, according to this theory, simply due to lack of inhibitory control over the higher cerebral centres. Hence the freedom of speech and lack of modesty. Similarly the activity of the spinal reflex centres is thought to follow failure of inhibition. The mental excitement in man is chiefly due to exciting surroundings and does not occur in many persons nor in animals.

That alcohol is no more a nervous than a circulatory stimulant is now being generally accepted. It is a narcotic and stands between the anesthetics—rapid, powerful and transitory—and the hypnotics, slower and milder in action.

Alcohol has certainly a primary stimulating effect on nerve centres, probably from ephemeral protoplasmic irritation, but alcohol can not be regarded as a cerebral stimulant like caffeine. The stimulating influence of alcohol upon the spinal centres is more marked in the lower animals than in man, because the brain is proportionately small and poorly developed in the former. The primary stimulating effect of alcohol is shown in man by increased mental activity and apparent brilliancy, but acute reasoning and judgment are not enhanced, and in many cases there is almost immediate mental confusion and drowsiness induced. In man there is emotional excitement and the functions of speech and imagination are stimulated in the primary stage, but depression is soon noted in the loss of judgment and reasoning power, emotional control, decent restraint and speech. The patient cries, shouts, sings or laughs and talks incoherently. In the lower animals the stimulation of the higher and sensory psychical cerebral centres; with exhilaration, is rarely observed, but depression is seen in stupor and muscular incoordination. Stimulation of the cerebral motor centres is shown by motor excitement.

In man, following the symptoms described above, there is incoordination of muscular movements, first of those more highly and recently organized, such as are employed in writing, and then the muscular movements more remotely developed are affected, and the person is unable to walk, and finally there is complete paralysis of the motor centres and muscles. The staggering and uncertain gait of drunken people occurs not only because the cerebral motor and cerebellar centres are depressed by alcohol, but also because of loss of sensation and touch, or muscular sense, which is essential in maintaining the equilib-
rium. In relation to the spinal cord, primary stimulation of the reflex centres is more marked in animals than in man, as has been pointed out. In animals this stimulation causes motor excitement, so that the patient trembles, jumps about, or strikes out with the feet. Depression of the reflex centres occurs in the latter stage of poisoning, and is exhibited by involuntary defecation and micturition; sensation and voluntary motion are lost. The motor nerves and muscles are not generally paralyzed, except by the local action of alcohol. The medulla finally becomes depressed and paralyzed so that respiration, which is first stimulated, now fails, and the heart muscle becomes paralyzed and its action ceases.

The action of alcohol upon the nervous system may be summarized with a fair degree of accuracy, as momentary stimulation and then persistent and marked depression of the parts enumerated below, and in the following order:

Cerebral psychical centres.
Cerebral sensory centres.
Cerebral motor centres.
Cerebellum.

Spinal centres.
Sensory, reflex and motor.
Medullary centres.
Vasomotor (early depression).
Respiratory.

Horses and dogs are comparatively susceptible to alcohol, ruminants slightly so. An amount of alcohol equivalent to a pint of whisky has killed a sound horse, while four ounces of whisky will cause death in dogs if vomition be prevented by ligature of the esophagus.

Primary motor excitement is followed by unsteady, staggering gait, and coma in fatal cases.

Skin.—Alcohol dilates the peripheral vessels, and therefore brings more blood to the sudoriparous glands, and excites their functional activity. It is thus a diaphoretic.

Kidneys.—Alcohol acts as a diuretic. The exact mode of this action is unknown.

Nutrition.—Alcohol is a food, and, like other non-nitrogenous foods, supplies force and energy in its oxidation, takes the place of fats and carbohydrates, and may form fat in the body. It also protects food and tissue proteins from combustion. We are ignorant of the fate of alcohol after absorption, but we do know that the greater portion is decomposed and is not eliminated. Alcohol is most advantageous as a food in fever, or in conditions associated with weak digestion, since it is readily absorbed and assimilated. Alcohol causes dulness and lessened power for mental or physical work in man, and in normal conditions is not a desirable food as it is narcotic, locally irritant, and destroys the body tissues. In acting as a substitute for fat and carbohydrates, alcohol assists the accumulation of fat.

Elimination.—When alcohol is ingested in ordinary doses it is practically all consumed, and none but the most trivial amount is eliminated, i.e., five to ten per cent. The greater the quantity absorbed the larger the amount eliminated by the urine, breath, sweat and feces, both rela-
tively and absolutely; but under no circumstances after the most enormous doses does the elimination exceed 25 per cent. of the quantity ingested. Milk is not affected in quality or quantity through the ingestion of alcohol by the animal secreting it.

Summary.—Alcohol is externally refrigerant, astringent, anhidrotic and antiseptic, and if applied so that absorption occurs, it is rubefacient. On raw surfaces it is slightly anesthetic. Alcohol is internally a stomachic, carminative and slight local anesthetic in the digestive tract. Alcohol is reflexly a heart stimulant through its irritant action on the alimentary tract before absorption. It also is a direct, mild stimulant to the heart. Alcohol is a narcotic and its chief action is in progressively depressing and paralyzing nerve centres. It supplies force and is a food. Alcohol is a diuretic, diaphoretic, and antipyretic in dilating peripheral vessels and in causing sweating.

Acute Poisoning.—In coma and muscular relaxation, the treatment consists in emptying the stomach by the tube, in the external application of heat and counter-irritants; while caffeine, strychnine, digitalone and atropine should be given subcutaneously.

Uses External.—Alcohol is applied to the unbroken skin to bruises, for its local refrigerant and astringent action in relieving pain and congestion. Diluted to 70 per cent. strength, alcohol forms an antiseptic and local anesthetic application to wounds, and like most antiseptics, relieves itching, particularly when combined with 1 to 2 per cent. of carboxylic acid. Alcohol diluted with one-third part of water makes one of the best known agents for disinfection of the hands and operative field. It is relied upon entirely in some of the best hospitals in the country, in addition to thorough scrubbing in soap and water.

Uses Internal.—Digestive Tract.—Alcohol is a useful remedy to promote appetite and assist digestion. The drug should be given immediately before eating or with the food, properly diluted, and often advantageously with egg and milk during fever or convalescence from acute diseases. Alcohol is frequently combined with bitters, as compound tincture of gentian, when employed as a stomachic.

Acute Diseases.—Alcohol finds its greatest field of usefulness in the treatment of febrile diseases, notably influenza and strangles, bronchitis and pneumonia in horses. In such conditions it flushes the vessels of the skin and distributes the blood more equally, allowing the heart to receive more blood and thus overcoming internal congestion.

It is impossible to reconcile the clinical remedial effects of alcohol with its action on healthy animals. The results of recent researches—especially as showing an absence of stimulation of the circulation and respiration by alcohol—has led to its greatly lessened use as a therapeutic remedy. Nevertheless the enormous practical experience of some of the most acute clinicians of the past and present, that alcohol renders service in the diseases named herein, does not permit one to hastily sweep it aside as a therapeutic agent. We may summarize its worth in acute diseases as follows. It is a food and one which is not only digestible but which in itself may aid digestion. It has more food value than
sugar. It dilates peripheral vessels and equalizes the circulation. In man one of its most potent effects is probably in acting as a narcotic and quieting the nervous system.

A high temperature does not contra-indicate its use, but it is not desirable in the early stages of acute inflammatory disorders. Alcohol is particularly serviceable in asthenic diseases—as purpura—and in continued fevers associated with much depression—as in puerperal and other forms of septicemia.

In fevers alcohol sometimes causes the heart to beat more slowly. Whether this be due to stimulation of the inhibitory apparatus or invigoration, directly or indirectly, of the weakened organ, we do not know.

The pulse, respiration and nervous system are our guides, and the object is to bring the functions into a more normal condition. Alcohol should therefore reduce the frequency of the pulse and respiration, when they are too rapid, and should cause the animal to become quieter. If these results are obtained, the use of the drug should be persisted in; if otherwise, administration should be stopped. Small and repeated doses are more appropriate in fever.

Alcohol is one of the most rapidly effective agents at our command in syncope and cardiac failures from various causes—as mild surgical shock, severe hemorrhage, collapse, exhaustion, snake bite, and following exposure to cold. In these conditions it should be given in the form of spirits diluted with only an equal part of very hot water. It may act in these cases by stimulating reflexly the medullary, cardiac and respiratory centres by its irritant action on the alimentary tract. From our physiological data alcohol should not be of service in such conditions as a stimulant. Its narcotic action in serving as a nervous sedative in lessening anxiety and pain and so offsetting the effects of shock—may account in some measure for its worth. Thus morphine is one of the best drugs to use in surgical shock—much better than alcohol. After exposure to cold it is easy to explain the benefit derived from alcohol in its action in dilating the peripheral vessels and directly antagonizing the results of cold. Experiments on healthy animals regularly receiving moderate doses of alcohol have proved that they are more susceptible to inoculation with bacteria and toxins than controls. In disease, however, clinicians greatly differ on this point. Experience in human medicine proves that alcoholics are especially susceptible to the germs of pneumonia and erysipelas. This accords with its harmful experimental action on the white blood cells.

Administration.—Veterinary practitioners are fortunately exempt from any moral considerations in relation to their medicinal use of alcohol. Rum, gin and whisky are more commonly employed than the other alcoholic preparations, although diluted alcohol is practically as valuable. Gin is indicated when a diuretic action is important. Brandy, being more astringent, is given to dogs with diarrhea, and, combined with cracked ice in small quantities, relieves vomiting. Sherry may also be administered to dogs with advantage. The dose of the various alcoholic liquids depends upon the quantity of alcohol contained in them.
Animals will usually take alcoholic preparations voluntarily if largely diluted with water, milk or gruel. Whisky should be diluted with about 4 parts of water when given in drench, unless the reflex action is desired, when it is administered in considerable doses with an equal amount of hot water.

Diluted alcohol, undiluted whisky or brandy are injected subcutaneously when a rapid action is imperative.

Æther. Ether. \((C_2H_5)_2O\). (U. S. P.)

Synonym. —Æther purus, B. P.; æther fortior, pure ether, E.; éther hydrique pur, Fr.; reiner æther, G.

A liquid containing not less than 95.5 per cent. nor more than 97.5 per cent. of ethyl oxide \((C_2H_5)_2O\), the remainder consisting of alcohol containing a little water.

Derivation.—Obtained by distillation of alcohol with sulphuric acid. There are two steps in the production of ether; sulphovinic acid and water are formed in the first step. \(H_2SO_4 + C_2H_5OH \rightarrow C_2H_5S + SO_3 + H_2O\). Sulphovinic acid is then further acted upon by alcohol.

\(C_2H_5S + H_2O + C_2H_5OH \rightarrow (C_2H_5)_3O + H_2S\). The distillate is freed from water by agitation with calcium oxide and chloride, and subjected to redistillation.

Properties.—A transparent, colorless, mobile liquid, having a characteristic odor and a burning and sweetish-taste. Spec. gr. 0.718 to 0.716 at 75° C. Soluble in about 12 times its volume of water at 25° C. Miscible in all proportions with alcohol, chloroform, petroleum, benzin, benzene, benzol, fixed and volatile oils. Ether boils at about 35.5° C. (95° F.), and it should therefore boil when a test tube, containing some broken glass and half filled with it, is held for some time in the hand. Ether is highly volatile and inflammable; its vapor, when mixed with air and ignited, explodes violently. The color of light blue litmus paper moistened with water should not be changed when the paper is immersed in ether for 10 minutes. Upon evaporation ether should leave no residue. Ether is a solvent for fats, oils, alkaloids, resins, gutta percha and gun cotton. Ether vapor is heavier than air, and, consequently, etherization should never be done above a light or fire.

Dose.—H. & C., 5i-ii, (30-60); Sh. & Sw., 5ii-iv, (8-15); D., m\(\)x-5i, (6-4).

PREPARATIONS.

Æther Purificatus. (B. P.)

(Ether freed from most of its alcohol and water.)

Spiritus Ætheris. Spirit of Ether. (U. S. & B. P.)

Ether, 325; alcohol, 675. (U. S. P.)

Dose.—Same as for ether.

Spiritus Ætheris Compositus. Compound Spirit of Ether. (B. P.)

Synonym.—Hoffman’s anodyne. Ether, 325; alcohol, 650; ethereal oil, 25. (U. S. P. 1905.)

Dose.—Same as for ether.

Action External.—Ether evaporates rapidly from the skin, and abstracts so much heat in the process that the superficial parts are cooled, numbed, and even frozen. This action is taken advantage of in spraying ether from an atomizer upon the skin (with or without cocaine injected) to cause local anesthesia in minor surgical operations, as opening abscesses. The spray should not be applied more than a few minutes, or freezing, damage to the tissues, and retardation of the healing process will ensue. If ether is applied with friction, or if evaporation from the skin is prevented by bandaging, it will act as a rubefacient.

Action Internal.—Digestive Organs.—Ether is an irritant to the
mucous membrane of the digestive tract, and should be given only when considerably diluted with water. Ether stimulates secretion, motion, and increases local blood supply of the stomach. Ether, in concentration, resembles alcohol and ammonia in stimulating the heart reflexly, by its irritant action upon the alimentary canal, before it has time to be absorbed. It relieves pain and spasm in the digestive tract by coordinating or restoring nervous control over the stomach and bowels.

Circulation.—Ether is reflexly a stimulant to the heart and vasomotor centres through peripheral irritation of its vapor, as in the case of alcohol. Some authorities allow no direct stimulating action (Cushny). In poisonous doses, or after prolonged inhalation, the circulation becomes weak and the heart stops beating from direct depression of its muscle.

Nervous System.—Ether is chiefly depressant to nerve centres. Its apparent primary stimulation of the central nervous system is somewhat doubtful and many experimenters deny that it directly stimulates the nerve centres at all. Ether depresses and abolishes the functions of all the great nerve centres in the following order, and with the following results:

1. The cerebrum (with loss of consciousness).
2. Sensory spinal tract (loss of sensation).
3. Motor spinal area (loss of motion and partial loss of reflex action).
4. Sensory medullary centres.
5. Motor medullary centres (failure of respiration).

Ether does not affect the nerves or muscles when inhaled or ingested. Ether depresses the action of the nerves, however, when applied locally.

Respiration.—The respiratory centre is stimulated by inhalation or ingestion of therapeutic quantities of ether. Paralysis of the respiratory centre occurs in the last stage of ether poisoning. Ether vapor is irritant to the respiratory mucous membrane, and causes coughing and choking during inhalation. It is not an appropriate anesthetic, therefore, in inflammatory conditions of the respiratory tract, because its vapor is given in greater concentration than in chloroform. In giving ether by the drop method undue irritation of the lungs is avoided and such conditions as bronchitis, pulmonary edema and pneumonia. Ether vapor excites the peripheral ends of the trifacial nerve in the face, and the vagus nerve in the lungs, so the temporary arrest of respiration often occurs when a fresh supply of ether is added during inhalation.

Temperature.—The temperature of the body may be raised during the stage of excitement and struggling, but prolonged etherization leads to loss of heat, owing to evaporation of ether from the lungs, and general depression of the nervous system.

Elimination.—Ether is eliminated principally from the lungs. Recent experiments indicate that ether causes contraction of the renal arteries, with diminution in the size of the kidneys, suppression of urine and albuminuria. Ether leads to fatty degeneration of the kidneys, liver and heart, less frequently than chloroform, however.

Acetone has been found in the urine of 90% of patients in human
practice within 18 hours of etherization (through a closed cone). Death may sometimes occur in coma, following ether anesthesia, with rapid pulse and breathing and the odor of acetone in the breath. This occurs less often than with chloroform (which see, under metabolism).

Uses.—Apart from its value as an anesthetic, ether is mainly of service for two purposes. First: in collapse, syncope, or "sinking spells," due to poisoning, or natural causes. Ether may be given by the mouth, or subcutaneously into the muscular tissue, to avoid abscess. It should not be given as a stimulant when such an agent is required during or following anesthesia. Second: In spasmodic colic or tympanites, ether relieves pain, spasm and flatulence. The following prescription will be found useful for the horse:

\[
\begin{align*}
\text{B} \\
\text{Etheris} & \quad \text{ii}.
\end{align*}
\]

\[
\begin{align*}
\text{Chloroformi} & \quad \text{ii}.
\end{align*}
\]

\[
\begin{align*}
\text{Tinct. opii} & \quad \text{ii}.
\end{align*}
\]

M. et f. haustus.

S. Give at once in a pint of cold water.

Ether is a good antispasmodic remedy for asthma, hiccup or "thumps," in the horse, and has a narcotic action upon tape and lumbroid worms. When used for the latter purpose, ether should be followed by a purge. Ether may be employed in an enema to narcotize and remove thread worms of the horse. Ether should never be given internally or by inhalation to animals whose flesh is to be eaten soon after as it imparts a strong flavor to the meat and is also said to "spot" it.

Administration.—Ether should be given in gelatine capsules; mixed with two parts of cracked ice and water; or with equal parts of brandy and whisky, to avoid undue irritation by ether and its vapor upon the mucous membranes during deglutition.

Chloroformum. Chloroform. **C H Cl₂** (U. S. & B. P.)

Synonym.—Chloroformum purificatum, purified chloroform, E.; chlorofor-mium, P. G.; formyli trichloratum, chloroformae pur, Fr.; reines chloroform, G.

A liquid consisting of 99 to 99.4 per cent., by weight, of C H Cl₃, and 0.6 to 1 per cent. of alcohol.

Derivation.—Alcohol and water are heated in a still to 37.7° C. (100° F.), when chlorinated lime is added and chloroform is evolved. The chemical action is very complicated. Chloroform, free from chlorinated compounds, is also made from acetone and chlorinated lime by distillation. Calcium acetate, hydrate and chloride result as by-products.

\[
2 \text{C}_2\text{H}_5\text{O}+6 \text{Ca O Cl}_2 = 2 \text{C} \text{H Cl}_3+\text{Ca (C}_2\text{H}_5\text{O})_2+2 \text{Ca O}_2\text{H}_2 + 3 \text{Ca Cl}_2.
\]

For tests and purification, *vid.* U. S. P.

Properties.—A clear, colorless, mobile liquid, of a characteristic, ethereal odor, and a burning, sweet taste. Spec. gr. 1.474 to 1.476 at 25° C. (77° F.). Soluble in about 210 times its volume of water, and miscible with alcohol, ether, benzene, petroleum, benzin and the fixed and volatile oils. Chloroform is volatile even at a low temperature, and boils at about 61° C. (140° F.). It is not inflammable, but its vapor in the presence of a naked flame undergoes decomposition with the formation of noxious gases, chiefly chlorine. This has caused death during chloroform inhalations. Chloroform is a solvent for fats, resins, oils, bal-sams, gutta percha, wax and many alkaloids.

Dose.—H. & C., 5i-ii, (4-6); Sh. & Sw., mxx-xxx, (1.8-2); D., mli-xx, (.12-1.8).
CHLOROFORM

PREPARATIONS.

Aqua Chloroformi. (U. S. & B. P.).

(Saturated Solution.)

Used as vehicle in cough and diarrhea mixtures for dogs.

Linimentum Chloroformi. (U. S. & B. P.)

Chloroform, 300; soap liniment, 700. (U. S. P.)

Spiritus Chloroformi. (U. S. & B. P.)

Chloroform, 60; alcohol, 940. (U. S. P.)

Dose.—H. & C., 5i-ii, (30-60); Sh. & Sw., 5ii-iv, (8-15); D., 3ss-i, (2-4).

Action External.—Chloroform acts as a rubefacient if rubbed into the skin, or prevented from evaporation by bandaging. In evaporating from the surface it produces mild refrigeration. Chloroform penetrates the skin more easily than many other agents, and is employed for this reason to aid the absorption of belladonna and other drugs used in liniments. Chloroform possesses some local anesthetic action upon mucous membranes, raw surfaces, or when rubbed into the skin.

Action Internal.—*Digestive Tract.*—Chloroform is an irritant in concentration, but, properly diluted, stimulates the flow of saliva and increases the secretions, motion, and blood supply of the stomach. Chloroform has a local anesthetic and antiseptic action in the alimentary canal, and by its stimulant effect in restoring the normal state of nervous and muscular tissue, relieves spasm, pain and flatulence in the stomach and small intestines.

Circulation.—Chloroform exerts an ever increasing depressing influence upon the heart muscle, its ganglia, the vasomotor centres, blood vessel walls, and blood pressure.

Vasomotor depression leads to dilatation of the arterioles and leaking of blood into the veins, with consequent venous engorgement (particularly of the abdomen), and arterial anemia. Failure of respiration in chloroformization is secondary to cerebral anemia, and chloroform kills, primarily by vasomotor depression. (Leonard Hill and Hare.)

The ventricles dilate and all cardiac muscular contractility is lost in fatal poisoning. Death, however, occurs almost invariably in healthy animals during chloroform inhalation from respiratory failure associated with circulatory depression. The heart usually continues to beat after cessation of breathing. Death from syncope occurs occasionally, and circulatory depression is greater and occurs more suddenly than with ether. Rarely sudden death occurs in the beginning of anesthesia from reflex inhibitory arrest of the heart produced by the inhalation of concentrated chloroform vapor. The degree of concentration is of the utmost importance. A great deal of chloroform may be given for a long period if it is greatly diluted with air. It is not the amount but the rapid absorption of concentrated vapor which kills.

With ether the vapor may be greatly concentrated without danger; with chloroform the difference between the necessary concentration for anesthesia and that which means danger is slight. As chloroform anesthesia proceeds, the pulse becomes rapid from the depressing effect of chloroform upon the vagus centre.

Respiration.—Chloroform does not markedly affect the respiration, when inhaled in proper dilution for an ordinary period, or when ingested
in small doses, but after long continued inhalation, or when large quantities have been swallowed, depression and paralysis of the respiratory centre ensues. Since asphyxiation leads to inhibition and heart failure—besides being dangerous in itself—the respiration should always be watched as carefully during chloroform as in ether inhalation.

Nervous System.—Chloroform depresses the nervous system as described under ether; that is, the cerebrum, sensory and motor spinal tract, and sensory and motor centres of the medulla. Chloroform, although generally following the order noted, affects the nervous system more rapidly, irregularly and persistently than ether, and therefore is more dangerous. It occasionally happens that some of the reflexes are abolished by chloroform before sensation has been annulled, and irritation of a sensory nerve produced during operation may reflexly stimulate the inhibitory centres (instead of increasing vascular tension as in health), and so cause heart failure. Operations should never be performed, therefore, under chloroform until complete anesthesia is secured. The nerves are not influenced by the constitutional action of chloroform, although the latter is a local irritant and anesthetic to them.

Temperature.—The temperature is reduced by the continual inhalation of chloroform through its depressing action on the heat producing centres, and because heat loss is increased by evaporation of chloroform from the lungs.

Antiseptic Action.—Chloroform prevents the growth of micro-organisms, but does not influence that of the unorganized digestive ferments. Chloroform’s antiseptic properties may be utilized in preserving solutions for subcutaneous injection. Saturated aqueous solutions are used for this purpose.

Metabolism.—Death occasionally follows chloroformization from fatty degeneration of the heart, liver and kidneys. Chloroform leads to imperfect oxidation through destructive changes in the liver, with decrease in storage of glycogen and the appearance in the urine of sugar, acetone, and cystin, leucin or tyrosin. This form of poisoning, occurring from 1 to 4 days after anesthesia, is seen more often in cats. Death occurs in coma in acetone poisoning from chloroform, as happens in diabetes mellitus.

Elimination.—Chloroform is chiefly eliminated by the lungs and slightly by the kidneys, but is also decomposed in part in the body.

Uses External.—Chloroform is employed in liniment to relieve pain and produce counter-irritation in muscular rheumatism and strains. It preserves urine in one-half per cent. strength.

Uses Internal.—Chloroform is of service internally in the treatment of six conditions: 1. Intestinal colic, and flatulence. 2. Spasm, as in spasm of the diaphragm in horses. Chloroform inhalation is the best treatment for eclampsia in suckling bitches. In strychnine poisoning the same treatment is indicated. 3. Diarrhea. 4. Cough. 5. Antiemetic, for controlling vomiting in dogs or cats, 1 dram of chloroform water hourly. 6. Parasitic infestation. Full doses in castor oil for round worms. Chloroform alleviates pain in colic by restoring the functions of the nervous and muscular mechanism of the bowels, by reliev-
ing spasm, and also by its local anesthetic action. It stimulates motion and secretion; it is an antiseptic in the digestive tract, and, in these ways, overcomes flatulence.

Chloroform should be combined with opium in diarrhea and colic. It is administered in spirit or syrup to assuage cough.

As an anthelmintic chloroform has been found the best anthelmintic in dogs against hookworm by Hall and Foster, in proportion of \(\frac{M}{ii} \) to 2.2 lbs. live-weight, in an ounce of castor oil. Also for mixed infestation with intestinal worms in dogs (see oil of chenopodium). Lung worms in sheep (S. filaris) are most successfully expelled by chloroforming the animals till they stagger. Coughing brings up the narcotized worms, but most are swallowed. So, after three hours, give a dose of purgative salts. Two or three treatments three days apart will usually cure. Food and water must not be contaminated with the feces of the sheep.

Administration.—Chloroform may be administered in 3 parts of glycerin; in emulsion with white of egg or acacia; or, as the spirit, diluted with water.

Anesthesia.

Anesthesia is commonly divided into three stages: the stimulant, anesthetic and paralytic. The so-called "law of dissolution" is illustrated by anesthetics, as the more highly organized (cerebral) centres are the first to succumb, while the lower centres (medulla) are the last to be affected. The anesthetics resemble other narcotics in producing a primary condition of stimulation of the nervous system, which is followed by depression. In the first stage of anesthesia there is often struggling and excitement. This may partly be due to the physiological action of the drug but chiefly to local irritation and fright. In this stage the functions of the brain are stimulated and then depressed. The higher functions are the first to be excited, and the effect produced is very similar to that of beginning alcoholic intoxication. The lower motor functions are next stimulated, inducing struggling and motor excitement.* In the first stage of etherization, the local irritant action of the vapor causes choking and coughing, and also induces struggling. The respiratory and cardiac centres are temporarily stimulated, the pulse and respiratory movements are increased in force and frequency, and blood tension is raised. The smaller animals may vomit during the first stage of anesthesia. A subdivision of the first stage, sometimes described as the anodyne stage, occurs when sensation is lost, before consciousness and voluntary motion. Short operations, as extraction of teeth, have been done by men upon themselves in the anodyne stage of anesthesia, without pain. The anesthetic stage is that condition characterized by absence of consciousness, sensation, motion, and partial loss of reflex action, and is that state suitable for operations. The stimulating action

*As researches show ether, like alcohol, to be depressing to nerve centres from the outset it is probable that the excitement in anesthesia is due to the local irritation of the throat and fright.

With the drop method of etherization in man there is little or no struggling and excitement,
of the anesthetic has ceased and there is now depression of the cerebral functions, the motor and sensory tract of the cord, and, to a partial extent, the reflex centres. The muscles are completely relaxed, and the patient lies absolutely motionless. The conjunctivæ fail to respond to irritation, i. e., winking is not produced when the conjunctival membrane is lightly touched with the finger. Occasionally the muscles are seen to be rigid and twitching during this stage of etherization, although sensation and consciousness are absent. The respiration and pulse should not be particularly altered during the anesthetic stage, unless danger threatens. In the last stage, narcosis, or poisoning, is beginning, and there is depression of the three great medullary centres controlling the heart, respiration and vascular tension, and also the lowest reflex centres of the cord, so that the urine and feces are passed involuntarily. Micturition frequently occurs in the first stages of anesthesia and should not of itself be considered a danger signal. The pulse becomes rapid, feeble and irregular; the breathing is at first stertorous, and then the respiratory movements become shallow and weak, with considerable intervals intervening between them. The pupils are often dilated. The pupil is said to be a guide during anesthesia, especially with chloroform, since it is contracted during the anesthetic stage and dilates quickly when danger approaches. Death, however, occurs in animals with either dilated or contracted pupils. With the former, probably from asphyxia; with the latter, from syncope; and the pupil should not be regarded as an unfailing sign. The foregoing stages are conventional, and are not in any case so clearly defined in practice as they are described theoretically upon paper. The first stage may be either absent or prolonged, and the last stage should not be reached at all.

Comparison of Ether With Chloroform.

<table>
<thead>
<tr>
<th>Ether</th>
<th>Chloroform</th>
</tr>
</thead>
<tbody>
<tr>
<td>More diffusible.</td>
<td>Vapor heavier.</td>
</tr>
<tr>
<td>Inflammable.</td>
<td>Non-inflammable.</td>
</tr>
<tr>
<td>Irritating, may induce bronchitis, pulmonary edema and pneumonia, unless properly diluted (see drop method, p. 231).</td>
<td>Non-irritating.</td>
</tr>
<tr>
<td>Reflexly stimulant to heart and vasomotor centres and does not so easily depress the respiratory centres.</td>
<td>Depresses powerfully the heart, respiratory and vasomotor centres, in large doses.</td>
</tr>
<tr>
<td>Larger quantity required.</td>
<td>Drams of chloroform do the work of ounces of ether.</td>
</tr>
<tr>
<td>More expensive.</td>
<td>Cheaper.</td>
</tr>
<tr>
<td>Less rapid.</td>
<td>Acts more quickly; profoundly and persistently.</td>
</tr>
<tr>
<td>Fatal from respiratory failure and acapnia (see p. 227).</td>
<td>Fatal from respiratory failure combined with circulatory depression and vasomotor paralysis, or later from fatty degeneration of the internal organs, or from acidosis and acetone poisoning. Occasionally fatality results from reflex inhibitory arrest of the heart from inhalation of too concentrated vapor.</td>
</tr>
</tbody>
</table>
The mortality is 1 in 3,162 chloroformizations; and 1 in 16,302 etherizations in over a million cases in human practice (Hewitt). Chloroform is $3\frac{1}{2}$ times more depressant to nerve centres, 8 times more depressant to the heart, and causes 5 times more deaths, than ether.

It will be seen that all the advantages are in favor of chloroform, except that of safety. Ether is more expensive than chloroform, but cheaper than a funeral.

Accidents and Dangers Attending Anesthesia.

Respiratory failure and asphyxia may occur from giving too much of the anesthetic, and from mechanical obstruction in the air passages. The tongue may fall back upon the epiglottis and prevent the free entrance of air. The latter accident is obviated by pulling the tongue forward with the hand, or, in the case of the smaller animals, by means of forceps, or suture passed through the tongue. Mucus, blood or vomitus may obstruct the mouth, pharynx, larynx, or trachea, and should be removed if possible by swabbing with absorbent cotton. To prevent excessive secretion of mucus in the air passages atropine may be given subcutaneously fifteen minutes before etherization. The head should be extended and the lower jaw of the patient held forward during anesthesia, and no impediment to the free movement of the chest is allowable. Struggling is to be avoided, as far as possible, since it leads to irregular respiration and asphyxia, and causes the anesthetizer to push the inhalation, strains the heart, and favors cardiac dilatation with chloroform. Struggling may be prevented to some extent by giving the anesthetic well diluted with air at the outset. Asphyxia results also from tetanic fixation, or relaxation of the respiratory muscles. The signs of asphyxia include cyanotic mucous membranes, muscular twichings, shallow, feeble, slow and irregular breathing, with long intervals between the respiratory movements, and dilation of the pupils. If death occurs, the heart continues to beat after the breathing stops. The condition of the diaphragm during etherization is an important guide. At first the contractions of the diaphragm are so vigorous that the viscera are forced backward, and the abdominal wall bulges outward during inspiration. As the inhalation is prolonged the diaphragm becomes flaccid and powerless, the respiratory movements are shallow, and the breathing thoracic. The abdominal contents may then be drawn forward during inspiration into the thoracic cavity, so that the abdomen is retracted (Hare). When the latter condition is seen, etherization should be stopped instantly.

Heart failure occurs more frequently with chloroform, but does occasionally result from the action of ether upon animals with a fatty or otherwise weak heart. Cardiac depression is shown by a weak, irregular and rapid pulse, and pallor of the mucous membranes. Respiration begins to fail before the heart stops in chloroform. Artificial respiration will therefore usually prevent death. The real cause of death, is, however, vasomotor paralysis in chloroformization. Operations should never be done under chloroform before the patient is fully under the influence of the anesthetic, as irritation of a sensory nerve caused by
even a slight surgical procedure may cause death by reflexly stimulating the vagus and inhibiting the heart. Such an accident is not likely to occur with ether, and minor operations are often done with safety during the first stage of anesthesia (primary anesthesia) when consciousness and sensation are lost and the muscles begin to relax.

Shock from hemorrhage, or prolonged and severe surgical operations, may lead to fatalities during anesthesia, and it sometimes occurs when an operation is begun before the patient is fully under the influence of an anesthetic—particularly chloroform—as described above.

Crile’s theory postulates the existence of a “kinetic system” composed of the brain, liver, adrenals, thyroid gland and muscles. On this system excessive stimuli caused by pain, traumatism, fear, infection, hemorrhage or great exertion, act to produce destructive changes or shock.

He actually finds such pathologic changes in these organs in shock. In surgical operations the stimuli caused by the traumatism pass to the brain just as readily under ether and chloroform as without. To inhibit the stimuli one must block the nervous pathways by injecting the operative field with novocaine and by giving morphine under the skin beforehand, and, if necessary, during and after operation. Also the avoidance of all unnecessary traumatism is essential. Strychnine is the very worst drug to use in shock as it sensitizes the nervous system and favors fever. Surgeons generally endorse Crile’s theory and find in practice that shock is avoided and more favorable results follow severe operations conducted as he advises. By this method Crile has reduced his operative losses by 75 per cent. In practice, three causes of danger from the use of anesthetics, i.e., respiratory failure, circulatory depression and shock, are usually combined.

The following embraces the proper treatment of all these conditions, and should be followed in every case where danger threatens during anesthesia:

1. Remove the anesthetic and allow plenty of fresh air.
2. See that there is no mechanical obstruction to the movements of the chest, or to the free entrance of air. Pull forward the tongue and lower jaw and extend the head.
3. Invert small animals, except with chloroform, to allow blood to flow to the brain. With chloroform, keep the body level, as sudden change in position may cause heart failure.
4. Use forced, artificial respiration with bellows and rubber tube introduced into larynx. Practice ordinary artificial respiration in small animals by carrying the forelegs outward and forward till they meet in front of the head, and then bring them back till they touch, and compress the sides of the chest. These movements should be repeated twenty times a minute. Massage over the heart, together with artificial respiration, is useful in sudden cardiac arrest in small animals. Artificial respiration may be done in the horse by two persons compressing intermittently one side of the chest with the knees and hands. Rhythmic traction of the tongue, at intervals of five seconds, has proved suc-
cessful in restoring respiration. Dash hot or cold water or ether upon the chest or epigastrium; or use the faradic battery to stimulate respiration by moving the electrodes over the chest and abdomen. Stretch the sphincter ani apart by placing the thumbs in rectum and separating them with force. This is a powerful reflex stimulus to heart and respiration.

5. Give subcutaneous injections of caffeine and camphor. In chloroformization, give camphor and atropine hypodermically; and, in shock, saline infusion with adrenalin, as below. Do not use alcohol or ether as stimulants, for their action resembles that of the anesthetics.

6. Use hot (115° F.), high, rectal injections of salt solution (one heaping teaspoonful to the quart) in case of surgical shock with feeble pulse and subnormal temperature resulting from hemorrhage or other cause. Two to four gallons for large animals, and one pint to one quart for smaller animals. Saline infusion containing adrenalin is still more efficient. (See "Saline Infusion," p. 517.)

Choice of An Anesthetic.

Ether and chloroform are the only anesthetics of any importance in veterinary medicine. The A. C. E. mixture, containing alcohol (one part), chloroform (two parts), and ether (three parts), possesses no particular value, and is not so safe as ether. While chloroform is inferior to ether in the matter of safety, it may be given to horses by an experienced and careful person without much danger. It is commonly the most suitable anesthetic for the horse, for the following reasons: It is less expensive; whereas several pounds of costly ether are required to produce anesthesia, a few ounces of chloroform will accomplish the same result. Chloroform inhalation is much easier of administration, more rapid, and causes less struggling. It may be used without any special inhaler, and may be given to animals in the upright position. It should not be given if fatty heart is suspected.

Chloroform may be employed for all animals during parturition, as it is less dangerous in this condition and because only enough is needed to produce relaxation of parts to relieve pain, to assist dilatation of the os and manual operations done to rectify faulty position of the fetus.

Chloroform is indicated in all cases where the actual cautery is used in the neighborhood of the mouth. Ether is the most suitable anesthetic for cats and perhaps for cattle, and sheep, unless the animal is suffering from bronchitis, emphysema or asthma, when chloroform is more appropriate. Chloroform, being more rapid and less irritating, may in any case be employed to begin anesthesia, which should then be maintained by ether. The use of anesthetics is contraindicated in anemia if the hemoglobin is reduced below 30 per cent.

Practical Anesthesia.

The horse should be starved for twelve hours, and should receive a cathartic twenty-four hours before anesthetization, in order to afford
more room for the respiratory movements and prevent accidents in cast-
ing. A specially constructed inhaler, or nose bag, strapped about the
head, may be employed for convenience. Hypodermic injection of
morphine (gr. iii.) thirty minutes before anesthesia is often of advan-
tage. It diminishes shock and allows of the use of a smaller amount
of the anesthetic. It is very important that all preliminary procedures
should be done—as casting, preparation of the operative field, etc.—
before the chloroform is begun, to lessen the necessary amount of the
anesthetic. A sponge wrapped loosely in flannel may be placed in the
upper nostril, as the animal lies upon his side upon the ground, and after
a few minutes a similar sponge is introduced into the lower nostril. A
dram or two of chloroform may be placed on each sponge as an initial
dose, to hasten the anesthesia, while after this the method of constant
dropping is to be preferred, from a bottle having a cork nicked upon
the side sufficiently to allow the anesthetic to flow out in this small
quantity. The nostrils should be previously smeared with vaseline to
afford protection from the irritation of the chloroform. Chloroform is
also given to horses by the choke method where a few ounces are poured
upon a sponge and this placed in a tight nose bag fastened over the
nose. This method is more rapid and dangerous in giving more con-
centrated vapor.

If the operation is prolonged, anesthesia may be carried on with
ether. It is not essential to cast a horse before chloroformization, but
the animal should be controlled with side lines, and a twitch should be
placed upon the nose, unless an inhaler is used. Since there is com-
monly more or less struggling, it is, however, more satisfactory to cast
an animal before anesthesia is begun. The writer has given chloroform
in many instances to horses in the standing position until they fell or
were pushed over upon a straw bed with the aid of only one assistant.
In thus producing anesthesia, a sponge covered with a towel was used,
and this was saturated with chloroform, and held at first three inches
from the animal’s nose, in order that the vapor should be thoroughly di-
luted with air.

The anesthetizer should give his whole attention to the work, and
watch carefully the respiration, pulse and pupil, for any sign of danger.
If any arise, the anesthetic should be removed and treatment pursued
as recommended in the previous section.

Dogs should be fasted for twelve hours before etherization, in order
to avoid vomiting during anesthesia. From $\frac{1}{16}$ to 1 grain of morphine,
according to the size of the patient, should be given subcutaneously 30
minutes before ether is administered. It is necessary to muzzle dogs
before anesthesia is begun. This may be done by tying a strong tape
about the nose, bringing both ends up between the ears, over the top
of the head, and then tying them together in a knot, and finally carrying
the ends down, one on either side of the neck, and fastening them under-
neath. A wire muzzle may be used to control the dog more conveniently,
and the ether is then poured upon a sponge within the muzzle and the
muzzle is covered with cloth to keep out the air. More recently the
writer has found the following method and appliance most suitable for dogs and small animals. A cone of leather open at both ends and tapering to fit the muzzle is slipped on to the nose and up to the base of the ears. This is held in place by a strap sewed to one side of the large end of the cone and buckled to the other side. The strap passes over the top of the head behind the ears and the cone is thus held in place automatically and acts as a muzzle as well. The small end of the cone is long and projects beyond the tip of the nose and into this is stuffed gauze or a sponge for ether. Ether is given by the drop method. That is, a wedge-shaped piece is cut from the cork of the ether bottle or can, and a little piece of gauze is laid in this, which acts like a wick and allows a continual dropping when the bottle is inverted. This is the safest method and requires the least ether.

Dogs may also be anesthetized by placing them in a covered pail, tight box or barrel, or by driving them into their kennels, and dropping in cloths, sponges, or absorbent material saturated with chloroform, while excluding the outer air. The smaller animals can be destroyed in a humane and satisfactory manner by this method.

Uses of Anesthesia.

Anesthetics are not employed as frequently as they should be in veterinary medicine. Anesthesia entails skilled assistance, increased expense, and danger; but, on the other hand, facilitates rapidity and asepsis during operations by lessening struggling, and should be employed to relieve suffering where a local anesthetic is impracticable. The owner of an animal should be made to understand the extra risk and expense attending operations under anesthesia, and his consent should be secured before using ether or chloroform. Should he withhold his consent for anesthesia the veterinarian should promptly, firmly and without equivocation decline to perform any painful operation or operation requiring great delicacy in manipulation. The day when brutality in veterinary surgery could be excused has passed.

The general indications for anesthetics embrace all severe, prolonged, and delicate operations. The more special indications are as follows: In abdominal operations, as ovariotomy, herniotomy and reduction of hernia. In operations for retained testicle, scirrhus cord, castration, and in dystocia to cause dilatation of a rigid and otherwise undilatable os, to assist the operator in remedying faulty positions of the fetus by relaxation of the parts, and to facilitate instrumental delivery in bitches. Anesthesia is also indicated in removal of tumors, excision of the eyeball or parts of the hoof, extraction of teeth, reduction of displacements, setting of fractures, and to relieve severe pain in colic, and to overcome spasm in chorea and hiccup, or convulsions due to poison or natural causes.

Chloroform is used to destroy sick, injured or aged horses, but is not so rapid, convenient, or effective as the 44 calibre revolver, or rifle. The bullet should be directed toward a point upon the forehead at the
intersection of two imaginary lines drawn from either eye up to the root of the opposite ear.

Class 3.—Nitrites.

Spiritus Ätheris Nitrosi. Spirit of Nitrous Ether. (U. S. & B. P.)

Synonym.—Sweet spirit of nitre, spiritus nitri dulcis, E.; ether azoteux alcoolisé, liqueur anodine nitreuse, Fr.; versüsster salpetergeist, G.

An alcohole solution of ethyl nitrite (C₆H₄(NO₃)), yielding, when freshly prepared, not less than 4 per cent. of ethyl nitrite.

Derivation.—Mix sulphuric acid (40 mils) with water (120 mils), cool and add alcohol and water (each, 85 mils) and place in 1000-mil flask surrounded by ice and water. Dissolve sodium nitrite (100 Gm.) in water (260 mils), filter and allow filtrate to drop slowly into the flask above. Wash ethyl nitrite formed with sodium carbonate solution, to remove acid, and agitate with potassium carbonate, to remove water. Add ethyl nitrite to 22 times its weight of alcohol.

Properties.—A clear, mobile, volatile, inflammable liquid, of a pale-yellow or faintly greenish-yellow tint, having a fragrant ethereal and pungent odor, free from acridity, and a sharp burning taste. Spec. gr. 0.823. Mixes freely with water and alcohol.

Dose.—H. & C., 5i-iv, (30-120); Sh. & Sw., 5ii-iv, (8-15); D., mⅰx-ⅳ, (6-4). Smaller doses every two hours, diaphoretic. Larger doses, repeated three times daily, diuretic.

Amylis Nitris. Amyl Nitrite. C₆H₁₃NO. (U. S. P.)

Synonym.—Amyl nitris, B. P.; amyllum nitrosum, P. G.; amylo-nitrous ether, E.; azotite d'amyl, Fr.; amylinitrit, G.

A liquid containing not less than 80 per cent. of C₆H₁₃NO.

Derivation.—Obtained through distillation of nitric acid and amyl alcohol. Distillate purified by sodium carbonate. HNO₃+C₆H₁₃ OH = C₆H₁₃NO₂+2 H₂O.

Properties.—A clear, yellowish liquid, of a peculiar ethereal, fruity (banana) odor, and a pungent, aromatic taste. Spec. gr. 0.865 to 0.875.

Dose (by inhalation).—H., 5ss-i, (2-4); D., mⅱ-v, (12-3).

When given internally the smaller doses should be used dissolved in alcohol.

Synonym.—Liquor trinitriti, B. P.; glonoin trinitrate, spirit or solution of nitroglycerin, trinitrate of glyceryl, trinitin, E.; nitroglycinegeist, G.

An alcohole solution containing not less than 1 per cent. nor more than 1.1 per cent. of C₆H₂(NO₂)₃. It is probably decomposed in the blood with the formation of potassium and sodium nitrite.

Derivation.—Nitroglycerin is obtained by dropping pure glycerin upon a mixture of sulphuric and nitric acids, kept cool by ice, and purified by washing with water. The official one per cent. solution is not explosive unless it becomes concentrated by evaporation to an extent exceeding 10 per cent.

Properties.—A clear, colorless liquid, having the odor of alcohol. Caution should be exercised in tasting it, since even a small quantity is liable to produce a violent headache. Spec. gr. 0.814 to 0.820.

Dose.—H., 5ss-i, (2-4); D., mⅱ-ⅳ, (06-12).

Action of the Nitrites.

External.—Spirit of nitrous ether, like ether, produces a cooling and local anesthetic action, owing to its evaporation upon the skin. Amyl nitrite has a slight depressing action upon the peripheral ends of the sensory nerves.

Internal.—The actions of spirit of nitrous ether, amylnitrite and nitroglycerin are essentially the same. Spirit of nitrous ether should contain 4 per cent. of ethyl nitrite. Analysis of 68 samples taken at
random from drug stores, resulted in showing that a teaspoonful of the best specimen contained as much ethyl nitrite as a pint of the worst, with all manner of variations between these extremes. To be of value as a nitrite, sweet spirit of nitre should be freshly prepared by a reliable chemist.

Circulation.—The important action of the nitrites centres upon the heart and blood-vessels. The arteries and veins all over the body (but particularly of the head, limbs, heart and belly) become relaxed and blood tension is lowered by the nitrites. This action is no doubt peripheral, and is due to direct depression of the unstriated muscle of the vessel walls. The heart beats more rapidly in consequence of the lessened vascular resistance and direct depression of the inhibitory centres or because a diminished blood pressure indirectly depresses the vagus centre and often stimulates the accelerator. The arterioles being dilated in the heart, as elsewhere, there follows an increased cardiac blood supply, nutrition and force. It is probable that the nitrites slightly increase the force as well as the rapidity of the heart. This is shown by the fact that in small doses blood pressure is raised by the nitrites, despite the vascular dilatation. However, the nitrites, as nitroglycerin, are not of practical value as heart stimulants in poisoning (anesthetics) or emergencies, particularly where the vasomotor tone is depressed. The stimulant action on the heart has been much overrated and is practically nil. Poisonous doses depress the heart muscle and the pulse becomes slow and weak.

Nervous System.—The nitrites depress the spinal motor centres. This is more marked in the frog than mammals, however. Neither the motor nor sensory nerves nor cerebrum appear to be influenced by medicinal doses of nitrites. Reflex excitability is lessened.

Muscles.—Amyl nitrite paralyzes both unstriated and striated muscular tissue when applied locally; and the nitrites, when administered internally, relieve spasm of muscular tissue by their depressing action upon the muscles, as of bronchial muscles in asthma.

Kidneys.—Nitrites often increase the flow of urine by widening the renal arteries supplying the glomerules. But the general lowering of blood pressure may prevent an increase of local pressure in the kidney, when urinary secretion will be diminished.

Blood.—In poisoning by the nitrites, the oxidizing power of the blood is lost. Both the venous and arterial blood become of a chocolate hue from the conversion of the normal oxy-hemoglobin into meta-hemoglobin. The latter yields up oxygen very sparingly.

Respiration.—The respiratory movements may be increased both in force and frequency by medicinal doses of nitrites, but paralysis of the respiratory centre and asphyxia occur in fatal poisoning.

Elimination.—The nitrite group rapidly escape in the urine as nitrites and nitrates of the alkalies. The amyl, of amyl nitrite, is completely oxidized in the body, while nitroglycerin is eliminated in part unchanged in the urine.

Summary.—The nitrites dilate arterioles, increase the rate of the
heart-beat, depress the spinal motor area, and lessen reflex action. They relieve spasm and may increase the secretion of urine.

Poisoning.—Fatal poisoning is extremely rare as an accidental occurrence. Recovery from a quantity 120 times greater than the normal dose of nitroglycerin, has been reported in human practice. The physiological effects of the nitrites are more noticeable in man, owing to his bare skin. Immediately following the inhalation of amyl nitrite, the face becomes extremely flushed, and throbbing of the vessels of the head, with a feeling of tremendous pressure and headache, ensue. These symptoms are due to vascular dilatation. There is dizziness, the heart is rapid and violent, and the pulse full, frequent and easily compressible. The respiratory movements are increased. These symptoms occur after a full medicinal dose.

In poisoning there is pallor, vomiting in man, trembling, weakness, cyanosis and failure of respiration and heart. The treatment is included in the administration of ammoniacal and alcoholic stimulants, together with the subcutaneous injection of ergotin, strychnine and atropine, to restore the vascular tone.

The nitrites differ sufficiently to call for a word concerning their individual characteristics. It is important to emphasize the fact that their action, as a whole, is transient. Amyl nitrite diminishes vascular tension, as shown by the sphygmograph, within a minute of its inhalation, and this condition lasts for 2 to 4 minutes, with variations of from 10 to 30 minutes. The same action of nitroglycerin occurs within 6 minutes and lasts from half to, rarely, an hour and a half.

Good spirit of nitrous ether lowers tension from 45 to 60 minutes. In addition to this difference in degree, spirit of nitrous ether differs somewhat in kind of action. It is more stimulant to the heart, and more diuretic, owing to the ether it contains. For the same reason sweet spirit of nitre increases the secretions and motion of the upper part of the digestive tract, relieves spasm and is of some value in indigestion and mild colic. In stimulating the activity of the sweat glands, following its action in dilating peripheral vessels, sweet spirit of nitre is a useful diaphoretic and mild febrifuge.

It has been pointed out that spiritus etheris nitrosi is far from being a reliable preparation as a nitrite; and therefore nitroglycerin or amyl nitrite is preferable where rapid and certain vascular dilatation is essential.

Uses of the Nitrites.

Internal.—Respiratory Diseases.—Spirit of nitrous ether is of service in the treatment of acute diseases of the respiratory tract, as coryza, pharyngitis, laryngitis and bronchitis. Its value lies in its power of dilating peripheral vessels, equalizing the circulation and preventing local congestions.

In assisting diaphoresis and diuresis, sweet spirit of nitre hastens elimination of toxins and cools the body; and in both ways is useful in
abating fever. The following prescription may be of service in canine practice in febrile conditions:

R

Tinc. aconiti................................. 3iii.
Spiritus ætheris nitrosi.................... 3vi.
Potassii bromidi............................ 3ss.
Liq. Ammonii acetatis ad................ 3iv.

M.

Sig. Teaspoonful in water every 2 hours.

In asthenic and febrile diseases, as influenza, sweet spirit of nitre is of worth, combined with tonic doses of quinine and alcoholic stimulants. In catarrhal troubles and distemper of dogs it is conjoined with spirit of camphor. In colic of horses it is prescribed with laudanum.

The nitrites are useful remedies in relieving dyspnea, when due to spasm of the bronchial tubes, or congestion of the lungs. They relax the bronchioles and avert congestion by vascular dilatation and equalization of the circulation. Thus the dyspnea occurring in pneumonia, acute pulmonary edema, asthma and chronic bronchitis, are advantageously treated by half-hourly or hourly doses of nitroglycerin. Amyl nitrite, in dilating peripheral vessels, has proved of some value in hemoptysis.

Cardiac Diseases.—These are comparatively rare in the lower animals; but, in general, it may be said that no remedy is more useful for its transient action in the severe dyspnea of cardiac diseases than nitroglycerin. The passing engorgement of the right heart and lungs is relieved by nitroglycerin, which tends to distribute the blood about the body in its proper channels, and thus take the load off the heart temporarily.

Nervous Diseases.—Nitrite of amyl is invaluable in warding off epileptic seizures in man, when warning of their approach is given the patient. As this warning cannot be detected in the lower animals, the nitrites are of less value, but may be combined with the bromides as prophylactic agents. The nitrites may prevent cerebral vasomotor spasm, which is thought to occur in epilepsy. Amyl nitrite is useful in relieving hiccough or "thumps" in horses, and in strychnine poisoning.

Diseases of Urinary Organs.—Spirit of nitrous ether is useful as a diuretic in carnivora, when the urine is concentrated and irritating to the bladder. It is also serviceable, for the same reason, in acute cystitis of all animals, when it may be combined to advantage with potassium citrate, or acetate, and tincture of aconite.

Summary.—We may summarize the therapeutical indications for the nitrites as follows:

1. To dilate peripheral arterioles and equalize the circulation in internal congestions.
2. To relieve spasm of vascular, nervous, or muscular origin.
3. To increase the secretion of urine.

Administration.—Sweet spirit of nitre is given by the mouth, diluted with water, and often combined with alcoholic stimulants (whisky), diaphoretics (liq. ammon. acetatis), diuretics (potassium nitrate), and bitters (quinine).
Amyl nitrite is administered usually by inhalation to the larger animals, from a sponge; or two or three drops are given by inhalation from a bit of linen or cotton to the smaller animals. It may be given internally on sugar to the smaller animals, or in spirit to the larger patients. The spiritus glonoini is the only preparation of nitroglycerin in use. It may be dropped undiluted upon the tongue of the conscious or unconscious animal. The tongue of the smaller animals may be frequently moistened with a small stick dipped in the solution, or it may be given in pill or tablet.

Class 4.—Chloral.

Chloralum Hydratum. (U. S. P.)

Chloral Hydrate. Chloral. C₅H Cl₂O+H₂O.

Synonym.—Chloral hydras, B. P.; hydrate of chloral, E.; chloratum hydratum crystallisatum, P. G.; hydrate de chloral, Fr.; chloralhydrat, G.

A compound of trichloraldehyde, or chloral with one molecule of water. It contains not less than 99.5 per cent. of C₅H Cl₂O+H₂O.

Derivation.—Dry chlorine gas is passed into absolute alcohol until the latter is saturated. Aldehyde and hydrochloric acid first result, C₅H₂O H+2 Cl = C₅H₂O+2 H Cl. The chlorine gas then acts upon the aldehyde, abstracting 3 atoms of hydrogen and replacing 3 atoms of chlorine, and so forms chloral. C₅H₂O+6 Cl = C₅H Cl₃ O+3 H Cl.

Chloral is purified first by distillation with sulphuric acid, and then with lime, and when mixed with water forms chloral hydrate (C₅H Cl₂O+H₂O).

Properties.—Rhomboidal, colorless and transparent crystals which do not readily attract moisture. It has an aromatic, penetrating and slightly acrid odor, and a bitterish, caustic taste. Slowly volatilized when exposed to the air. Freely soluble in water, alcohol or ether; also in chloroform, benzol, benzin, car-bondisulphide, fixed and volatile oils. It liquefies when triturated with about an equal quantity of camphor, menthol, thymol or carbolic acid. Chloral is decomposed by caustic alkalies, alkaline earths and ammonia, chloroform being formed, and a formate of the base produced.

Dose.—H. & C, ½i-ii, (30-60); Sh. & Sw., ½i-ii, (4-8); D., gr. v-xx, (3-1.3).

Action External.—Chloral is a strong irritant applied locally in concentration to the skin and mucous membranes, owing to chlorine content, and if injected under the skin may cause abscess and sloughing. It is a powerful antiseptic, and relieves itching, especially in combination with camphor. It has some local anesthetic action on sensory nerve endings.

Action Internal.—**Alimentary Canal.**—Chloral produces severe irritation of the mucous membrane in concentrated solution (20 per cent. or over), and large doses may cause vomiting in dogs. The writer has seen intense glossitis and stomatitis follow the breaking of a gelatine capsule, containing chloral, in the mouth of a horse. Medicinal doses counteract fermentation and flatulence in the digestive tract by its antiseptic action.

Blood.—Chloral, absorbed into the blood, is reduced in part in the tissues to trichlorehylalcohol, which combines with glycuronic acid to form urochloraloric acid. It was formerly thought that the action of chloral was due to chloroform produced by the decomposition of the former in the alkaline blood. C₅H Cl₂ O+K H O = C H Cl₃+K C H O₂ (formic acid).

It is now known that the blood is not sufficiently alkaline to decom-
pose chloral, and that chloroform is not found in the blood, tissues or excretions, except in the case of the urine, when it is strongly alkaline. Moreover, chloral acts as usual upon a frog when the blood of the batrachian is replaced by a neutral saline solution.

Heart and Blood Vessels.—Chloral in large doses depresses the action of the heart muscle and the vasomotor centres. It also produces local paralysis of the vascular walls. Blood pressure is therefore lowered. In small medicinal doses the circulation is not influenced materially, but in poisoning the pulse at first is accelerated and then becomes slow, weak and irregular, and the heart is arrested in diastole.

Nervous System.—The salient action of chloral is exerted upon the brain and cord. Like other narcotics, the depressing effect may be preceded by a transient and unimportant excitation of the brain and cord; but this commonly passes unnoticed, and the prominent action of chloral consists, in ordinary doses, in depressing the sensory and motor centres of the brain, and in larger doses, the spinal reflex activity and the motor tract of the cord. Moderate therapeutic doses cause, therefore, dulness and sleepiness (with contracted pupils) in the lower animals, while doses approaching the toxic point produce insensibility, coma, paralysis of the inferior cornua, with loss of reflex action and muscular power, so that the animal falls with paraplegia, dilated pupils and anesthesia. These symptoms may occur and be followed by recovery. The anesthesia is of spinal origin. Neither the sensory nerves, motor nerves, nor muscles are affected except in the later stages of poisoning.

Insensibility to pain is said, by Brunton, to follow the action of chloral upon the gray matter of the cord, by preventing the transmission of painful sensations through this tract. It is uncertain whether chloral acts as an hypnotic by its direct depressing influence upon the brain tissue, or by inducing cerebral anemia in causing the blood to be withdrawn from the cerebrum into the dilated peripheral arterioles.

Respiration.—The respiration is not interfered with by moderate medicinal doses of chloral but toxic quantities depress and paralyze the respiratory centre. The respiratory movements become deep, regular, accelerated and full, with large therapeutic doses, but with toxic doses, slow, irregular and shallow. Death occurs more commonly from arrest of respiration, yet primary heart failure, or both combined, may lead to a fatal result.

Temperature.—The temperature may be elevated at first, but soon falls, owing to diminished heat production and increased loss, through heart failure and vascular dilatation.

Elimination.—Chloral is eliminated by the urine, in part unchanged and in part as urochloralic acid.

Metabolism.—Chloral in large doses leads to increased destruction of the proteids of the body and imperfect oxidation of their products, together with fatty degeneration of the internal organs. These tissue changes are caused by the production of urochloralic acid in the tissues.

Summary.—Chloral is a local anesthetic, stimulant and antiseptic,
and relieves itching. It is a powerful depressant to the cerebrum, vaso-
motor and respiratory centres, inferior cornua, heart muscle and its
ganglia.

Acute Poisoning.—Large doses produce insensibility, coma, and com-
plete loss of muscular power, so that the animal falls. There is general
anesthesia, and the pupils dilate. The pulse is weak, at first frequent,
later infrequent and irregular. The respiration may be primarily quick-
ened, but subsequently becomes slow, shallow and irregular. The animal
sweats, sways, gapes and trembles and sometimes falls to the ground,
the sphincters are relaxed and involuntary defecation occurs, but recov-
ery commonly follows. With doses greater than 4 ounces, horses die in a
generally anesthetic and paralyzed state. In man, death has followed the
ingestion of 10 grains of chloral, and several fatalities have occurred
after doses of 20 or 25 grains, although these are exceptional cases. The
fatal dose for dogs is said to be from 2 to 6 drams.

Treatment.—Emetics and the stomach tube, shouting at and beating
the animal, external heat. Five times the ordinary dose of strychnine,
and a full dose of atropine subcutaneously. Strong, hot coffee by the
rectum.

Administration.—Chloral has been given intravenously, subcutane-
ously, and intratracheally, as well as by mouth and rectum. The common
way of administering it is in solution per os or rectum. It may cause
abscess if injected under the skin, or thrombi when thrown into a vein.
Experiments of Dr. Muir* appear to show that chloral may be safely
given intrajugularly; one ounce dissolved in two ounces of sterile water
and repeated once in an hour if desirable. If given in ball, the chloral
may prove too irritating in the digestive tract. If a capsule or ball be
broken in the mouth the most profuse salivation and inflammation may be
produced, as noted above. Chloral should be diluted at least 10 times,
and is given by the mouth with glycerin and water, or weak syrup, or
with boiled starch solution by the rectum.

Uses External.—Chloral may be employed as a stimulant, antiseptic,
and slight local anesthetic, in solution (1 to 4), upon ulcers and wounds.
It may be used with an equal part of camphor diluted with 8 parts of
ointment, to relieve itching. A 4 to 8 per cent. aqueous solution forms
an excellent antiseptic preservative for anatomical specimens, and chloral
may be added to urine for this purpose.

Uses Internal.—Chloral is used for five purposes in veterinary
practice:

1. First and foremost, to relieve spasm.
2. To assuage pain.
3. To procure sleep.
4. General anesthetic.
5. Intestinal antiseptic in tympanites in the horse.

In human medicine chloral is mainly employed as an hypnotic, but a

purely soporific action is rarely required for the lower animals. The spasmic conditions benefited by chloral include colic, convulsion, chorea, epilepsy, asthma, canine distemper, spasmic cough, rigidity of the uterine os in the first stage of labor, hysteria, cerebritis (to relieve motor excitement), tetanus, and strychnine poisoning. In spasmic or flatulent colic, chloral is given dissolved in linseed oil and, while inferior to opium as an anodyne, has the advantage of not inducing constipation and is often a very successful remedy, as follows:

R

Chloroformi .. 5i.
Chlorali hydrati 5iss.
Olei linii ... Oi.

M.

S. Give at one dose for horse with colic

It is the best remedy we possess for the treatment of convulsions in dogs, apart from anesthetics. Ether may be administered during the convulsion, and chloral is given simultaneously, or between the attacks, in gr.x-xx., per rectum, and repeated if necessary. For puppies the following mixture may be given in the treatment of fits:

R

Chlorali hydrati gr.xviii.
Potassii bromidi 5i.
Syrupi pruni virginianae 5ii.
Aqua menthae piperitae ad 5i.

M.

S. Teaspoonful in water every 2 hours.

Chloral is only indicated in chorea when the movements are so severe that the animal cannot secure sleep or rest. In distemper in dogs, chloral is used for the same purpose, when there is excessive cough and restlessness. Chloral is of service in prolapse of the rectum, uterus and vagina to relieve straining and aid in reduction and retention of the organ. In such cases it should be given by the mouth. Chloral is given per rectum in tetanus, so as to keep the animal continually narcotized, and may be employed in conjunction with tetanus antitoxin.

Spasm of the os uteri is relieved by chloral when given per rectum in frequently repeated doses, until the safe physiological limit is reached. Chloral is inferior to ether or chloroform as an anesthetic, because it is not so safe, nor is the anesthesia so complete, but it relieves pain effectively, and is more easily administered. It is combined, in order to produce anesthesia, with small doses of morphine, which decidedly enhance the anodyne action of chloral.

To prepare a horse for surgical operation, 3 grains of morphine sulphate and 1 grain of atropine sulphate may be injected under the skin, followed in 10 minutes by an enema containing 1 ounce of chloral, with 1 ounce of acacia, in a pint of water; or chloral (5i-ii in 10 to 20 ounces of water) may be used alone without the morphine and atropine as follows:
B

Chlorali hydrati........................3ii.
Aeacæ.................................3i.
Aquæ................................ad Ovi.

M.
S. Give per rectum to horse as an anesthetic.

The same dose may be given to cattle as an anesthetic before operation. Chloral narcosis lasts 1 or 2 hours and may be given before casting to facilitate the act or to aid in the shoeing of vicious horses. The narcosis is not deep but sufficient for most operations.

Chloral (H., 3ss-i; D., 3ss-ii, in 10% solution) injected into the peritoneal cavity will produce surgical anesthesia and has been used in colic in horses with barium chloride by mouth. In flatulent colic, first puncture to allow escape of gas. This treatment does not commend itself to the author as a safe procedure.

The writer has found the intraperitoneal method generally safe and efficient in laparotomies in dogs but occasionally inefficient, and deaths have occurred from over-dose and peritonitis. The morphine and drop-ether anesthesia is safer and more satisfactory in dogs.

Class 5.—Antipyretics and Analgesics.

CHLORETONE. CCl$_3$(CH$_2$)$_3$COH. (Non-official.)

Chloretone occurs in colorless crystals of camphoraceous odor and bitter taste. It is very slightly soluble in water, soluble in alcohol and in 10 parts of glycerin. It may be made from acetone, chloroform and an alkali.

It is allied to chloral and represents it in action but does not depress the heart and respiration in any ordinary doses and is an actual sedative to the stomach. Externally it is an antiseptic and local anesthetic although there may be some temporary burning produced by it on raw surfaces.

It may be used also as a local anesthetic injected in 1 per cent. solution (alcohol, 15 parts, water, 85 parts). Chloretone is employed with an equal amount of boric acid (Borochloretone) as an application to wounds and ulcers as an antiseptic and local anesthetic.

Internally the drug is administered in human practice before operations to prevent the vomiting subsequent to general anesthesia and its use is advised for the same purpose in dogs and also to quiet the animals for local anesthesia. Unless there is some specific reason why vomiting should not occur the subcutaneous injection of morphine is more efficacious to aid the action of either local or general anesthetics.

Chorea and convulsion in dogs may be treated with advantage by the drug. It may be administered to dogs in pills or capsules.

Dose.—D., gr.v-x, (3.-6).

ACETANILIDUM. Acetanilid. C$_8$H$_7$NO. (U. S. & B. P.)

Synonym.—Phenylacetamide, antifebrin.

An acetyl derivative of aniline.

Derivation.—Glacial acetic acid and aniline are distilled together, and the residue is purified by repeated crystallization. H C$_8$H$_7$O$_2$+C_6H$_5$N H$_2$ = C$_8$H$_7$O N+H$_2$O.

Properties.—Colorless, shining, micaceous crystalline laminae, or a crystalline powder, odorless, having a faintly burning taste; permanent in the air. Soluble in 190 parts of water, and in 3.4 parts of alcohol; also soluble in 17 parts of ether, and in 3.7 parts of chloroform.

Dose.—H., 3ii-iv, (2-15); Sh. & Sw., 3ss-i, (2-4); D., gr.iii-vii, (2-5).

Synonym.—Phenacetinum, B. P.; para-acetphenetidin.

Derivation.—Obtained by the action of glacial acetic acid upon paraphenetidin, a phenol derivative.

\[\text{HC}_2\text{H}_5\text{O} + \text{C}_6\text{H}_5\text{OC}_2\text{H}_5 \text{NH} \rightarrow \text{C}_9\text{H}_8\text{NO}_2 + \text{H}_2\text{O}\]

Properties.—White, glistening, crystalline scales or as a fine, crystalline powder; odorless, having a slightly bitter taste and producing a faint numbing effect on the tongue; permanent in the air. Soluble in 18310 parts of water, 15 of alcohol, 14 of chloroform, and 90 of ether.

Dose.—H. & C., 5iv, (15); D₃, gr.v-x, (.3-.6).

Antipyrina. Antipyrine. C₁₅H₁₂ON₂. (U. S. P.)

Synonym.—Phenazonum, B. P.; phenyl-dimethyl-pyrazolon.

Derivation.—Phenyl-hydrazine is acted upon by aceto-acetic ether, when phenyl-monomethyl-pyrazolon, ethyl alcohol and water result.

\[\text{H}_2\text{N} \text{NH} \text{CH}_3 + \text{C}_2\text{H}_4 \text{OCH}_2 \text{H}_5 \text{C} \text{C} \text{O} \text{C} \text{H}_3 \text{CO} \text{O} \text{C}_2\text{H}_15 = \text{C}_9\text{H}_8 (\text{C}_2\text{H}_4 \text{C}_2\text{H}_5\text{NH}_2\text{O} + \text{C}_2\text{H}_5 \text{O} \text{H} + \text{H}_2\text{O}. \text{Then C}_{6\text{H}} \text{C}_2\text{H}_4\text{NH}_2\text{O} + \text{C}_2\text{H}_5 \text{O} \text{H} + \text{H}_2\text{O}\]

Properties.—A white, almost odorless, crystalline powder or in tabular crystals, with a slightly bitter taste. Soluble in about its own weight of water, alcohol and chloroform.

Incompatibles.—Spirit of nitrous ether, iron sulphate, chloride and iodide; salicylates, tannin, chloral, calomel, and a large number of drugs.

Dose.—H. & C., 5iv, (24); Sh. & Sw., 5i. (4); D₃, gr.v-xx, (.3-1.3).

Action of Acetanilid, Antipyrine and Phenacetin.

External.—Acetanilid and antipyrine are antiseptics. Solutions of the latter contract vessels and exert a local anesthetic and hemostatic action.

Internal.—These substances exert no action upon the digestive tract, but acetanilid possesses a decided antiseptic influence upon bacteria within the alimentary canal.

Blood.—These agents have no influence upon the blood, in moderate medicinal doses, but in large doses (except antipyrine) they diminish the ozonizing power of the blood, reduce the hemoglobin of the red corpuscles, alter it to methemoglobin, and alter the color of the blood to a brownish-red hue. In large toxic quantities, administered continuously, they cause disintegration of the red corpuscles and elimination of the blood-coloring matter in the urine.

Heart and Blood Vessels.—In ordinary therapeutic doses these drugs do not alter the normal condition of the heart or blood vessels, but in large medicinal doses they first stimulate and then slow and depress the force of the heart by action (probably) upon the heart muscle. Phenacetin is the least, and acetanilid the most depressant. Antipyrine is said to stimulate the heart and increase blood pressure in minute quantities. These three antipyretics decidedly diminish blood tension in large medicinal doses, owing to depression of the heart and of the vasomotor apparatus.

Nervous System.—Usual therapeutic doses of these substances exert a sedative action upon the sensory nerves and sensory tract of the spinal cord. They are therefore anelgesics, although not comparable in this respect to opium. Poisonous quantities of these drugs diminish muscular power, lessen reflex action and cause paralysis. Experiments appar-
Respiration.—The respiratory functions are unaffected by therapeutic doses of these medicines. In lethal doses respiration is quickened, evidently show that acetanilid paralyzes the motor nerves, antipyrin the motor nerve endings, while motor depression seems to be of spinal origin in the case of phenacetin. The brain is undoubtedly influenced by these agents, as evidenced by coma and convulsions in poisoning, but exact knowledge is wanting in relation to the action upon the brain. The functions of the cerebral cortex are thought to be depressed by phenacetin especially, and the special senses to be first stimulated and then paralyzed by this drug.

Temperature.—Acetanilid, antipyrine and phenacetin are essentially antipyretics. While they do not invariably lower temperature, even in large doses in normal animals, they do so very materially in animals suffering from fever. They apparently render the heat-regulating centres at the base of the brain less susceptible (narcotic effect) to the action of toxins and increase their control over heat-loss. They do not apparently lessen heat-production since metabolism is not diminished—acetanilid even increases it. They frequently induce diaphoresis, but it is generally accepted that heat dissipation is increased to a greater extent than would be accounted for by sweating, and that it occurs even when diaphoresis does not take place. Owing to the greater work thrown upon the respiratory centre by the altered condition of the blood, and this vital centre is ultimately paralyzed.

Kidneys.—The drugs under consideration produce slight diuresis in moderate medicinal doses. In poisoning, the urine may become dark-colored by the hematin escaping from the disintegrated red blood corpuscles. Antipyrine lessens the nitrogenous products of tissue waste in the urine, and also diminishes the amount of that secretion. Acetanilid, on the other hand, increases the excretion of urea.

Elimination.—Antipyrin is rapidly eliminated unchanged in the urine in some animals; in others it is oxidized. Acetanilid escapes in part unchanged and in part as different oxidation products in different animals; while phenacetin is chiefly eliminated as such and as glycuronate of phenetidin.

Poisoning.—Toxic doses of these drugs cause, in the lower animals, nervous excitement and convulsions, and sometimes coma, loss of consciousness, staggering gait, muscular failure, sweating, rapid, feeble respiration, weak pulse, cyanosis, occasional vomiting in dogs, fall of temperature and general paralysis.

Treatment.—External heat, alcoholic stimulants by the mouth, rectum, or under the skin; digitalone, strychnine, and atropine subcutaneously.

Administration.—Antipyrine is given in solution by the mouth, rectum, or under the skin. Acetanilid and phenacetin can be administered in powder, tablet, pill or ball; or in solution in alcoholic liquor. Acetanilid is to be preferred for horses on account of its being less expensive. The average dose of acetanilid is two drams for a horse, and
three to five grains for a dog; and the dose of phenacetin is twice, and of antipyrine three times greater than that of acetanilid.

Uses External.—Acetanilid is employed as an antiseptic dusting powder undiluted. A ten per cent. solution of antipyrine may be applied as a hemostatic upon bleeding surfaces.

Uses Internal.—There are three indications for the use of these agents: 1. To lower temperature in fever. 2. To relieve pain. 3. To lessen motor excitement and spasm.

While these agents are used chiefly in human medicine to relieve pain, especially of a neuralgic character, this kind of suffering is uncommon in veterinary practice and here acute rheumatism is the disease chiefly amenable to their influence. In rheumatism the salicylates should be employed with the antipyretics, as sodium salicylate in solution with antipyrine.

Phenacetin is the most serviceable for dogs, as it is less toxic, more sedative, and more permanent in its antipyretic action than antipyrine or acetanilid. Dogs suffering from distemper are greatly relieved by small and repeated doses of phenacetin, which lessen fever, cough and restlessness. In acute diseases, as pneumonia, influenza and laminitis, either of the antipyretics may be employed in one or two doses when there is hyperpyrexia. Doses of half an ounce of acetanilid 3 times a day for horses have proved serviceable in acute laminitis.

For horses in acute laminitis.

R

Acetanilidi .. 3vi.
Pulveris nucis vomicae 1ss.
M. et divide in chartulas No. xii.
S. One powder on the feed t. i. d.

Although animals do not seem to be so susceptible to the depressing influence of the antipyretics yet it is well to combine them with strychnine. In experiments on mice, Worth Hale found the addition of caffeine to acetanilid increased its depressing action on the heart muscle, so this common combination is inadvisable. Sodium bicarbonate lessens the toxicity of acetanilid. Antipyretics are generally inadvisable in asthenic febrile diseases, since they are too depressant in their action upon the heart and have no effect in removing the cause of the disease. The hyperpyrexia of insolation may be treated with these agents, in combination with cold, externally and per rectum. Motor disturbances, including convulsions, chorea and spasm, may be abated by the antipyretics, but they are usually inferior to chloral, opium, or other antispasmodics.

Phenacetin, combined with codeine or heroin, in powder or tablet, is a useful remedy for cough in dogs.

For dogs with fever and cough.

R

Acetphenetidini ... 3iss.
Codeinae sulphatis .. gr.vi.
M. et divide in capsules No. xii.
S. One capsule every 3 hours.
Class 6—Antiseptics.

Acidum Carbolicum Crudum. Crude Carbolic Acid.

Synonym.—Acide phénique cru, Fr.; rohe carbolsäure, G.

Derivation.—A liquid consisting of various constituents of coal tar, chiefly cresol and phenol, obtained by fractional distillation at a temperature between 302° F. and 392° F., and twice rectified at a temperature between 338° F. and 374° F.

Properties.—A nearly colorless, or reddish-brown liquid of a strongly empyreumatic and creasote-like odor, having a benumbing, blanching and caustic effect upon the skin or mucous membrane, and gradually turning darker on exposure to the air and light. Soluble in 15 parts of water. The aqueous solution has a slight acid reaction.

Phenol. Phenol. (U. S. P.)

Synonym.—Hydroxybenzene, phenic acid, phenyl alcohol, phenylicum crystallisatum, E.; phénol acide phénique, acide carbolique, Fr.; carbolsäure, phenylsiure, G.

Derivation.—Obtained from crude carbolic acid by agitation with caustic soda, heating to 388° F., and adding hydrochloric acid. Then by agitation with sodium chloride, digestion with calcium chloride, and distillation at a temperature between 336° F. and 374° F., and finally by crystallization.

Properties.—Colorless, interlaced, or separate, needle-shaped crystals, or a white crystalline mass, sometimes acquiring a red tint; having a characteristic, somewhat aromatic odor, and when copiously diluted with water, a sweetish taste with a slightly burning after-taste. Deliquescent on exposure to damp air. Soluble in about 1.5 parts of water, and very soluble in alcohol, ether, chloroform, glycerin, carbon disulphide, fixed and volatile oils. Neutral or faintly acid reaction in solution (1-15).

Phenol crystals melt when heated, but solidify again on cooling. A 95 per cent. solution of carbolic acid crystals, in alcohol, remains fluid at the ordinary temperature. The crystals are also liquefied by the addition of about 8 per cent. of water.

Dose.—H. & C., 5ss-ii, (2-8); Sh. & Sw., gr.x-xx, (0.6-1.3); D., gr.ss-i, (.08-.06).

PREPARATIONS.

Unguentum Phenolis. (U. S. P.)

Unguentum Acidii Carbolicici. Ointment of Carbolic Acid. (B. P.)

Phenol, 2.25; ointment, 97.75 (U. S. P.); 4 per cent., B. P.

Glyceritum Phenolis. (U. S. P.)

Glyceritum Acidii Carbolicici. Glycerite of Carbolic Acid. (B. P.)

Phenol, 20; glycerin, 80.

Phenol Liquefactum. (U. S. P.)

Acidum Carbolicum Liquefactum. Liquefied Carbolic Acid. (B. P.)

Carbolic acid liquefied by addition of 10 per cent. of water.

Dose.—Same as acidum carbolicum.

Action External.—Phenol causes burning pain when applied to the skin or mucous membranes, and this action is followed by local anesthesia and the production of a dry white spot. If used in sufficient quantity, it leads to sloughing, but the escharotic effect is superficial, since the acid coagulates albumin, which forms a protective coating over the underlying parts. Phenol is an antiseptic and disinfectant, and, in proper solution, acts as a sedative upon the peripheral sensory nerves, and is one of the most efficient agents in relieving itching. It checks the growth of both organized (bacteria) and unorganized (digestive) ferments. Strong solutions (1-2 per cent.) kill most bacteria, but a con-
siderable time is required to destroy the organisms of certain diseases and those relating to putrefaction. Some hours are required to kill anthrax spores, by even a 5 per cent. solution. Two per cent. solutions destroy the digestive ferments. Animal and vegetable parasites, growing upon the skin, perish by the application of carbolic acid and it is useful in the treatment of ringworm, lice, lungworm, and, especially, mange in sheep, but is unsuitable for local use on dogs or cats, or on their habitations.

Action Internal.—Alimentary Canal.—Phenol exerts a local, anesthetic action upon the sensory nerve endings in the stomach, and may act to a certain extent in the digestive tract as an antiseptic, hindering abnormal fermentation. It is probably converted into a sulpho-carbolate in the stomach. In concentration, carbolic acid is a powerful gastro-intestinal irritant.

Blood.—Carbolic acid is absorbed into the blood and probably circulates in part as an alkaline carbolate of sodium and potassium.

Heart and Blood Vessels.—Phenol, in poisonous doses, paralyzes the vasomotor centres and later depresses the heart. The effect upon the vessels is the more important and prominent, but neither action is observed after medicinal doses.

Respiration.—Therapeutic doses do not influence the respiratory functions, but toxic quantities make the respiratory movements rapid and shallow at first, owing to stimulation of the respiratory centre and peripheral vagi, while death occurs after lethal amounts from paralysis of the respiratory centre.

Nervous System.—The brain is depressed by toxic doses of phenol and stupor and coma occur. The convulsions appearing in carbolic acid poisoning are due to primary stimulation of the spinal motor area, which is finally depressed and paralyzed. When locally applied, phenol depresses and paralyzes the peripheral sensory nerves.

Temperature.—Phenol, in medicinal doses, slightly lowers temperature both in health and fever, but it is not sufficiently antipyretic to be suitable for such a purpose in practice. It depresses heat production and increases heat loss.

Elimination.—Phenol is eliminated by all ordinary channels, but mainly by the kidneys. The urine becomes dark colored—a very characteristic sign—even after large medicinal doses. Phenol normally occurs in small quantities in the urine of man and animals. Three grains have been recovered from the urine passed in 24 hours by a horse, and phenol is thought to be a product of intestinal fermentation. In large, toxic doses most of the carbolic acid is eliminated in the urine unchanged. Part, however, is oxidized into two bodies—pyrocatechin and hydroquinone—and these, as well as phenol, unite with sulphuric and glycuronic acids in the tissues. Thus phenol is eliminated in the urine as double sulphates and glycuronates of phenol, pyrocatechin and hydroquinone. The last two are unstable and further undergo oxidation into dark substances, coloring the urine, which grows darker on exposure to
the air. The normal sulphates are absent in the urine following car-
bolic acid poisoning.

Toxicology.—Carbolic acid ranks as one of the most powerful poi-
sions—together with prussic acid, aconite and nitrobenzol—in existence.
Several cases of death in man have occurred after the ingestion of one-
half ounce of carbolic acid; and the smallest fatal human dose on record
appears to be about one dram. One or two drams are fatal to dogs, and
a dose as small as 15 grains is said to have caused the death of a dog,
while the lethal amount for the horse is about one ounce. Many cases
of accidental poisoning have occurred from absorption of phenol when
applied externally for surgical purposes in dressings or solutions upon
raw surfaces. The symptoms are the same as when absorption occurs
from the digestive tract. Extensive gangrene, after continuous treatment
with moist carbolic applications, is occasionally seen. Dogs and cats
are particularly susceptible to the action of phenol. The milder symp-
toms of poisoning include dulness, loss of appetite, muscular weakness
and trembling and dark-colored urine having the odor of carbolic acid.
After lethal doses death may be instantaneous through respiratory ar-
rest, the heart continuing to beat for a time. The more ordinary symp-
toms of severe poisoning in all animals are: trembling, rarely vomiting
and purging, restlessness, salivation, loss of muscular power (animal
reels and falls), diminution of sensibility, anesthesia, dyspnea; the
breathing is rapid, shallow and stertorous; the pulse is weak, irregular,
and usually frequent; the temperature is lowered, and there are the
usual symptoms of collapse, with insensibility, coma, loss of reflex ac-
tion, general paralysis, occasional convulsions and death. Sometimes
hematuria, albuminuria and hemoglobinuria have been observed. The
condition resembles apoplexy, but the mucous membrane of the mouth is
stained white in patches after ingestion of pure acid, dark with crude
acid, and the odor of the poison lingering about the animal, together
with the dark, green-colored urine, is characteristic of phenol poison-
ing. The urine may be clear when first voided, but becomes dark on
standing.

The absence of carbolic acid in the urine affords certain evidence
that the case is not one of poisoning by this drug. Post-mortem exami-
nation reveals hard, whitish or brownish or black patches and sloughs
upon the mucous membrane of the mouth, gullet, stomach, and even the
small intestines. The blood is dark from asphyxia, and imperfectly
coagulated. There is occasionally fatty degeneration of the liver and
kidneys. The odor of the acid remains not longer than twenty-four
hours.

Both horses and dogs are very susceptible to phenol poisoning, where
the whole body is bathed in more than a one per cent. solution as is
sometimes done for lice or mite infestation. Such should receive atropine
hypodermically.

Treatment.—Unfortunately there is no satisfactory antidote for
phenol. Emetics are usually valueless on account of the anesthetic con-
dition of the mucous membrane of the stomach. We use, therefore, the
stomach tube. Washing the stomach with 10 per cent. solution of alcohol has proven most efficient. This follows because alcohol is a good solvent for phenol. The alcoholic solution of phenol should, therefore, be at once removed from the stomach or its use will aid absorption and poisoning. After washing the stomach with alcohol one should give a strong solution of magnesium or sodium sulphate by the mouth or, when lavage is impracticable, one of these should be given at once. Concerning their action and value there could scarcely be more disagreement. Thus it has hitherto been commonly accepted and taught that insoluble sulphocarbolates are formed in the stomach. This is denied by Sollman and most authorities. Thornton affirms, as a result of his experiments, that harmless but soluble phenosulphates result. This, again, is denied by Baumann and others. Cushny declares that the employment of these sulphates in phenol poisoning is useless, while Hare advises their use. As the action of Epsom or Glauber's salt is harmless and their effect may be beneficial, we recommend their administration. For collapse, heart and respiratory failure,—camphorated oil, digitalis, strychnine, atropine, ether, and brandy subcutaneously, are to be employed, together with heat externally. Mucilaginous drinks are also useful. The local caustic action of carbolic acid on the skin or mucous membranes can be prevented by the immediate washing of the parts with strong alcohol. Of late years alcohol has also been regarded and widely given as a physiological and chemical antidote in carbolic poisoning. In experiments, cited by Thornton, on dogs with mixtures of toxic doses of carbolic acid and alcohol, and with the administration of poisonous doses of the acid followed by alcohol, the results go to show that alcohol does not in any way lessen or alter the poisonous effect of carbolic acid except in preventing the corrosive action on the stomach. His conclusions are somewhat weakened, however, by the fact that doses of alcohol were used which in themselves might be toxic (4 to 9 ounces). It is now known that alcohol acts only as a solvent; not as an antidote.

Administration.—Carbolic acid is commonly given internally, diluted several hundred times with water.

Uses External.—A solution of carbolic acid (1-20) is frequently used in surgery to disinfect the unbroken skin, while a weaker solution (1-50) is more suitable as an antiseptic upon raw surfaces and mucous membranes. While corrosive sublimate has enjoyed chief popularity as a surgical antiseptic for many years on account of its cheapness and supposed superior bactericidal properties, recent experiments have shown that the value of corrosive sublimate is much over-estimated. It has been shown that while a 1 to 2000 solution of corrosive sublimate requires over thirty minutes to kill micro-organisms the same bacteria are killed in less than one minute by a 5 per cent. solution of carbolic acid (Post and Nicoll). So, while the antiseptic reputation of phenol has been rehabilitated, yet its closely related chemical substitutes, cresol, creolin and lysol, have largely replaced phenol on account of their being less toxic and more actively germicidal, strength for strength. Pure carbolic acid is occasionally used as a caustic to destroy small growths, as warts, and the
lining membrane of fistulae of the poll, withers, or lateral cartilages; to swab out a septic uterus, and as a local anaesthetic upon the skin. To destroy fistulae the pure phenol is injected and, after two minutes, the fistula is washed out with alcohol. A drop of pure acid, or a line drawn with a brush along a proposed path of incision, may render a hypodermic puncture or superficial incision painless. Carbolic acid with glycerin (1-16) is one of the most excellent preparations for applying to sluggish ulcers and old sinuses and fistulae. The glycerin appears to entirely offset the corrosive action of the acid, and the result is a stimulation of the pyogenic membrane and promotion of healing which often can not be obtained by any other remedy. It is equally effective in canker and foul in the foot of cattle, and in foot rot of sheep (1 part in 10 of glycerin). Injection of ten to thirty drops of a two per cent. aqueous solution into the substance of boils, acne, glandular swellings, poisoned wounds, joints affected with chronic synovitis, and inflamed burse, will often assist recovery and may abort the lesion. In the two last, Mx-xxx. of the pure acid.

In acute inflammation, the injections are made twice daily; in chronic conditions, once every other day; and if there is a large extent of surface involved, several injections are done at one time.

Erysipelas patches are best treated by swabbing them with pure phenol followed at once by swabbing with pure alcohol. This is done not only to the patch itself but the surrounding normal area should be somewhat encroached upon.

Wet dressings, made by saturating aseptic gauze in ½ to 1 per cent. solutions of phenol and applied with a rubber cloth or oil paper or silk covering, have been much used in surgery in the treatment of septic wounds. Many cases of local gangrene have been reported in human surgery following such application to the extremities. It is safer and just as effective to use a 1 per cent. lysol (liq. cresolis co.) solution for an antiseptic wet dressing.

Bacelli's treatment of tetanus with carbolic acid is said to be successful. One dram of the pure acid in solution (3 per cent.) should be injected subeutaneously in the region of the neck and shoulders of the horse every two hours during the first 32 hours, and less frequently afterward. As much as 36 drams may be given to the horse in 24 hours, for there appears to be a special tolerance for carbolic acid acquired in tetanus. The writer has found the solution too bulky to be used in practice and its remedial effect is doubtful. Magnesium sulphate is much more efficient.

The glycerite of carbolic acid is employed as a local application in stomatitis, upon the ulcerations of actinomycosis with iodine, and also upon the skin to destroy ringworm. It is inferior, however, to tincture of iodine for the latter purpose. Two per cent. solutions are recommended to kill lice and the acari of scab and mange. Carbolic acid is the most serviceable remedy we possess to relieve itching. Two per cent. solutions may be employed upon the unbroken skin, but the strength should not be greater than half this amount upon excoriated surfaces.
Pruritus (except in dogs and cats).

R

Phenolis .. gr.xl.
Glycerini .. 5i.
Olei gossypii sem .. 3ii.

M.

S. Apply externally.

In sub-acute moist eczema of dogs, carbolic acid with zinc ointment (gr. v.-3ii.), or the following prescription, will be found of value in relieving itching and promoting recovery:

R

Calaminæ .. 5ss.
Zinci oxidi ... 3ii.
Acid. Carbol .. gr.xx.
Liq. Calcis ad .. 3iv.

M.

Sig. External use. (Shake.)

Care should always be taken not to apply carbolic preparations over any considerable extent of raw surface, and to muzzle dogs in the event of an opportunity being afforded them to lick off any undue amount of the acid. A solution (1-50) in boiling water forms an efficient antiseptic and sedative inhalation for horses suffering from catarrh of the upper air passages. One of the most excellent remedies for burns consists of carbolic acid in carron oil. It relieves pain and lessens suppuration, although carbolic acid in oil possesses little antiseptic property, because phenol is so much more soluble in oil than in the watery protoplasm of bacteria.

For burns.

R

Phenolis .. 3i.
Carron oil ... 3vi.

M.

S. External use.

Good results have been reported with intratracheal injections in verminous bronchitis of foals and calves, consisting of the following:

R

Acidi carbolici ... m.xx.
Ol. terebinthinae 3ii.
Chloroformi ... 5ss.

M.

Sig. Give at one injection intratracheally.

Phenol, with camphor, forms a liquid which is without the toxic and caustic properties of phenol alone. It makes a serviceable application, on absorbent cotton or gauze, for small burns, wounds and ulcers, as in broken knees and in necrosis of the coronary band in horses.

R

Phenolis .. 3i.
Camphoris ... 3iii.

M. (Phenol melted by heat.)

S. Apply externally.
Phenol is useful as a spray in the form of Dobell’s solution which is indicated in coryza, in influenza and distemper.

\[\begin{align*}
\text{Sig. Dobell’s solution. Apply with atomizer or syringe.}
\end{align*}\]

Crude carbolic acid may be used in 5 per cent. solution to disinfect infected buildings and their contents, and, with whitewash, can be applied to walls after cleaning.

To be more precise, the strength of crude carbolic acid for disinfection depends upon the amount of cresylic acid it contains, which may be ascertained from the dealer. The disinfectant solution of crude carbolic acid should be such that it will contain 2 per cent. of cresylic acid.

Commercial cresol (containing over 90 per cent. of pure cresol) is more effective and cheaper than crude carbolic acid as a disinfectant. It should be dissolved in hot water and used in 2 per cent. solution.

A 5 per cent. cresol solution is useful in the form of a foot bath in a shallow trough for foot rot in sheep, which are driven through it thrice weekly.

Uses Internal.—The systemic action of phenol after absorption is not of value in general bacterial diseases.

The subcutaneous injection of 2 drams (8 mils) of a 3 per cent. aqueous solution of carbolic acid every ten days into all pregnant cows during the prevalence of epizootic abortion has been extensively employed as a prophylactic measure. Experience discredits the value of this treatment, however. In the carbuncle form of anthrax in man, the injection of carbolic acid has yielded successful results and it may be tried in cattle. But speedy destruction of anthrax patients in veterinary practice is usually the only wise procedure. Locally, carbolic acid may exert an antiseptic and anesthetic action in the stomach. Carbolic acid is sometimes of service in relieving vomiting and gastric pain caused by flatulence in dogs, and in counteracting intestinal fermentation and diarrhea in all animals.

Vomiting and diarrhea in dogs.

\[\begin{align*}
\text{Vom.),}
\end{align*}\]

Creosotum. Creosote. (U. S. & B. P.)

Synonym.—Kreosotum, P. G.; créosote, Fr.; kreosot, G.

Derivation.—A mixture of phenols and phenol derivatives, chiefly guaiacol and creosol, obtained during the distillation of wood tar.

Properties.—An almost colorless or yellowish, highly refractive, oily liquid, having a penetrating, smoky odor, and a burning, caustic taste. It does not readily become brown on exposure to the light. Spec. gr. not below 1.073 at 25°
C. Slightly soluble in water. It is miscible with alcohol, ether, fixed and volatile oils.

Dose.—H., \(\text{mL} \cdot \text{v-xv, (3-1)} \); D., \(\text{mL} \cdot \text{ss-ii, (03-12)} \).

Action and Uses.—The action of creosote upon animals is practically the same as that of carbolic acid in kind, but is much less toxic. The antidotes and treatment of poisoning are also similar.

Externally, creosote is as effective a germicide as carbolic acid, but the latter is usually preferred, being much cheaper. Creosote may be applied in the same strength for its local antiseptic, parasiticide, and local anesthetic action. It is employed in skin diseases and especially those of parasitic origin. In scab 1 part is dissolved in 65 parts of 50 per cent. alcohol, and in follicular mange of dogs it may be applied as follows:

R

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creosoti</td>
<td>(\text{mL} \cdot \text{xxi})</td>
</tr>
<tr>
<td>Potassii hydroxidi</td>
<td>(\text{mL} \cdot \text{ss})</td>
</tr>
<tr>
<td>Olei gossypii sem</td>
<td>(\text{mL} \cdot \text{ii})</td>
</tr>
</tbody>
</table>

M.

S. Apply externally.

Internally, creosote is administered, as is carbolic acid, to check vomiting and to act as an intestinal antiseptic in indigestion with fermentation and diarrhea. Creosote is of much service as an inhalation (\(\text{mL} \cdot \text{xx} \). to \(\text{Oi} \), of boiling water) in sub-acute bronchitis, in fetid nasal discharge and in gangrene of the lung in horses. It is also given internally in chronic bronchitis and in distemper of dogs. It is eliminated to some extent by the lungs and may act as an antiseptic in the lungs and digestive tract and have a favorable stimulant, expectorant action.

Distemper, dog.

R

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creosoti (beechwood)</td>
<td>(\text{mL} \cdot \text{xxi})</td>
</tr>
<tr>
<td>Bismuthi subcarbonatis</td>
<td>(\text{mL} \cdot \text{ss})</td>
</tr>
</tbody>
</table>

M. et divide in capsulas No. \(\text{xxi} \).

S. One three times daily.

It is occasionally given by intratracheal injection (creosote, \(\text{mL} \cdot \text{x} \). in \(\text{mL} \cdot \text{ss} \). of 50 per cent. alcohol) in gangrenous pneumonia of horses and to sheep and calves in the same manner in parasitic bronchitis (\(\text{mL} \cdot \text{v} \). in \(\text{mL} \cdot \text{i} \). 50 per cent. alcohol). It may also be given by the mouth in verminous bronchitis to kill the lung worms or by means of its elimination from the bronchial mucous membrane. Neumann advises creosote (\(\text{mL} \cdot \text{ii} \).), benzine (\(\text{mL} \cdot \text{x} \).), and water (2 qts.); of the mixture for sheep, 1 teaspoonful daily, by the mouth, for 8 days for verminous bronchitis. Chloroform inhalation to a point where the animal staggers, followed by a purge, is more satisfactory.

Cresol. Trikresol. \(\text{C}_7\text{H}_8\text{O} \). (U. S. P.)

Synonym.—Cresolum, cresylic acid, E.; cresol, Fr.; kresol, trikresol, G.

A mixture of isomeric cresols obtained from coal tar. Preserve it in amber-colored bottles from the light. Cresol occurs as a colorless or yellowish to brown-yellow, highly refractive liquid, becoming darker or assuming a reddish tint with age and on exposure to light, and having a phenol-like, sometimes empyreumatic odor. Soluble in about 50 parts of water, usually forming a cloudy solution; it
is miscible with alcohol, ether, benzene, petroleum, benzoin or glycerin; it is dissolved by solutions of the fixed alkalies. Sp. gr. 1.030 to 1.038 at 25° C. The isomeric cresols are meta-, ortho- and para-cresol. They are constituents of tars and are related to carbolic acid chemically and therapeutically. To increase their solubility as antiseptics they are suspended with soap (lysol), used in emulsion (creolin), or dissolved by salts (solvole). Cresol is much more germicidal than phenol but is used more commonly in the form of creolin and lysol. The dose and toxicity of cresol are the same as that of phenol.

Creolinum. Creolin. (Proprietary preparation.)

Synonym.—Creoline, Fr.; kreolin, G.

Derivation.—Obtained from soft coal by dry distillation. Composition very complex. It is said to contain cresol and higher homologues of phenol.

Properties.—Dark-brown, syrupy, alkaline liquid, of a tarry taste and odor. Nearly soluble in alcohol; soluble in chloroform and ether. When added to water, creolin forms a white emulsion containing in suspension as much as 12 per cent. of the drug.

Dose.—H. & C., 5s-1, (15-30), in single dose. For continuous use—H. & C., 5i-ii, (4-8); D., m1-v, (.06-3).

Action External.—Creolin is a powerful and useful disinfectant, antiseptic, and parasiticide. It forms a slippery coating upon the skin. Strong solutions are not caustic, but may cause a dermatitis when continuously applied. Creolin generally represents carbolic acid, but is much more efficient as a germicide, less irritating, and does not endanger animal life from absorption. Creolin has 3.25 times the germicidal value of phenol and is but 1/6 as toxic (U. S. Hygienic Laboratory). Aqueous solutions (emulsions), containing from 1/2 to 1 per cent., are employed for antiseptic purposes.

Action Internal.—Creolin is eliminated by all channels, giving the secretions a tarry odor, and coloring the urine brown. One or two drams of creolin (a lethal dose of carbolic acid), when given daily to dogs for weeks at a time, produce no bad effects. It is a good intestinal antiseptic, and better than carbolic acid.

Uses.—Creolin is employed mainly outside of the body, and is a useful general antiseptic for surgical purposes in 1 per cent. solution. Antiseptic poultices, so valuable upon septic sloughing parts, are best made by soaking clean gauze in a 1 per cent. aqueous solution of creolin, and applying the same, covered by a waterproof protective. Creolin solutions are not to be recommended for instruments during operations, as the fluid is so turbid that they cannot be seen by the operator. A 2 per cent. solution is useful for a vaginal or uterine injection; a 1 per cent. solution for irrigation of the bladder in cystitis, or eye in keratitis and conjunctivitis; and a 1/2 per cent. solution for intestinal irrigation in dysentery. As a parasiticide, 2 per cent. solutions, or 10 per cent. ointments or soaps, may be used to kill lice, fleas, and acari of scab and mange. Frohner advises equal parts of creolin and alcohol, with 8 parts of green soap, in mange and scab with occasional use of a 2 per cent. bath. The same treatment is useful in chronic mange and grease. With alcohol (1-10-20) creolin is remedial in alopecia areata.

Sheep are dipped to advantage in 2 per cent. solutions, to destroy ticks, instead of the more dangerous arsenical liquids. Creolin may be used internally, as an intestinal antiseptic and anthelmintic. One ounce
given on an empty stomach, in a quart of water, is one of the most effective vermifuges for the horse.

LIQUOR CRESOLIS COMPOSITUS. (U. S. P.) Compound Solution of Cresol.

Synonym, Lysol (Proprietary Name).

Cresol, 500 Gm.; linseed oil, 300 Gm.; potassium hydroxide, 80 Gm.; alcohol, 30 Gm.; water, to make 1000 Gm.

Synonym.—Liquor cresoli saponatus, P. G.; solute de crésol composé, Fr.; kresolseifenlösung, G.

Derivation.—From that part of tar oil which boils between 190° and 200° C., by dissolving in fat and saponifying in alcohol.

Properties.—A clear, brown, oily liquid, of a feeble, cresote-like odor. Soluble in water, forming a clear, frothy, soapy fluid, and in alcohol, chloroform, and glycerin.

Uses.—Compound cresol solution is used as a substitute for creolin in 1/2 to 2 per cent. aqueous solution. The compound cresol solution is 3 times, and lysol but 2.12 times, more germicidal than phenol. (U. S. Hygienic Laboratory.) A 1 per cent. solution of liq. cresol. co. is more effectively antiseptic than a 1 to 1000 solution of mercuric bichloride. The latter requires over one-half hour to kill most pathogenic microorganisms. One per cent. lysol destroys streptococci within one minute. Two per cent. solutions are useful in irrigating wounds and for making wet dressings and vaginal injections. Lysol should be bought under the official name (liq. cresol. co.), as it is cheaper and more effective than lysol. Solutions do not roughen the surgeon’s hands, and instruments submerged in them are not injured or obscured.

The liquor cresolis compositus is perhaps the most widely used and valuable surgical antiseptic and disinfectant at our disposal.

BETANAPHTHOL. C_{10}H_{10}O H. (U. S. P.)

Synonym.—Naphthol, E.; naphthol, B. P.; naphtholum, P. G.; naphthol-B, Fr.; beta naphthol, G.

A phenol occurring in wood tar, but usually prepared artificially from naphthalin.

Derivation.—Naphthalin is treated with strong sulphuric acid. B-naphthalin sulphonamic acid is formed (C_{10}H_{10}H_2 SO_3). The latter acid is dissolved in water with milk of lime, and the resulting calcium salt is recovered by crystallization. The crystals are then dissolved in water and treated with sodium carbonate, when sodium naphthalin-sulphonate (C_{10}H_2 SO_3 Na) results. The latter is mixed with fused sodium hydroxide, when sodium naphthol (C_{10}H_2 O Na) and sodium sulphite are obtained. Hydrochloric acid is added to the former, and naphthol results, which is further purified by sublimation and recrystallization.

Properties.—Colorless, or pale buff-colored, shining, crystalline laminae, or a white, or yellowish-white, crystalline powder; having a faint phenol-like odor, and a pungent taste. Permanent in the air. Soluble in about 1000 parts of water, and in 0.8 part of alcohol; also soluble in ether, chloroform, glycerin, olive oil, or solutions of caustic alkalies.

Dose.—H., 3ii-iii, (8-12); D., gr.i-x, (.06-6).

Actions and Uses.—Naphthol is a powerful disinfectant, antiseptic and parasiticide. It is said to be several times more germicidal than phenol. B-naphthalin somewhat resembles carbolic acid in its toxic effect. It irritates the mucous membranes, causing sneezing and coughing in the respiratory tract, nausea and diarrhea when swallowed, and acute nephritis, with inflammation of the urinary tract and strangury, in its elimination. It is a useful application externally for mange and ringworm.
Betanaphtholus .. gr.l.
Adips ... 3i.

M.
S. Apply externally.

Internally it is employed to kill round and tapeworms, and as an antiseptic in intestinal fermentation. Against hookworm in dogs 10 gr. are given in capsules, repeated in 2 hours, preceded by fasting and a laxative, and followed by castor oil. Oil of chenopodium is more effective. Naphthol should be given in keratin coated pill (to avoid irritating the stomach), or capsules, to dogs, and in ball to horses.

Methyl Blue. Pyoktanin. (Non-official.)

Occurs in small indigo-colored crystals, slightly soluble in water, freely soluble in alcohol. It is often contaminated with arsenic and should be perfectly pure when used in medicine. It is slightly antiseptic and astringent. Methyl blue is used in the treatment of catarrhal and purulent conjunctivitis, eczema of the lids and blepharitis as follows:

B
Methyl blue .. gr.ss.
Aqua destillata .. 5i.

M.
S. Drop in eye 3 times daily.

Methyl blue is a favorite preparation for the cure of small wounds, galls, and chafes in veterinary practice as below. The purple staining of the skin may be removed by washing with soap and water and alcohol.

B
Methyl blue .. gr.ss.
Tincturae iodi .. ml.xx.
Unguenti zinchi oxi di ... a a 3s.

M.
S. Apply externally.

Resorcinol. C₆H₆O₆. (U. S. P.)

Synonym.—Resorcinum. Resorcin. Metadioxybenzol, E.; résorcin, Fr.; resorcin, G.

Derivative.—A diatomic phenol formed by the action of fuming sulphuric acid upon benzine, whereby benzine metadisulphonic acid [C₆H₆ (H S O₃)₂] results. The latter is neutralized by milk of lime; calcium sulphate is expressed, and sodium carbonate is added. The process is continued by filtration, and the filtrate evaporated to dryness. The residue is heated with sodium hydrate, with the formation of sodium resorcin [C₆H₅ (O Na₂)]. Sulphurous acid is driven off from sodium resorcin by boiling, and the result is extracted with ether; impure resorcin is recovered by distillation, and is purified by sublimation or by recrystallization from water.

Properties.—Colorless, or nearly colorless, needle-shaped crystals, or as a powder; having a faint, peculiar odor, and a sweetish, followed by a bitter, taste. It acquires a pink tint on exposure to light and air. Soluble in 0.9 part of water, and in 0.9 part of alcohol; freely soluble in ether or glycerin, and slightly soluble in chloroform.

Dose.—H., 3iv-vi, (15-24); foals and calves, 5ss-i, (2-4); D., gr.ii-v, (12-3).

Action and Uses.—Resorcin was originally employed as an antipyretic, but is not now used for this action, being too depressing to the heart. It is an efficient antiseptic, externally and internally; possesses a slight local anesthetic effect, and a milder action, topically, than phenol.
Resorcinol is chiefly used in skin diseases to cure itching, scaling and induration in subacute and chronic eczema and psoriasis. It may be combined with zinc ointment (1 to 8).

Resorcinol.
Zinci oxidum.. 3i.
Unguenti aquae roseae... 5x.
M. (and heat to melt resorcinol crystals).
S. Apply to skin twice daily.

or is used in solution with glycerin and lime water, as follows:
To relieve itching in erythematous eczema.

Resorcinolis .. gr.xxx.
Glycerini .. 5ss.
Liquoris calcis ... 3i.
M.
S. Apply externally.

Internally, resorcin is of worth in diarrhea and fermentation.

FORMALDEHYDE C H₂ O. (Non-official.)

Synonym.— Formic aldehyde.

Derivation.— Obtained by partial combustion of wood alcohol, without ignition, by evaporation of the spirit in contact with a hot, platinized, asbestos plate.

\[2 \text{C}_2 \text{H}_5 \text{O} + \text{O}_2 \rightarrow 2 \text{C}_2 \text{H}_4 \text{O} + 2 \text{H}_2 \text{O} \]

Properties.— Formaldehyde is a pungent gas, having a spec. gr. of 1.6; soluble in water, forming a clear, colorless, stable solution when kept in glass-stoppered bottles, but volatilizing on exposure to the air. Formalin was the commercial name for an aqueous solution containing 40 per cent. of formaldehyde gas, but is now official.

PREPARATION.

Liquor Formaldehydi. (U. S. P.)

Synonym.— Formol, formalin, E.; formaldehydum solutum, P. G.; soluté d’aldehyde formique, Fr.; formaldehydlösung, G.

Solution of formaldehyde. Containing not less than 37 per cent. of formaldehyde gas.

Action and Uses.— Formaldehyde and formalin are slowly acting microbicids. A 1 per cent. solution of formalin will kill Staphylococcus pyogenes aureus in about an hour; B. typhosus in 40 to 50 minutes; B. coli communis in 30 to 40 minutes; B. anthracis and S. cholera in less than 15 minutes. Clothes soaked in cultures of B. typhosus, S. cholerae and Staphylococcus pyogenes aureus, and then for 24 hours in a 1 per cent. solution of formalin, were found to be completely sterile (Slater). Trillat and Robinson have found that formaldehyde gas has wonderful disinfectant and penetrating properties, destroying all pathogenic bacteria in ordinary rooms containing the microorganisms buried under mattresses, between blankets, in clothing and other articles, in the air, dust, and morbid secretions. Harrington proved, however, that the penetrating power of formaldehyde is nil in the case of moist substances, and that sterilization is not always complete when microorganisms are imbedded in, or covered by, dry pervious material. Still, formaldehyde is the best gaseous disinfectant now known for the sterilization of infected premises. It does not kill insect pests, animal parasites or rats, but
burning sulphur is effective for this purpose. The gas is most effective between 60 degrees and 70 degrees F. It should not be used if air temperature is below 50 degrees F. The premises containing the gas should be sealed from 4 to 24 hours. Formaldehyde vapor is extremely pungent and irritating to the mucous membranes, causing running of the nose and eyes in those exposed to its influence; but some experimenters have subjected animals to formaldehyde vapor (of disinfectant strength) for hours without causing their death. In Harrington’s experiments two rabbits were killed by formaldehyde in the disinfection of a room, and exhibited the following post-mortem appearances: Congestion and hemorrhage of the buccal mucous membrane; intense bronchitis with hyperemia, and consolidation of the lung with a purulent and slightly fibrinous exudate. There was also congestion of the abdominal organs, including the liver, kidneys and spleen. As death may occur, it is certainly unwise to attempt the disinfection of premises with formaldehyde, when inhabited by men or animals. Ammonia neutralizes the local action of formaldehyde solution, and that of the gas.

The injection of 2 per cent. formalin in glycerin into badly infected and suppurating joints has proved curative in human surgery. From 2 to 4 drams are used, after aspiration, and the injection may be repeated 3 times, a week apart. The joints are immobilized meanwhile. The solution should never be used until it is 24 hours old.

Internal Action.—Solutions of formaldehyde are intensely irritant. Nausea, vomiting, coma with slow pulse, and death have followed its ingestion. The red blood cells are altered in form, and destructive changes have been noted in the liver and kidneys. Formaldehyde escapes unchanged in the urine.

Uses.—Internally formalin (5ss.) has proved curative in acute tympanites of cattle given in a quart of water and followed in an hour by Epsom salt (Healy and Nutter). In septicemia and purpura formalin (3i.) in a quart of sterile water, has been given intravenously by Mc-Clelland with reported success, and is advised by Frost (3i. by the mouth) in capsule or milk, in the treatment of bovine streptococcic mastitis. Formic aldehyde vapor is not injurious to clothing, metals, or other like articles, as is sulphurous anhydride or chlorine gas, and is commonly used in preference to other agents for the gaseous disinfection of premises infected with pathogenic bacteria. Formaldehyde gas may be generated by evaporating formalin in a vessel over a lamp, or other form of heating apparatus, or pouring it upon crystals of potassium permanganate.

According to Harrington the evaporation of 110 mils of formalin is sufficient to kill all pathogenic micro-organisms within 2½ hours, in 1,000 cubic feet air space. Formaldehyde gas may be liberated most economically by mixing 8 oz. of potassium permanganate with 1 pint of formalin in a galvanized iron pail 12 inches deep and 10 inches in diameter at the bottom, and 18 inches at the top. The pail should be placed on sand or in water as much heat is generated and great frothing occurs. This should be done only in deep tin vessels to avoid the effects
of great frothing. This quantity of formalin and potassium permanganate is suitable for the disinfection of 1000 cu. ft. of space, if the air is moist and warm, but if cold and dry this amount will disinfect only half as much space.

A solidified formaldehyde is also on the market to which one need only add hot water, to free the gas. In veterinary disinfection one may spray formalin in five per cent. solution with a force pump all over the floors, walls, fixtures, etc.

Rubber gloves should be used to protect the hands.

Formalin, in ¼ to 2 per cent. solution, has been used for surgical purposes, but, when used in such strength upon raw surfaces and mucous membranes it produces pain and irritation and coagulates albumin so as to shut off the underlying parts from participating in the antiseptic action. These stronger solutions, although formerly employed for surgical uses, should be confined to skin disinfection or where an escharotic action is desired on sloughing tissues. Ordinarily the strength of an aqueous solution should not exceed 1-2000, or at most 1-1000, for application to raw surfaces or mucous membranes, and even in this dilution applications sometimes produce considerable pain and irritation and, for this reason, are contraindicated for ordinary surgical use.

Success is reported from the use of formalin on sloughing surfaces of malignant growths and foul ulcers. A 4 per cent. solution is increased to 10 per cent. and finally to pure formalin, the solutions being applied on cotton saturated with the drug and retained on the part for thirty minutes each day. In 1-500 formalin is useful in grease heel applied on absorbent cotton and covered with bandage. A 5 per cent. solution of formalin is serviceable for sterilizing catheters, instruments and sutures, for the preservation of pathological specimens, for the disinfection of stables, and in the treatment of canker of the feet in horses.

Preparations.

Hexamethylenamine. Hexamethylenamine. C₆(CH₂)₄N⁺ (U. S. P.) (Urotropin, Urotropin.) Hexamine, B. P.

Urotropin occurs in colorless, lustrous, odorless crystals, or as a white, crystalline powder, soluble in 1.5 parts of water and in 12 parts of alcohol; of a sweet afterward bitter taste, and slight alkaline reaction. It is made by combining solutions of ammonia and formaldehyde, and was first introduced into medicine by Nicolaier in 1895. Urotropin appears to be decomposed somewhat in the kidneys, but chiefly in the bladder in the presence of an acid urine, with the liberation of formaldehyde, and thus disinfects the urinary tract. It is, in fact, considered the best urinary antiseptic in human medicine and has been used with the greatest success in the treatment of all infectious diseases of the urinary passages, especially acute and chronic pyelitis and cystitis. It tends to render normal a putrid urine containing pus. This action is of value in similar diseases of animals, especially of dogs. The liberation of formaldehyde is favored by an acid urine and with an alkaline urine some agent, as acid sodium phosphate (D. gr.x. t. i. d.) or benzoic acid, should also be given. The sodium phosphate is incompatible with urotropin and so they should not be given at the same time. Urotropin is not an antiseptic in the body unless it is decomposed and sets free formaldehyde in sufficient amount. Thus sometimes the urine (after ten grains t. i. d.) in man contains as much as 1 to 5000 formaldehyde, which is distinctly of antiseptic strength. Urotropin is also eliminated in the bile, pancreatic juice, synovia, cerebro-spinal fluid, and in the saliva and milk of dogs. Also in middle ear mucus (Crowe). For this reason the drug has been employed to
disinfect these parts. More recently Burnham (1912) has cast doubt on this treatment by failing to find formaldehyde in germicidal amount in any of the secretions (except urine) after ingestion of urotropin. It can now be bought more cheaply under its official name than by its trade name urotropin. It should be given in solution thrice daily.

Dose.—H. & C., 5ii-iv, (8-15); D., gr.v-x, (3-6).

Class 7.—Miscellaneous Carbon Compounds

Acidum Hydrocyanicum Dilutum.

Diluted Hydrocyanic Acid. H C N. (U. S. & B. P.)

Synonym._—Prussian acid, acidum hydrocyanatum, s. borussicum, E.; acide cyanhydrique, s. hydrocyanique, Fr.; cyanwasserstonsiiure, blausiiure, G.

*Derivation._—An aqueous solution containing not less than 1.9 per cent. nor more than 2.1 per cent. of HCN, and not more than 0.1 per cent. of HCl. Preserve in small, dark, amber-colored, well-stoppered bottles. Obtained by distillation of potassium ferrocyanide, 20; sulphuric acid, 8; and water, 65; into distilled water. The following reaction first occurs: $K\text{Fe(CN)}_5\text{H}_2\text{S O}_4 = 2\text{K}/\square\text{S} + \text{H}_4\text{Fe C}_6\text{N}_5\text{H}_2\text{S O}_4$. Then on the application of heat, the hydroferrocyanic acid resulting in the first reaction reacts with the remaining potassium ferrocyanide and sulphuric acid, as follows: $\text{H}, \text{Fe C}_6\text{N}_5\text{H}_2\text{K} + \text{Fe C}_6\text{N}_5\text{H}_2\text{O} + \text{H}_4\text{Fe C}_6\text{N}_5\text{H}_2\text{S O}_4 = 6\text{H C N} + \text{K} + \text{S O}_4 + \text{K}_2\text{Fe C}_6\text{N}_5$.

Diluted hydrocyanic acid can also be made by mixing hydrochloric acid, 5; with distilled water, 65; silver cyanide, 6. Shake together in a glass-stoppered bottle. $\text{Ag C N} + \text{H Cl} = \text{H C N} + \text{Ag Cl}$. When the precipitate of silver chloride falls, pour off the clear, supernatant fluid.

*Properties._—A colorless liquid, of a characteristic odor, resembling that of bitter almond. It is very unstable and is apt to be inert as obtained from ordinary drug stores.

*Incompatibles._—Salts of iron, copper and silver; sulphides and red mercuric oxide.

Dose.—H. & C., mxx-xl, (1.3-2.6); Sh., mxx-xv, (.6-1); Sw., mii-v, (.12-3); D., miii-(.06-2).

*Action External._—Prussic acid is absorbed to some extent through the unbroken skin; paralyzes the peripheral sensory nerves, and acts as a local anesthetic. If the finger is held over a bottle containing the acid, it soon becomes anesthetized. Upon mucous membranes, or raw surfaces, prussic acid is rapidly absorbed and exhibits its usual constitutional action.

*Action Internal._—Alimentary Canal._—Hydrocyanic acid exerts a sedative effect upon the mucous membrane of the stomach and upper portion of the digestive tract. It is absorbed into the blood, but we are ignorant of its fate or mode of elimination.

*Blood._—In poisoning, the blood becomes first of a bright arterial hue, and later assumes a dark, venous color. The first condition is due to the fact that the tissues do not absorb oxygen owing to changes which interfere with cell respiration, or, in other words, to inhibition of the oxidizing fermenters, oxidases, of the cells which enables them to utilize the oxygen of the blood. The dark color of the blood is probably owing to asphyxia and accumulation of carbonic dioxide, following the paralytic action of prussic acid upon the respiratory centre. A substance called cyanohemoglobin is formed outside the body by hydrocyanic acid when shaken with blood. The acid appears to deoxydize the normal oxyhemoglobin of blood.

*Scheele’s prussic acid contains 4 to 5 per cent. of the pure hydrocyanic acid.
globin, and blood thus treated has no ozonizing property. Cyanohemo-
globin was thought to account for the action of prussic acid, but it does
not exist within the body in the blood of poisoned animals. The red
blood corpuscles are altered in shape by the action of prussic acid upon
blood withdrawn from the vessels. They generally become rounder, then
granular, and finally disintegrate and liquefy. But these changes do not
occur in the blood during life. The general action of prussic acid is
altogether independent of any influence upon the blood, since the same
toxic effect is produced upon the bloodless, or "salt frog" (vessels con-
taining normal salt solution), as upon the normal batrachian.

Nervous system and Muscles.—Prussic acid first stimulates the
hind-brain—as shown by convulsions, and excitation of the vagus, respir-
atory and vasomotor centres—and then paralyzes the whole nervous
system. The brain, cord and nerves become paralyzed by large doses.
The toxicity of prussic acid on the nervous system has been shown by
Loeb to be due to interference with the oxidation processes in proto-
plasm. The convulsions occurring in poisoning are shown by exper-
iments to be due probably to stimulation of the hind-brain. The spinal
cord is paralyzed at a period after coma and convulsions have appeared.
The peripheral nerves and muscles are paralyzed directly by toxic doses,
and not through the mediation of the central nervous apparatus. This is
proved by shutting off the blood supply containing the drug, from a
frog's leg, and leaving the nervous connections intact, when no effect
of prussic acid is observed upon the limb.

Heart and Blood Vessels.—Death sometimes occurs instantaneously
from large lethal doses of prussic acid, owing to diastolic arrest of the
heart. This action is due probably to paralysis of the heart (interfer-
ence with oxidation processes). Moderate non-toxic doses stimulate the
vagus centre of the medulla, without diminishing the force of the heart.
When the vagi are previously divided, this action does not occur, but
after large doses slowing of the heart is observed whether the vagi are
cut or not; thus showing that the heart muscle is directly influenced.
Moderate doses of prussic acid first stimulate, and then depress the
vasomotor centres. Arterial pressure is therefore primarily raised con-
siderably, but this is followed by a fall to, or below, the normal.

Toxic doses stimulate the vasomotor centres very briefly, and this
action is succeeded by profound depression and paralysis of the centres,
accompanied by a great diminution of blood tension.

Respiration.—Inhalation of the pure acid will cause death in a con-
fined atmosphere, and even inhalation of the medicinal solution will
induce the physiological symptoms of the drug. Therapeutic doses stim-
ulate the respiratory centre so that the breathing becomes quicker and
deeper. Toxic doses depress and paralyze the respiratory centre, its
ganglion cells being so altered by the poison as to be unable to utilize
oxygen. The breathing then is slow and deep. In the latter stage of
poisoning, the breathing is feeble and shallow, and only occurs at long
intervals. If death does not supervene immediately from diastolic ar-
rest of the heart, it comes on more slowly by asphyxia. The respiratory
movements become less frequent and forcible, the animal giving an occasional gasp, until finally the breathing ceases altogether, while the heart continues to beat for a time.

Summary.—Prussic acid in any considerable dose exerts a transient stimulation upon the hind-brain, followed by depression of the brain, spinal cord, nerves, muscles, and the three great medullary centres controlling the heart, respiration and vessels. It acts as a poison by interfering with oxidation processes in the body. Topically applied, hydrocyanic acid also paralyzes nerves and muscles, and acts therapeutically as a local sedative and anesthetic.

Toxicology.—Prussic acid is one of the most powerful poisons in existence. Death may be instantaneous, or life may be prolonged for over an hour after a lethal dose. More commonly the animal survives for a few minutes, and we observe the following symptoms in dogs: The animal falls, froths at the mouth, the respiration is of a gasping character and occurs at infrequent intervals. There is unconsciousness, the pupils become dilated, there are muscular tremblings and clonic or tonic spasms. Defecation and micturition occur, and erections often ensue in the male. Respiration ceases before the cardiac pulsations.

Three stages may be distinguished in fatal poisoning. First: a very short period elapses before the symptoms appear. There are giddiness, difficult breathing, and slow pulse in this stage. Second: the pupils dilate, vomiting may occur, and the animal utters loud cries. Spasmodic defecation, micturition and erections may be present, with convulsions and unconsciousness. Third: the last stage is characterized by collapse, spasms, general paralysis and death. The subacute form of poisoning may ensue and prove fatal, or, owing to the volatile character of the drug, complete recovery may take place within one-half or three-quarters of an hour. Occasionally dogs continue to be paralyzed for several days and get well. The minimum fatal dose recorded in man is \(\frac{9}{10} \) of a grain of pure acid, or about 50 drops of the medicinal solution, and the same for dogs. Four to five drams of the diluted acid frequently, but not invariably, cause subacute poisoning and death, in horses, within an hour. One to two drams of the pharmacopeial preparation usually kill dogs within ten minutes.

Prussic acid is commonly used to destroy the domestic animals, but the intrathoracic injection of strychnine is often preferable for the destruction of the smaller animals. Two to four drams of the medicinal acid are to be given to dogs and cats of the ordinary size, and certain, painless, and rapid death will occur if a fresh preparation of the drug can be obtained. The unopened half-ounce vial, kept by druggists, is recommended. Big dogs, horses, and the other larger animals are not killed rapidly, nor sometimes at all, by great quantities of the diluted acid. Hence, shooting is a more humane and preferable mode of death for them. In the experience of the writer, one to two drams of prussic acid saturated with potassium cyanide, failed to kill a horse, when injected directly into the jugular vein. The odor of the acid lingers about the animal for a few hours after death; the eyes are fixed and
staring; the pupils dilated; the teeth are clinched tight and covered with froth, while the blood is of a very dark color. The treatment embraces hydrogen peroxide by mouth; emptying the stomach by large doses of promptly acting emetics, or by the stomach tube, or pump; atropine, ether and brandy subcutaneously, and inhalations of ammonia, together with artificial respiration, and hot and cold douches upon the chest.

Uses.—Prussic acid is indicated for three therapeutic purposes:

1. To relieve gastric pain and vomiting, by its paralyzing action upon the peripheral sensory nerves of the stomach.
2. To stop coughing.
3. To allay itching by means of its local, sedative action upon the cutaneous sensory nerve-endings.

As a medicine it is not of value, but is occasionally used in veterinary practice as a cough remedy, when the symptom is of reflex origin, or is caused by chronic or verminous bronchitis; and the acid is often conjoined with chloroform, or opium, in some form. In verminous bronchitis the medicinal acid may be given by inhalation (3 ss. in 3 i. of water) to calves, or internally (mlxv.) to assuage coughing and to kill the lung worms. Chloroform inhalations are more efficient. Prussic acid is a dangerous remedy for use in relieving itching unless the dose is carefully regulated. Ten minims of the acid, with gr. 1/4 of corrosive sublimate to the ounce of water, is efficient in pruritus in the larger animals in amounts not larger than this for single applications, and not larger than half this for the smaller patients.

Potassium Cyanide. Potassium Cyanide. K C N. (B. P.)

Synonym.—Cyanure de potassium, Fr.; cyankalium, G.

Derivation.—Made by heating together potassium ferrocyanide and carbonate.

Properties.—White, opaque, amorphous pieces; or a white, granular powder, odorless when perfectly dry, but in moist air exhaling the odor of hydrocyanic acid. Taste sharp and alkaline, and in moist air the salt deliquesces. Reaction very strongly alkaline. Solutions stain and destroy clothing. Soluble in about 2 parts of water; sparingly soluble in alcohol.

Dose.—H., gr. i-ii, (06-12); D., gr. 1/3, (006).

Action and Uses.—Potassium cyanide is transformed, in the stomach and blood, into prussic acid, and resembles the latter in its action, but is much slower. Death has been caused in man by 5 grains of the salt; by 1 to 2 drams in horses; while 9 ounces were required to kill an elephant.

Prunus Virginiana. Wild Cherry. (U. S. P.)

Synonym.—Écorce de cerisier de Virginie, Fr.; wildkirschenrinde, G.

The bark of the wild cherry, indigenous in the United States, contains a ferment (emulsin) which, in the presence of water, acts on a glucoside (amygdalin, C29 H47 N O16) contained in the bark, with the formation of hydrocyanic acid, glucose and a volatile oil. A fluidextract, infusion and syrup of prunus virginiana are official. The latter preparation is sometimes employed in cough mixtures for dogs, on account of its sedative action. The entire value of the drug depends upon the minute amount of prussic acid formed in it. The official hydrocyanic acid is more reliable, but syrupus pruni virginianæ (U. S. P.) may be used as a vehicle for more efficient remedies, as follows:
Petrolatum. (U. S. P.)

(Three varieties.)

1.—Petrolatum. Petrolatum. (U. S. P.)

Synonym.—Vaseline, cosmoline.

Derivation.—A purified mixture of semi-solid hydrocarbons, obtained from petroleum.

Properties.—An unctuous mass, varying in color from yellowish to light amber, having not more than a slight fluorescence, even after being melted; transparent in thin layers, completely amorphous, free or nearly free from odor or taste.

The melting point of petrolatum ranges between 36° C. and 54° C. Spec. gr. 0.820-0.865. In other respects soft petrolatum has the solubility of liquid petrolatum.

2.—Petrolatum Liquidum. Liquid Petrolatum. (U. S. P.)

(2 varieties, heavy and light.)

Synonym.—Liquid paraffine, paraffine oil, E.; paraffinum liquidum, B. P.; P. G.; paraffine liquide, huile de paraffine, Fr.

Derivation.—A mixture of liquid hydrocarbons, obtained from petroleum.

Properties.—A colorless, oily, transparent liquid, without odor or taste when cold; or giving off, when heated, a faint odor of petroleum. Spec. gr. 0.828 to 0.905. Insoluble in water; scarcely soluble in cold or hot alcohol, or cold dehydrated alcohol; but soluble in boiling absolute alcohol, and readily soluble in ether, chloroform, carbon disulphide, oil of turpentine, petroleum, benzin, benzene, and fixed and volatile oils.

3.—Petrolatum Album. White Petrolatum.

Petrolatum wholly or nearly decolorized. White or faintly yellowish unctuous mass, transparent in thin layers even after cooling to 0° C.; completely amorphous.

Otherwise it resembles, in solubility, petrolatum.

Action and Uses.—Petrolatum is a valuable emollient. It soothes, protects and softens parts to which it is applied, and is superior to animal and vegetable fats and oils in not becoming rancid, and therefore irritant and malodorous. Petrolatum may be used alone, or as an excipient in the preparation of ointments, but does not aid the absorption of drugs (as do alcohol, glycerin, chloroform, and animal oils and fats), for it is not itself absorbed even when administered internally. Petrolatum exerts a demulcent action upon the mucous membrane of the alimentary tract, and may be prescribed in electuary or capsule in inflammation thereof. Liquid petrolatum is useful given internally in constipation and in piles (Dogs and cats, 5ii–iv b. i. d.) to soften the feces. It is also very serviceable with menthol and camphor (aâ gr.xv. to 5i.) dropped in the nostrils (with a medicine dropper) for dogs with coryza. Petrolatum is sold universally under the proprietary names of vaseline and cosmoline, and is often combined with antiseptics for medicinal and surgical purposes in skin diseases and upon inflamed mucous membranes, blistered and abraded surfaces and sores. It is one of the most useful
agents in lubricating instruments, protecting metal from rust, preserving leather, and is sometimes employed as a vehicle for electuaries.

Aethylius Chloridum. (U. S. P.) C₂H₅Cl.

Synonym.—Ethyl chloride, E.; chlorure d'éthyle, Fr.; aethylchlorid, G.

Ethyl chloride is a colorless, mobile, very volatile liquid, having a characteristic, ethereal odor, and a burning taste; slightly soluble in water but readily soluble in alcohol. It is made by the action of HCl gas upon absolute ethyl alcohol. It is usually sold in glass tubes with a screw or lever-spring metal top enabling the fluid to be sprayed upon the surface of the body in any desired amount.

On account of its great volatility and rapid evaporation it abstracts heat and freezes a part, and so acts as a local anesthetic. It is convenient for minor surgical operations, as opening abscess or boil, or for aspiration. The vapor is very inflammable. Ethyl chloride is also used to produce transient, general anesthesia. 1 or 2 drams may be used for dogs. It is exceedingly rapid in its effects and a safe anesthetic for short periods. It is sprayed into the neck of a funnel, the large end being partly filled with absorbent cotton and held tightly over the nose. Recovery is also extremely rapid. Ethyl chloride is often sold under the name of "kelene." It is used frequently as a preliminary to ether in human practice and is more agreeable to inhale. Plenty of air should be allowed, except at the outset.
PART II.

VEGETABLE DRUGS.

SECTION I.—DRUGS ACTING UPON THE BRAIN.

Opium. Opium. (U. S. & B. P.)

Synonym.—Opium in E., Fr. and G.

Derivation.—The air-dried, milky exudation obtained by incising the unripe capsules of Papaver somniferum Linné and its variety album De Candolle (Fam. Papaveraceae), and yielding in its normal, moist condition, not less than 9.5 per cent. of anhydrous morphine. Opium is procured from Turkey, Asia Minor, Persia, India and Egypt. The Smyrna, or Turkey opium is the more common variety used in the United States. It occurs in irregular, globular masses, covered with poppy leaves and capsules of a species of dock, weighing from ½ to 1 pound.

Properties.—In more or less rounded, mostly somewhat flattened masses of variable size, but usually about 8 to 15 cm. in diameter; externally grayish-brown, covered with fragments of poppy leaves; more or less plastic when fresh, becoming hard and brittle on keeping; internally dark brown, interspersed with lighter areas, somewhat lustrous; odor characteristic, narcotic; taste bitter, characteristic. It yields its medicinal properties to water, alcohol, and diluted acids, forming dark brown solutions. Ether extracts its principles in part.

** Constituents.**—There are nineteen or more alkaloids; the three first are used in human medicine, but narceine is of no value in veterinary medicine.

<table>
<thead>
<tr>
<th>Alkaloid</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>2.5—22.8 per cent.</td>
</tr>
<tr>
<td>Codeine</td>
<td>.2 — .7 per cent.</td>
</tr>
<tr>
<td>Narceine</td>
<td>.1 — .7 per cent.</td>
</tr>
<tr>
<td>Thebaine</td>
<td>.15 — 1. per cent.</td>
</tr>
<tr>
<td>Narcotine</td>
<td>1.3 —10. per cent.</td>
</tr>
<tr>
<td>Papaverine</td>
<td>1. per cent.</td>
</tr>
</tbody>
</table>

In addition to these, the following exist in minute quantity, but some are merely "pharmaceutical curiosities":—

Organic Acids.
- Meconic Acid
- Lactic Acid

Alkaloids.
- Pectin
- Gum
- Resin
- Glucose
- Fixed Oils
- A Volatile Oil
- Odorous Bodies
- Caoutchouc
- Ammonium Salts
- Calcium Salts
- Magnesium Salts

Neutral Bodies.
- Meconin
- Meconoisin

Impurities.—Starch, molasses, leaves, fruit, stones and water.

Incompatibility.—Solutions of lead acetate and subacetate, and of copper and arsenic salts, precipitate meconates, sulphates and coloring matters, but the opium remains physiologically active. Ferric chloride produces a deep red color with opium, by its union with meconic acid. Tannin compounds precipitate codeine tannate. Alkalies, their carbonates and ammonia precipitate morphine and narcotine.

Dose.—H., 3i-ii, (4-8) ; C., 3i-iv, (8-15) ; Sh., gr.x-xxx, (.6-2) ; Sw., gr.v-xx, (.3-1.3) ; D., gr.ss-iii, (.03-2).

Opium Pulvis. Powdered Opium. (U. S. P.)

Opium dried at a temperature not exceeding 70° C., and reduced to a very
fine powder and yielding not less than 10 nor more than 10.5 per cent. of anhydrous morphine. Only those preparations are mentioned here which are applicable to veterinary practice.

Dose.—Same as for opium, but preferable to the crude drug.

PREPARATIONS.

Extractum Opii. Extract of Opium. (U. S. & B. P.)

Powdered opium, 100; starch; distilled water, a sufficient quantity. Made by maceration, percolation, evaporation, and addition of starch. Assayed to contain 20 per cent. of morphine. (U. S. P.)

Dose.—About one-half that of powdered opium. H., 5ss-i, (2-4); C., 5i-ii, (4-8); Sh., gr.v-xv, (.8-1); Sw., gr.liss-x, (.15-6); D., gr.¼-liss, (.015-09).

Pulvis Ipecacuanhæ et Opii. Powder of Ipecac and Opium. (U. S. P.)

Synonym.—Dover's powder, E.; pulvis ipecacuanhæ opiiatus, s. pulvis Doweri, P. G.; poudre de Dower, Fr.; Dower'sches pulver, G.

Ipecac, 10; powdered opium, 10; sugar of milk, 80. The most diaphoretic compound of opium.

Dose.—H., 5ssi, (15-30); D., gr.iii-xv, (2-1).

Tinctura Ipecacuanhæ et Opii. Tincture of Ipecac and Opium. (U. S. P. 1905.)

Synonym.—Liquid Dover's powder.

Tincture of deodorized opium, 1000; fluid extract of ipecac, 100; diluted alcohol, a sufficient quantity to make 1000. Made by evaporation and filtration.

Dose.—Same as Dover's powder.

Tinctura Opii. Tincture of Opium. (U. S. & B. P.)

Synonym.—Laudanum, tinctura meconii, tinctura thebaicae, E.; tinctura opii simplex, P. G.; teinture d'opium, teinture thébaïque, Fr.; einfache opiumtinktur, G.

Granulated opium, 100; alcohol, 400; water, 400; diluted alcohol to make 1000. Made by maceration and percolation. Assayed and standardized to contain 1 Gm. of anhydrous morphine in 100 mls. (U. S. P.)

Dose.—H., 5i-ii, (30-60); C., 5ii-iii, (60-90); Sh. & Sw., 5ii-vi, (8-24); D., mi-iii-xx, (2-1.3).

Tinctura Opii Camphorata. Camphorated Tincture of Opium. (U. S. P.)

Synonym.—Tinctura camphore composita, B. P.; paregoric, elixir paregoricum, paregoric elixir, E.; tinctura opii benzoica, P. G.; teinture d'opium camphrée, Fr.; benzœsaurehaltige opiumtinktur, G.

Powdered opium, 4; benzoic acid, 4; camphor, 4; oil of anise, 4; glycerin, 40; diluted alcohol to make 1000. Made by maceration and filtration. (U. S. P.)

Dose.—D., 5i-iv, (4-15).

Opium Deodoratum. Deodorized Opium. (U. S. P.)

Synonym.—Opium denarcotizatum.

Powdered opium, 500; purified petroleum benzin, q. s. Made by repeated maceration, agitation and percolation with purified petroleum benzin. The petroleum benzin removes narcotic and odorous principles, which cause nausea and disagreeable after-effects in opium. Contains 10-10.5 per cent. of morphine.

Dose.—Same as powdered opium.

The eighth edition of the U. S. P. introduced Opium Granulatum (granulated opium); made by drying opium at a temperature not exceeding 70° C. and reducing it to a coarse (No. 8 to 20) powder. It should not yield less than 10 not more than 10.5 per cent. of anhydrous morphine.

Dose.—Same as deodorized opium.

Tinctura Opii Deodorata. Tincture of Deodorized Opium. (U. S. P.)

Granulated opium, 100; purified petroleum benzin, 75; alcohol, 200; water to make 1000. Made by maceration and percolation with water, agitation with purified petroleum benzin, and evaporation. Assayed and standardized to contain 1 Gm. of anhydrous morphine in 100 mls.

Dose.—Same as tincture of opium, but less nauseating.

Extractum Opii Liquidum. (B. P.)

(Contains three-fourth of one per cent. of morphine.)

Dose.—Same as laudanum.
Vinum Opii. (U. S. P.)

Dose.—Same as laudanum.

Morphina. Morphine. \(C_{17}H_{19}NO_3 + H_2O\). (U. S. & B. P.)

Synonym.—Morphia, E.; morphine, Fr.; morphium, morphin, G.

Derivation.—An alkaloid obtained from opium.

1. Macerate opium in cold water, forming a solution of morphine meconate.
2. Add calcium chloride to precipitate calcium meconate and resins. 3. Evaporate solution remaining, which contains morphine hydrochlorate, till it crystallizes; press in flannel to remove narcotine and coloring matter; redissolve; filter; evaporate and crystallize repeatedly. 4. Decolorize by digestion with charcoal. 5. Precipitate with ammonia and wash, when pure morphine is separated from codeine.

Properties.—Colorless or white, shining rhombic prisms, or fine needles, or crystalline powder; odorless and having a bitter taste; permanent in the air; soluble in 3340 parts of water, in 210 parts of alcohol.

Dose.—Same as salts of morphine, but the latter are preferable on account of their solubility.

Morphine Hydrochloridum. Morphine Hydrochloride.

\(C_{17}H_{19}O_3 N H Cl + 3 H_2O\). (U. S. & B. P.)

Derivation.—Morphine is stirred with hot distilled water, to which hydrochloric acid is gradually added. Morphine hydrochlorate crystallizes out on cooling.

Properties.—White, silky, glistening needles or cubical masses, or a white, crystalline powder, odorless, and having a bitter taste; permanent in the air. Soluble in 17.5 parts of water, and in 52 parts of alcohol. Soluble in glycerin; insoluble in ether and in chloroform.

Incompatibility.—Incompatible with all agents containing tannin, alkaline carbonates, lime water, salts of copper, mercury, zinc and lead; and with Fowler’s solution of arsenic.

Dose.—H. & C., gr.ii-x, (.2-.6); Sh., gr.ss-ii, (.03-.12); Sw., gr.1/6-1/2, (.006-.08); D., gr.1/6-1/2, (.008-.03).

Subcutaneously.—H., gr.ii-iv, (.2-.25); D., gr.1/6-1/2, (.008-.03).

124 parts of morphine hydrochlorate correspond to 100 parts of morphine.

Morphine Sulphas. Morphine Sulphate,

\(C_{17}H_{19}O_3 N\) \(H_2S O_3 + 5 H_2O\). (U. S. & B. P.)

Derivation.—Morphine is stirred into boiling distilled water; diluted sulphuric acid is added until neutralization is attained, and the sulphate crystallizes out on cooling.

Properties.—White, feathery, acicular, silky crystals, or in cubical masses, odorless, permanent in the air, and having a bitter taste. Soluble in 15.5 parts of water, and in 565 parts of alcohol at 25° C.; insoluble in ether and chloroform.

Dose.—Same as hydrochloride. 125 parts of morphine sulphate correspond to 100 parts of the pure alkaloid.

The official salts of morphine may be used interchangeably. The acetate is more soluble, but less stable, than the sulphate, which is sufficiently soluble for practical purposes, and is in more common use.

Liquor Morphine Acetatis. (B. P.)

Dose.—H., 3vi-3ii, (25-60); D., m|x-3i, (.64).

Liquor Morphine Hydrochlorid. (B. P.)

Same strength and dose as above.

Injectio Morphine Hypodermica. (B. P.)

Dose.—Same as liquor morphini hydrochloridi.

Suppositoria Morphine. (B. P.)

Dose.—Dog, 1 per rectum.

Codeina. Codeine. \(C_{10}H_{13}O_3 N + H_2O\). (U. S. & B. P.)

Derivation.—An alkaloid obtained from opium by evaporation of the ammo-
niacal liquid, after the precipitation of morphine. The residue is added to water, precipitated by potassium hydrate, and redissolved in ether, from which codeine crystallizes out on evaporation.

Properties.—Colorless, transparent, rhombic prisms, or a crystalline powder; odorless, and having a faintly bitter taste; slightly efflorescent in warm air. Soluble in 120 parts of water, 2 parts of alcohol, 18 parts of ether, and 0.5 part of chloroform at 25° C. Codeine sulphate commonly used.

Dose.—D., gr.\(\frac{1}{4}\)-\(\frac{1}{2}\), (.015-.12).

Heroin. (Diacetymorphine.) (Non-official.)

This remedy, derived from morphine, was first introduced by Dreser, in 1898, and is used extensively in human medicine as a substitute for morphine and codeine. Heroin occurs as a white, odorless, crystalline powder, possessing a slightly bitter taste and alkaline reaction. Practically insoluble in water, but readily soluble in weak acidulous solutions.

Heroin hydrochloride is a white, crystalline, odorless powder, soluble in 2 parts of water. Experiments by Heinz show heroin to be 30 times more depressing to the respiration than codeine, and 5 times more depressing than morphine (also 5 times as toxic as morphine in dogs), while it also has a depressing effect upon the circulation (Hale). Whether it is superior to codeine in relieving cough is a question. The drug acts as a general motor depressant, hypnotic and analgesic, but is not comparable to morphine in these respects. The after-effects of small medicinal doses (nausea, constipation, etc.) are slight. Heroin is employed in the treatment of all varieties of cough affecting the human subject, and in canine practice. Codeine is preferable in the author's experience.

Heroin may be administered in powder, pill or tablet, the hydrochloride in solution, every few hours.

The dose of either is, for the dog, gr.1/24-1/6 (.0025-.01); horse, gr.ss-ii, (.03-.12).

Opium and Morphine.

The action of morphine and opium is practically the same, with some exceptions to be noted.

Action External.—Opium may be absorbed to a slight extent from the unbroken skin, and causes a mild, anodyne action. Absorption readily occurs from mucous membranes and raw surfaces, with resulting characteristic effects.

Action Internal.—Digestive Tract.—Opium diminishes the two principal activities of the digestive organs, namely, secretion and motion. Thus in dogs and cats under morphine the X-ray shows retention of food in the stomach for 8 to 24 hours owing to pyloric spasm. On the other hand, large doses of morphine subcutaneously cause immediate vomiting in dogs and cats. Secretions all over the body are decreased, except that of sweat. The action upon the alimentary tract in lessening secretion, is partly a local one and partly constitutional, following the absorption of the drug. The mouth is made dry, thirst is increased and appetite impaired. Opium is absorbed rather slowly from the stomach and bowels, and causes delay in the passage of ingesta, especially in the jejunum, and therefore constipation. Constipation is such a marked effect of opium that it is called the "bowel splint". This action is partly due to retention, and more complete digestion in the stomach, but mainly to local depression of nerve centres (Auerbach's plexus) in the intestinal walls by opium, as the effect is same when the bowel is separated from the central nervous system.
In diminishing both secretion and motion, opium causes constipation in health, but is most useful in relieving vomiting and diarrhea. In toxic doses, opium may induce diarrhea, and this almost invariably occurs after large doses of morphine subcutaneously (gr. i.) which the author uses in preparing dogs for operation under ether—when little of the latter is required. This action may be due to stimulation of the intestinal muscle.

Blood and Elimination.—After morphine has been injected under the skin of a dog it may be found in the mouth and stomach within a few minutes. Some 80% is eliminated by the stomach, and nearly 40% by the feces. It is probably reabsorbed and resecreted in the digestive tract. Traces are found in the milk, sweat and urine, while that remaining in the body is oxidized into the innocuous oxydimorphine. Morphine wholly disappears from the body in two days.

Nervous System.—The most important action of opium is exerted upon the nervous system. It is necessary to study the drug from the comparative standpoint in order to obtain a full understanding of its effects. The brain of man, being more highly developed and sensitive, in comparison with other parts of the nervous system, than the brain of the lower animals, it follows that this organ is more powerfully influenced in man, while the spinal cord is often mainly impressed in the lower animals.

We may take the action of opium on the frog, at one end of the scale, as exhibiting the most active spinal symptoms; while in man, at the other end of the scale, cerebral phenomena predominate. The other animals occupy an intermediate position; the action upon the horse and ruminants is something between that exerted upon the frog and man, and the influence upon dogs approaches more nearly that seen in human beings, only that a relatively greater dose is required to produce the same result, as the brain is not so highly organized or sensitive to the action of medicines. The brain of the horse is only one-twelfth as large as that of man, in proportion to their respective body weights, and it follows that the spinal cord of the horse is more readily affected by opium, in accordance with the general law that the more highly developed a part is, the more easily is it influenced by therapeutic agents.

Opium exerts first a stimulating, and then a depressing action upon the brain and spinal cord, and in studying the action comparatively it will be noted that the influence upon the cord in the frog, horse, ruminant, and to some extent in the dog, preponderates frequently over the effect of the drug upon the brain, for the reasons stated above.

Action on the Frog.—In non-poisonous doses, sleep is produced and diminished spinal reflex activity, followed by a period of reflex excitement. Toxic doses of 1 or 2 grains of morphine, injected under the skin, cause at first a condition where convulsions occur, if the animal is artificially irritated; later they come on spontaneously. This state is followed by general paralysis, respiratory failure and death. The convulsions are shown to be due mainly to stimulation of the receptive and transmitting cells of the spinal cord, as in strychnine poisoning.
Action on Horses.—Three grains of morphine, injected subcutaneously, occasion sometimes drowsiness, and at other times produce no visible effect. Four to six grains, given in the same way, cause restlessness, a rapid pulse, and moisture of the skin. The animal paws the ground and walks in a rhythmical manner about the stall. The pupils are dilated. Large doses (12 grains) are followed by increased excitement aggravated by noises, sweating, ptyalism, muscular rigidity, staggering gait, trembling and delirium; while still larger doses (four drams of the extract of opium) cause violent trembling, convulsions, insensibility to pain and external irritation, without coma; or (morphine, gr. 36 hypodermically), rarely, stupor for several hours (3 hours), dilated pupils and blindness, followed by delirium and restlessness, continuing for a longer time (7 hours) and ending in recovery. Horses have recovered from an ounce of opium, but 2½ ounces of the drug, and 100 grains of morphine have proved fatal. The action of opium upon the horse differs from that upon man and dogs in the more frequent occurrence of restlessness and motor excitement due to stimulation of the cerebral and spinal motor centres; and in dilatation instead of contraction of the pupil. The rationale of the latter phenomenon has not been discovered.

Action on Ruminants.—These animals are comparatively insusceptible to opium. Ounce doses of the drug cause, in cattle, restlessness, excitement, hoarse bellowing, dry mouth, nausea, indigestion and tympanites. Sheep are affected in much the same manner. One to two drams of morphine have led to fatality in cattle. Fifteen to thirty grains of the alkaloid kill sheep. Swine are variously influenced; sometimes excited, sometimes dull and drowsy.

Action on Birds.—Birds, as represented by chickens, ducks and pigeons, are exceedingly insusceptible to opium. This is chiefly due to the slow absorption from the crop. Pigeons cannot be given enough opium by the mouth to cause death, but 8 to 10 grs. of morphine by the mouth, or 2 or 3 grs. hypodermically, will prove fatal. The toxic symptoms in birds are exhibited by unsteadiness, difficult breathing and failure of respiration, convulsions and death. The pupils are unaffected, and sleep does not ensue.

Action on Dogs.—When 8 or 10 grains of morphine are given to a moderately sized dog, coma comes on, from which the animal may recover. One half a grain injected under the skin of a dog weighing 25 lbs., causes nausea, vomiting and often purging (not occurring in man), sleep deepening into coma, contracted pupils, and shallow breathing; the condition lasting for several hours and followed by recovery. Opium rarely exerts an hypnotic action upon cats, but rather motor excitement. Lethal doses (average, 1/6 grain of morphine sulphate subcutaneously to the 2.2 pounds, live weight, for dogs; 2 to 3 grains sometimes kill small dogs), increase the frequency of the pulse, cause vomiting, unsteadiness, contracted pupils, motor excitement, as twitching of the limbs, followed by coma, respiratory failure and death. Recovery from full doses of opium is accompanied in dogs by general physical and mental depression and lassitude, as in man. There are muscular weakness, loss of natural
spirit, timidity, and nausea, lasting for several hours. The action of opium on dogs differs from that on man only in degree. The dose required is proportionately larger. There are often more preliminary excitement and symptoms of reflex irritation, as muscular twitching. These animals do not sweat, and the pupils are not so continuously contracted in poisoning. Failure of the drug to produce sleep, and the presence of nausea, retching, dreams, delirium, hallucinations, occasionally observed in dogs are common to man. Convulsions rarely occur in either men or dogs.

Action on Man.—In man, a small dose of morphine (½ gr.) causes usually a sense of well-being, together with itching of the nose, and later, of the skin generally, dryness of the mouth (occasionally there may be nausea, vomiting and faintness), followed by sleep, or a pleasant, dreamy state. The senses are less keen, with poorer vision and inhibited perception of pain or touch. After-effects may be absent, or consist of nausea, dizziness, headache, coated tongue and constipation. If the dose is larger, sleep comes on quickly, the pupils are contracted, the respiratory movements and pulse become slow, and the skin is moist.

With lethal doses, sleep deepens into coma, from which the patient can at first be aroused; the coma becomes profound, the pulse feeble and rapid, the respiration stertorous, slow and imperfect. The mucous membranes are cyanotic, the face livid, the pupils dilate, and the surface is covered with clammy sweat. Death occurs from respiratory failure, occasionally preceded by convulsions. One-eighth of one grain of morphine subcutaneously is the smallest fatal human dose recorded. (Average dose for man, gr. ½.) The action of opium upon man, as compared with that upon the horse and ruminants, is characterized by its predominant depressing effect upon the higher mental functions. The motor centres of the brain and cord are only slightly influenced.

General Action of Opium Upon the Nervous System.—The action of opium on the nervous system may be summarized as follows:

On the Cerebrum.—The predominant action of opium on man and the dog consists in depression of the higher brain centres with the production of nervous sedation and sleep. In the hind-brain depression of the perceptive centres gives relief from pain. In the fore-brain depression of the centres for intellect—especially of will and attention—causes sleep. The middle or motor area of the brain is commonly not affected until paralyzed in fatal poisoning. In horses and cats, however, toxic doses do stimulate the cerebral motor centres. A primary stimulant stage in the action of opium on the brain of man is sometimes evident.

In this there is a feeling of well-being and enhanced mental powers. But the stimulation is brief and rarely uniform, imagination being increased at the expense of reason and judgment. This stage is often wholly absent. In the lower animals—other than dogs—the sedative and hypnotic effect of opium is less certain and may be completely wanting.

In a general way small and moderate doses cause cerebral depres-
sion, while large doses give rise to spinal reflex excitability in the lower animals—especially in the horse, ass, cattle and cats.

Medulla.—Large medicinal doses stimulate the vagus and vasoconstrictor centres, and pupillary centre in man, and usually in dogs, while the respiratory and cough centres are depressed.

On the Spinal Cord.—Small medicinal doses depress the motor cells, but large and toxic amounts stimulate the motor cells indirectly and cause convulsions—probably—as in strychnine poisoning—by increasing the activity of the receptive and transmitting cells of the cord.

Convulsions, caused by spinal and cerebral motor stimulation, rarely occur in man or dogs, but are common after toxic amounts in horses, cattle or cats. The result of a fatal dose is paralysis of the central nervous system, including the respiratory and, to much less degree, the vagus centres.

The unique and inestimable value of opium depends upon its anodyne action. Relief from suffering is often induced without the production of sleep.

Muscular weakness is present in man and dogs, but even this evidence of depression may be absent in horses and ruminants, yet pain be effectually relieved.

Initial stimulation of the vomiting centre may cause emesis; but, as depression of the centre rapidly ensues, the act becomes later improbable. The excitability of the motor and sensory nerves is slightly increased, but otherwise the nerves are not affected except in poisoning, when the sensory, and later the motor nerves are paralyzed. The muscles remain uninfluenced.

Respiration.—After large doses of opium respiration becomes slow and feeble. Death occurs from failure of the respiratory centres—partly due to their insensitiveness to CO₂ stimulation. Thus exaggerated breathing, due to CO₂ accumulation, alternates with temporary arrest of respiration (Cheyne-Stokes breathing).

Circulation.—Medicinal doses commonly produce little effect upon the heart. Large doses slow the heart's action, while toxic quantities depress the organ. The cardiac muscle may be slightly stimulated, with acceleration of the pulse, but depression soon follows more or less synchronously with stimulation of the vagus centre, so that the pulse becomes infrequent. Toxic doses of morphine directly depress the rhythm, conductivity, and contractibility of the heart muscle, so that irregularity, and heart block occur in poisoning. Finally, before death, depression of the inhibitory apparatus occurs, and this, coexisting with depression of the heart itself, produces a feeble, rapid pulse, characteristic of the last stage of opium poisoning. Death occurs with diastolic arrest of the heart owing to failure of the cardiac muscle, although fatality is mainly due to the more powerful effect of the drug upon the respiratory centre.

The action of opium upon the vasomotor system is unimportant. Immediately after the administration of large doses there is a primary stimulation, followed in the toxic stage by some depression of the vasomotor centres in the spinal cord and medulla.
Pupil.—The pupil of the horse is widely dilated by large doses of opium. The pupil in the dog occasionally remains unchanged, and often dilated before undergoing contraction. Contraction of the pupil is a characteristic physiological effect of large doses of opium in man and the dog. In birds the pupil is unaffected. These various contradictory phenomena are at present inexplicable.

Dilatation, preceding death, occurs from depression of the centre.

Kidneys and Metabolism.—The excretion of urea appears to be diminished by opium in man, but varies greatly in animals. Temporary retention of urine may follow the administration of a considerable dose of opium, owing to spasm of the bladder sphincter. The amount of urine voided may be greater or less than normal; more commonly the latter. Opium lessens the secretion of bile.

The elimination of carbonic dioxide is diminished by the hypnotic action of opium, but is increased if there is general excitement and muscular activity following the use of the drug. Depressed respiration and quiet will result in lessened oxidation and tissue waste.

Secretions.—All the secretions except sweat are diminished by depression of the secretory center by opium. Sweating is often increased if opium is given in combination with heat externally.

Skin.—Opium induces mild diaphoresis in man; occasionally sweating occurs in horses, but not at all in dogs.

Temperature.—The bodily temperature may be slightly increased by large medicinal doses of opium, but is diminished by toxic quantities.

Toxicology.—The symptoms of poisoning have already been sufficiently described in previous sections. The treatment embraces irritation of the stomach, or the use of emetics, as apomorphine hydrochloride under the skin, and the subcutaneous injection of strychnine, enemata of hot, strong, black coffee, leading the animal about, slapping him, or using the faradic current. Dr. Moor, of New York, found in potassium permanganate the most efficient antidote for opium and morphine. Ten to fifteen grains, dissolved in eight ounces of water, should be given by the mouth, to large dogs. One to two drams of potassium permanganate may be administered to horses in two or three pints of water. Permanganate solution oxidizes and destroys morphine, and should be acidulated with a little vinegar or diluted sulphuric acid, after the ingestion of morphine salts. The antidote has been recommended to be given subcutaneously after absorption, or hypodermic injection of morphine, but this is not of the slightest use.

Morphine Contrasted with Opium.—Opium is more constipating, more sudorific, and more apt to disturb the digestion than morphine. Morphine is more anodyne and soporific; more readily absorbed and more suitable for use hypodermically.

Synergists.—Belladonna aids the action of opium and yet is antagonistic to it. It assists opium in its anodyne action and lessens nausea,
indigestion, and constipation and counteracts the depression of opium on the respiration. Belladonna and atropine are antagonistic to opium in stimulating the brain and respiration, and increasing peristalsis. Small doses of belladonna combined with opium do not interfere with the soporific action of the latter, notwithstanding the exciting influence of the former upon the brain. The bromides also promote the sedative and hypnotic action of opium, and lessen the depression and nausea following its administration. Opium often acts profoundly when combined with chloral, and this combination is occasionally used to induce anesthesia (p. 239). Chloroform and ether are frequently prescribed with opium to secure an additional antispasmodic and anodyne action in colic. The astringents and mineral acids enhance the effect of opium in diarrheal disorders.

Codeine.—Codeine in large doses causes motor excitement and convulsions in dogs and cats. Codeine is inferior to morphine as an anodyne and hypnotic, but is a useful sedative in relieving bronchial irritation and cough, and in the doses commonly employed does not induce constipation. Codeine differs from morphine in not being nearly so depressant to the respiration, and in not lessening secretion in the intestines (absence of constipation) and bronchioles. The writer would particularly recommend it for dogs suffering with bronchitis, combined with phenacetin in powder or tablet. The other alkaloids of opium are not of sufficient therapeutic value to warrant their consideration in this work.

Administration.—Morphine sulphate is employed hypodermically where an immediate effect is required. The preparations more frequently used in veterinary practice include laudanum and the deodorized tincture, powdered opium, and the salts of morphine. One-quarter grain of the latter is equivalent to one grain of opium. Paregoric is useful in canine practice for cough mixtures. Dover's powder combines the expectorant and diaphoretic action of ipecac with the sedative, antiphlogistic and sudorific influence of opium, but the former drug has little effect upon the horse. The preparation may be serviceable, however, in the first stage of catarrhal affections of the respiratory tract in dogs.

Fluid preparations are generally desirable in securing more rapid absorption, but opium produces the best results in diarrhea, when given in pill or ball. Enemata composed of thin, boiled starch solution and laudanum at the body temperature are to be recommended in diarrhea of the young, dysentery and pain arising from strangury or disease of the genito-urinary organs. Opium suppositories are of value in canine practice for the same purposes, and will relieve irritation and pain caused by piles.

Uses External.—Opium is applied externally in various ways. In the form of laudanum it is sprinkled on poultices and prescribed in liniment (laudanum and soap liniment, equal parts) for its anodyne action. On raw surfaces, sores and ulcers, laudanum is often combined with lead water (1-25). Opium relieves pain by depressing nerve centres. It does not appear to have any action upon peripheral nerves (Cushny, Bastedo).
Indications for the Internal Use of Opium

1. To relieve pain and spasm.
2. To lessen secretions and peristalsis.
3. To allay motor excitement, diminish muscular action, and cough, and prevent hemorrhage.
4. To abort inflammation.
5. To act as a stimulating and supporting agent.

The sudorific action of the drug upon the lower animals is slight and comparatively unimportant. Among the preceding indications the first three naturally follow from the physiological action of opium, while the latter two are deduced solely from clinical experience.

1. Although the anodyne and sedative action of opium is not so marked in its influence upon veterinary patients as in human subjects, yet it is by far the most valuable agent we possess for relieving pain of any description, particularly when combined with atropine. In spasmodic colic of horses, opium arrests pain by preventing irregular and violent peristaltic action. It may be given as morphine (with atropine), subcutaneously; or as laudanum, in a drench, simultaneously with an aloes ball. In this affection opium actually assists the action of the purgative by overcoming spasm.

Anodyne in colic in horses.

\[\text{Tincturae opii} \quad 3\text{ii.} \\
\text{Aetheris} \quad 3\text{l.} \\
\text{Chloroformi} \quad 3\text{l.} \]

M. Give at one dose in pint of cold water, and follow with physic ball.

Pain directly antagonizes the effect of opium, and repetition of the dose is both justifiable and necessary until relief is obtained. Hypodermic medication is therefore safer when the dose has to be repeated, in enabling the practitioner to decide that failure to relieve pain is due to insufficient dosage rather than to delayed absorption from the digestive canal.

Opium is indicated in all forms of pain and in motor excitement in cerebritis and meningitis. The pains and spasmodic contractions resulting from acute or traumatic meningitis are benefited by opium; also neuralgic and rheumatic pains. The spasms of eclampsia and tetanus are eased when opium is combined with chloral in enema, or when morphine is injected subcutaneously. The injection of morphine under the skin may prove antidotal in strychnine poisoning. Five grains saved a collie dog which had supposedly received a fatal dose of strychnine. Clonic spasm of the diaphragm in horses ("thumps") is also treated successfully with opium. Morphine hypodermically is useful in asthma in dogs.

The subcutaneous use of morphine sulphate (gr.ss-i) in dogs 30 minutes before operation is of the greatest service in causing easy ether anesthesia and permitting the use of the minimum amount of ether.
After the animal has once been etherized the author has frequently done gastro-jejunostomy and even partial gastrectomy without any further ether being required.

2 and 3. Opium is invaluable in lessening secretion, motion and pain in various digestive disorders. Gastric digestion is inhibited by the action upon secretion and motion, and opium should not be administered immediately after the ingestion of food, unless the demand for it at that time is imperative. Laudanum or morphine is also valuable in preventing threatened abortion, and in the treatment of after-pains and post-partum hemorrhage in mares, cows and bitches.

Excessive vomiting in dogs may be combated with opium and bismuth, or with morphine hypodermically. Opium quiets peristalsis and secures rest of the canal in gastritis and gastro-enteritis. In superpurpation and in all forms of diarrhea and dysentery, opium is the remedy par excellence. (Laudanum in dose of 5-10 drops for large birds is an efficient remedy for diarrhea in poultry.) Its administration in these disorders should be accompanied, or preceded, by an oleaginous (horse), saline (herbivora) or mercurial (horse and dog) purgative; and its action may be assisted by astringents, alkalies, mineral acids, and intestinal antiseptics in various combinations, suited to the particular case. The following formulae are useful in diarrhea of horses and cattle.

R
- Tincturae capsici.
- Spiritus menthae piperitae.......................... aa 3vi.
- Spiritus camphorae.
- Tincturae opii....................................... aa 3vi.

M.
Sig. 4 tablespoonfuls 3 times daily in pint of water.

R
- Pulveris opii.
- Pulveris gambir .. aa 3vi.
- Cretæ preparataæ.
- Pulveris zingiberis.
- Sodii bicarbonatis aa 3vi.

M. et divide in chartulas No. vi.
S. Give one powder in boiled flour gruel night and morning; one-third of dose for calves.

Opium in diarrhea of dogs.

R
- Tincturae opii camphoratae.......................... 5vi.
- Misturae creta.. ad 3ii.

M.
Sig. One tablespoonful in water every 3 hours after dose of castor oil.

Peritonitis, enteritis, and acute obstruction of the bowels are treated most successfully with opium, which quiets the bowels, relieves pain and facilitates the vis medatrix naturæ, besides acting as an antiphlogistic in the first mentioned diseases. By preventing muscular activity and allaying general excitability, opium is the most effective hemostatic in all internal hemorrhages, and it quiets the heart most effectively in acute endocarditis.
Cough, as a symptom of irritation within the respiratory tract, is more commonly treated by some form of opium than by any other drug. When cough is irritative or excessive, and is not remedial in removing secretion, then it is very properly controlled by opium. If, on the other hand, respiratory movements are weak, or cyanosis threatens from retained secretions, opium is distinctly contraindicated, since it depresses the respiratory centres and lessens the irritation produced by the secretions in the bronchial tubes, which would otherwise cause coughing and expulsion of the exudate. Morphine sulphate (gr. 1/10 to gr. 1/6) may be given in chloroform water every 3 hours in troublesome cough in house dogs.

Opium in cough. Horses.

<table>
<thead>
<tr>
<th>Tincture</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonii carbonatis.</td>
<td>3i.</td>
</tr>
<tr>
<td>Ammonii chloridi</td>
<td>3ii.</td>
</tr>
<tr>
<td>Morphinæ sulphatis</td>
<td>3iii.</td>
</tr>
<tr>
<td>Glycerini</td>
<td>3iv.</td>
</tr>
<tr>
<td>Aquæ</td>
<td>3viii.</td>
</tr>
</tbody>
</table>

Opium in cough in dogs.

<table>
<thead>
<tr>
<th>Tincture</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeinæ sulphatis</td>
<td>x.</td>
</tr>
<tr>
<td>Elixir terpini hydratis</td>
<td>3iii.</td>
</tr>
</tbody>
</table>

Opium, especially when combined with belladonna, notably diminishes secretions, so that this combination is peculiarly appropriate in the treatment of cough and exudation, and it is only when increasing moist rales (pulmonary edema) are found to exist during this medication that it should be stopped. Pleuritic cough causes intense pain and accomplishes nothing, so that opium here affords great relief without inducing bad results.

4. Opium possesses antiphlogistic action in aborting and combating inflammation. Reflex excitability is lessened by opium, and therefore irritation of nerve centres, which would otherwise cause vascular dilatation, stasis, and inflammation, is prevented by the drug. This is at least the theory. Opium and quinine are the two remedies having the most popular clinical reputation for aborting colds and inflammation, and the latter agent also diminishes reflex excitability. Inflammation of serous membranes is thought to be that form most favorably influenced by opium, as peritonitis, enteritis and meningitis, for which purpose the drug is frequently combined with calomel. But opium is also an extremely useful antiphlogistic remedy in coryza, bronchitis, pneumonia and pleurisy, and in inflammations of the mucous coat of the digestive canal, as gastritis and dysentery. A single full dose should be given at the earliest possible stage of these disorders, and the patient should be kept as quiet as possible to secure the best result.

5. Opium stimulates and supports the system in a manner not explicable on physiological grounds. It often conserves life in a remark-
able way in patients weakened by long continued disease and in those suffering from shock, loss of blood following surgical operation, parturi-
ton, or other natural causes.

Contra-indications.—In respiratory diseases associated with cyanosis or excessive exudation, in very high fever and obstinate constipation. The drug must be used with caution in the treatment of the aged and very young.

Apomorphine Hydrochloride. Apomorphine Hydrochloride.

C₁₇H₂₁O₃ N H Cl. (U. S. & B. P.)

Synonym.—Chlorhydrate d’apomorphine, Fr.; apomorphinhydrochlorid, G.

Derivation.—The hydrochloride of an alkaloid, obtained by heating morphine (or codeine) in hermetically closed tubes, with an excess of pure hydrochloric acid. The morphine thus loses one molecule of water; C₁₇H₂₁O₃ N = C₁₇H₂₁O₂ N+H₂O.

Properties.—Minute, white or grayish-white, glistening, monoclinic prisms, odorless, having a faintly bitter taste, and acquiring a greenish tint upon exposure to light and air. Soluble in 50 parts of water and 50 parts of alcohol; very slightly soluble in ether or chloroform. It should be kept in small, dark, amber-colored vials. (U. S. P.)

Dose.—Subcutaneously. H., gr. 3/4 (0.045). Foals, gr. 1/2 (.03). Sh. & Calves, gr. 1/2 (.03). Cows, gr. 1 1/2 (.09). D., gr. 1/10-1/5 (.006-.012) as emetic. By the mouth, D., gr. 1/40-1/25 (.0015-.0024) as expectorant.

PREPARATION.

Injectio Apomorphina Hypodermica. (B. P.)

Approximately one per cent.

Dose.—H. & C., mlxxv, (6); Sh. & Calves, mlxl, (2.7); D., mlx-xx, (6-1.3).

Action Internal.—Small doses (gr. 1/60-1/30) cause vomiting in dogs, while larger doses produce salivation and trembling in addition to vomition. Very large quantities (gr. 4-5) occasion first great excitement; the dog howls, runs and jumps about, the pupils are dilated and the slightest noise excites great alarm. Then the animal weakens in the hind legs, becomes paraplegic, falls and goes into convulsions. The breathing, at the beginning rapid, becomes weak and slow. Death ensues from respiratory failure.

Nervous System.—The drug primarily stimulates the brain and induces delirium and excitement, but secondarily causes cerebral paralysis. The origin of the convulsions is not ascertained. Apomorphine is a direct local paralyzant to the muscles, acting upon their substance or upon the motor nerve endings.

Circulation.—Medicinal doses do not alter the force, but may increase the rate and tension of the pulse by stimulation of the cardiac accelerator nerves and vasoconstrictor centre. Toxic doses paralyze the heart muscle and lower blood pressure.

Respiration.—The respiratory movements are at first markedly increased by large doses of apomorphine, owing to stimulation of the respiratory centre. Lethal doses depress and paralyze the respiratory centre. The breathing then becomes feeble and infrequent. The agent causes a copious outpouring of a watery fluid from the blood vessels of the respiratory mucous membrane, and is, therefore, an expectorant.

Vomiting Centre.—This is stimulated by therapeutic doses of apo-
morphine, but paralyzed by toxic doses, so that vomiting may not occur in poisoning. Apomorphine does not act locally upon the stomach.

Uses.—Apomorphine is a reliable, prompt and powerful emetic. The alkaloid is generally given under the skin and can be administered along with zinc sulphate or other emetic in poisoning. In narcotic poisoning, as with chloral or opium, apomorphine—like other emetics—may fail to act efficiently. In the first stage of acute bronchitis, apomorphine is useful in canine practice, and again in the later stage, when the animal becomes choked with exudation. The drug, in a mild emetic dose, will aid recovery by causing violent expiratory efforts during vomition, and these tend to expel secretions, which is furthermore assisted by the action of the alkaloid in rendering the secretions less viscid. Chronic dry bronchitis of dogs is likewise benefited by apomorphine. In pica in cattle, 1½ gr. may be given on three consecutive days or in recent cases, gr. iii. are given subcutaneously in the same way.

In pica in foals, sheep and calves the drug is equally effective in smaller doses. Even in parrots and other birds gr. 1½ in water by the mouth may cure the habit of plucking out the plumage.

R

Injectionis apomorphinae hypodermicae (B. P.), 3ii.

Sig. Give once daily subcutaneously to cattle, 5ii; foals or sheep, 5i; with licking disease.

Apomorphine must be used with some caution in foals and horses since F. Smith has reported an alarming condition in the horse produced by the giving of two grains under the skin attended with delirium, great restlessness, constant movement of the limbs, excitement and sweating.

Apomorphine hydrochloride often relieves choking by grain, etc., in animals by its relaxing spasm, producing retching and increasing secretion of the gullet. One grain may be injected under the skin in horses. It should be tried before using a probang, as, if successful, it will act within fifteen or twenty minutes.

The alkaloid decomposes in crystal, and rapidly in solution, becoming toxic and of a green hue. Solutions should be freshly prepared. The addition of hydrochloric acid to solutions preserves them as in B. P. hypodermic solution.

Class 2.—Stimulating the Brain

Belladonnae Folia. Belladonna Leaves. (U. S. & B. P.)

Synonym.—Deadly nightshade, E.; feuilles de belladone, Fr.; tollkraut, tolkkirschen-blätter, G.

Derivation.—The dried leaves and tops of Atropa belladonna Linné (Fam. Solanaceae), and yielding not less than 0.3 per cent. of the total alkaloids of belladonna leaves. Usually much twisted and matted together; leaves much crumpled; when soaked in water and spread out, leaves 6 to 20 cm. long, 4 to 12 cm. broad. Odor distinct, especially on moistening; taste somewhat bitter and acrid. The powder is dark green.

 Constituents.—Two alkaloids; 1, atropine, the chief one, representing the action of belladonna; and, 2, hyoscyamine. Atropine is now considered to be an artificial product of hyoscyamine, and therefore the latter to be the natural alkaloid.

Dose.—H. & C., 3ss-i, (15-30); D., gr.i-v, (.06-3).
PREPARATIONS.

Dose.—H. & C., gr.x-xx, (.6-1.3); Sh. & Sw., gr.ii-iv, (.12-24); D., gr. 1/8-1/2 (.008-.03).

Tinctura Belladonnae Foliorum. Tincture of Belladonna Leaves. (U. B. & B. P.) Belladonna leaves, 100, diluted alcohol to make 1,000. Made by maceration and percolation to contain 0.08 Gm. total alkaloids in 100 mils. (U. S. P.)

Dose.—D., miv-xxx, (.3-2).

Unguentum Belladonnae. Belladonna Ointment. (U. S. & B. P.) Pilular extract of belladonna leaves, 10; diluted alcohol, 5; hydrous wool fat, 30; benzoinated lard, 55. (U. S. P.)

Belladonnae Radix. Belladonna Root.

Synonym.—The dried root of Atropa belladonna Linne (Fam. Solanaceae), yielding not less than 0.45 per cent. of the total alkaloids of belladonna root.

Cylindrical or somewhat tapering, usually split into longitudinal pieces, from 0.5 to 2.5 cm. in thickness; nearly inodorous, taste sweetish, afterward bitterish and strongly acrid.

PREPARATIONS.

Fluidextractum Belladonnae Radicis. Fluidextract of Belladonna Root. (U. S. P.) Made by maceration, percolation with alcohol and water, and evaporation. One mil of the extract = one Gm. of belladonna root. Standardized so that 100 mils of the fluidextract contains 0.45 Gm. of mydriatic alkaloids. The most reliable preparation.

Dose.—H., 5i.-ii. (.4-8); C., 5ii.-iii. (.8-12); Sh. & Sw., mx.-xv. (.6-1); D., mi.-iii. (.06-2).

Linimentum Belladonnae. Belladonna Liniment. (U. S. & B. P.) Camphor, 50; fluidextract of belladonna to make 1,000. (U. S. P.)

An alkaloid obtained from belladonna. As it occurs in commerce, it is always accompanied by a small proportion of hyoscyamine extracted along with it, from which it cannot readily be separated.

Derivation.—Atropine is obtained from a strong tincture of the root. Slaked lime is added, which splits up atropine malate and precipitates lime malate. The excess of lime is precipitated by sulphuric acid, and coloring matters by potassium carbonate, which also sets free atropine. The atropine is dissolved in chloroform, recovered on evaporation, and purified by digestion with warm alcohol and charcoal.

Properties.—White, rhombic prisms; odorless, having a bitter, acrid taste, and gradually assuming a yellowish tint on exposure to the air. Great caution must be used in tasting it and then only in much dilution. Soluble in 455 parts of water, 2 of alcohol, 1 of chloroform, 25 of ether, and 27 of glycerin. It melts between 114° and 116° C. Alkaline to litmus and phenolphthalein.

Incompatibles.—Decomposed by sodium or potassium hydrate.

Dose.—H., gr.ss-iss, (.03-.09); average dose, gr.i, (.06); C., gr.i-ii, (.06-12); Sh. & Sw., gr. 1/20-1/12 (.008-.005); D., gr. 1/120-1/60 (.0005-.001).

Derivation.—Atropine is dissolved in sulphuric acid and treated with ether, when the insoluble sulphate settles out.

Properties.—A white crystalline powder or microscopical needles and prisms; odorless, having a very bitter, nauseating taste, and permanent in the air. It should be tasted with the utmost caution, and only in dilute solution. Soluble in 0.4 part of water, 5 parts of alcohol, 3000 parts of ether, and in 420 parts of chloroform at 25° C. At 188°-191° C. atropine sulphate melts; when free from hyoscyamine it melts at 181°-189° C.
Dose.—H., gr.i-iss, (.06-.09); C., gr.i-lii, (.06-.12); Sh. & Sw., gr. 1/15-1/12 (.004-.005); D., gr. 1/120-1/80 (.0005-.0008), average dose, gr. 1/100 (.0006).

Action of Belladonna and Atropine

External.—Belladonna is ordinarily not absorbed from the unbroken skin, but when applied to raw surfaces and mucous membranes, or, to a less extent, when rubbed into the skin with camphor (linimentum belladonna), chloroform, alcohol, etc., it depresses the sensory nerve endings and produces a local anodyne action. Thus applied it also depresses the peripheral motor nerve fibres, and is sometimes injected into spasmically contracted muscles for relief of spasm. The vessels are said to be first contracted and then dilated by the local action of the drug, and the secretions of the skin are diminished.

Internal.—Digestive Tract.—Belladonna (atropine) apparently diminishes the gastric secretion and is largely used to lessen gastric hyperacidity. In the intestines atropine prevents undue gripping produced by drastic cathartics through checking violent action caused by overactivity of the motor nerve (vagus) endings in the small intestines. Also it overcomes the intestinal contraction which forms about any irritating body in the lumen of the gut—even gas. While tending to prevent catharsis through depressing the motor (vagus) nerve endings of the small gut, it does not hinder the action of drugs stimulating directly the intestinal wall (arecoline)—only that of agents acting on the motor nerves—as eserine. On the contrary, atropine aids catharsis in most cases by: 1. relieving spastic abnormal conditions. 2. by preventing spasm and gripping through over-action of the vagus.

Circulation.—Belladonna is readily absorbed into the blood, but has no particular action upon this fluid within the body. Dilute solutions of atropine paralyze and stop corpuscular movement in the blood withdrawn from the vessels. The characteristic action of belladonna upon the circulation consists in depression of the peripheral pneumogastric fibres in the heart, with greater frequency of the pulsations. There is apparently, in the mammal, no direct stimulation of the cardiac muscle. Belladonna is therefore a heart stimulant, by increasing the number of its beats without diminishing their force. Large doses sometimes give rise to primary slowing of the pulse, owing to stimulation of the inhibitory apparatus. Blood pressure is exalted synchronously with the increased frequency of the heart, and is due to over-activity of the heart and to stimulation of the spinal and medullary vasomotor centres, with constriction of blood vessels, more especially of the abdomen. Dilatation of the vessels of the skin occurs at the same time in poisoning, but this is insufficient to reduce blood pressure. In man this is shown by flushing of the skin and a bright rash on the face and neck after large doses.

In poisoning, vascular tension is considerably lowered because of paralysis of the vasomotor centres, smooth muscles (or ganglia) of the vessel walls (with vascular dilation), and the heart muscle itself.

Nervous System.—Cerebrum.—Belladonna is classed as a delirificant by some authorities. It stimulates the brain incoordinately, and large doses produce restlessness, nervous excitement and delirium in man,
and occasionally delirium in the lower animals. Stimulation is succeeded by exhaustion and some depression, with stupor rather than coma.

Spinal Cord.—Belladonna appears to exert a double action (stimulant and depressant) upon the spinal cord. The medullary vasomotor and respiratory centres are stimulated. Large doses cause complete loss of motion and reflex action in the frog, lasting for several days, and followed by reflex excitability and convulsions. Poisoning in mammals is exhibited by less paralyzant action accompanied by more convulsive movements. Various explanations have been offered to reconcile these phenomena. The prevalent theory is, that, following complete paralysis of the spinal cord, the motor and sensory tracts recover before the inhibitory centres, so that normal stimuli pass through the latter unrestrained and result in convulsions.

Nerves.—The action of belladonna upon the nerve endings is extremely important, and represents, to a considerable degree, the therapeutic value of the drug. The peripheral motor nerve terminations, and, to a less extent, their trunks, are depressed and paralyzed. This is never so complete, however, but that there is some voluntary power left in an animal fatally poisoned. Depression and loss of function of the afferent nerves come on more slowly, and exist to a less degree. Belladonna, then, when applied locally or given internally, is an anodyne, but is far inferior in this respect to opium; and, whereas opium acts centrally, belladonna acts peripherally. The terminations of all secretory nerves are also depressed and paralyzed by belladonna, and secretions are therefore diminished.

Secretions.—Dryness of the mouth is one of the first physiological symptoms following the administration of belladonna. This is due to paralysis of the peripheral terminations of the secretory nerve (chorda tympani) of the submaxillary gland, and of the secretory nerve endings of the other salivary and mucous glands in connection with the mouth. Another characteristic effect of belladonna consists in the production of dryness of the skin, which follows the action of the drug in paralyzing the peripheral nervous filaments supplying the secretory cells of the sudoriparous glands. In the same manner the tracheal and bronchial secretions are diminished, and also the secretion of milk (anti-galactagogue action), by depression of the terminations of the secretory nerves. The drug diminishes somewhat the secretions of the intestinal tract, and the secretion of gastric juice is diminished or arrested; but that of the pancreatic juice and bile not at all. The HCl in the gastric juice is much more reduced than the pepsin or fluid as a whole. The amount of urine is sometimes increased after the ingestion of small doses of belladonna, but is considerably lessened, or suppressed, in poisoning by the drug. Experiments upon man show that the urinary solids are increased: urea and uric acid to a slight extent; sulphates and phosphates to a considerable degree.

Muscles and their Nerves.—Atropine is antispasmodic in its effect upon involuntary muscle. It depresses their motor nerve endings. Voluntary muscles are not affected by any doses of atropine, although the
motor nerves controlling them are depressed by toxic amounts of the alkaloid.

Atropine has been used successfully to produce three diverse actions on the bowel: (1) to quiet intestinal movement in inflammation of the bowels; (2) to relieve spasm in colic and spastic conditions generally; (3) very commonly to aid catharsis by preventing griping. In practice, small doses usually suffice, while, on the other hand, enormous doses (gr. 1/12, instead of the usual dose of gr. 1/100) have proved successful in moving the bowels in obstinate constipation (in human patients) due to obstruction when all other means failed. It is probable in these cases that the obstruction was due to spasm, or fecal impaction with spasm, and not mechanical. Conversely, it is the common practice to give atropine with morphine to prevent peristalsis in peritonitis and with satisfactory results, owing to the depressing action on the motor nerve (vagus) endings in the small intestines overcoming peritoneal irritation.

The predominant action of belladonna in paralyzing the peripheral vagi in the heart has been described.

The pneumogastric terminations are depressed in the heart by moderate doses, while paralyzed by large quantities of belladonna.

A like depressing influence is believed to be exerted upon the efferent nerve endings of the unstripped muscles of the bladder, urethra, bile ducts, uterus and vagina. Belladonna acts medicinally as an antispasmodic in relation to the muscles.

Respiration.—Small doses of atropine do not affect the respiration. Large therapeutic doses make the respiratory movements quicker and deeper, by stimulation of the medullary respiratory centre. Fatal doses produce respiratory failure and asphyxia, owing to paralysis of the respiratory centre and the peripheral vagus filaments concerned with the respiratory movements. Belladonna also paralyzes the peripheral fibres of the pneumogastric nerve in the bronchial tubes and acts therapeutically as follows: 1. As a respiratory stimulant. 2. As an antispasmodic, by depressing the efferent vagus endings in the bronchial tubes and relaxing spasm of the smooth muscle of their walls. 3. As a sedative, by depressing the afferent vagus fibres and diminishing the irritation produced by secretion, so that cough is allayed. 4. As an agent lessening secretion.

Temperature.—Moderate doses of belladonna cause a rise of temperature, while fatal doses lessen bodily heat. The first phenomenon is produced by stimulation of the thermogenic centres, while the latter effect follows the vasomotor paralysis which occurs after lethal doses.

An elevation of 2 to 5.4° F. has been noted in dogs after full doses of atropine, while a greater fall of temperature has been observed in the same animal in fatal poisoning. Elevation of temperature is accompanied by increased heat loss, caused by radiation from the dilated cutaneous vessels.

Eye.—The action of belladonna upon the eye affords another illustration of the depressing action of the drug upon the nerve terminations. The myoneural junctions of the third (oculomotor) nerve in the circular muscle are paralyzed, which leaves the radiating fibres free to act and
they therefore draw back the edges of the iris and dilate the pupil. The nerve terminations in the radiating fibres do not seem to be influenced by atropine. The mydriatic action is exhibited, whether the drug be given by the mouth or dropped directly into the eye. In the former case, the drug does not act through the nervous system, but locally upon the peripheral filaments of the third nerve through the medium of the blood. The muscular fibres of the iris are unaffected by belladonna. The terminations of the sympathetic and the trigeminus may be stimulated, which would also produce dilation of the pupil. These latter actions are not definitely determined, while it is known that the dominant effect consists in depression of the oculomotor nerve endings; as before stated. Paralysis of accommodation follows paralysis of the terminations of the third nerve in the ciliary muscle, and therefore vision is disturbed. Intraocular tension is increased by large and continuous dosage of belladonna, and an artificial glaucoma may be thus produced.

Elimination.—Belladonna is eliminated by the kidneys and bowels; traces have been found in the milk. It is, however, chiefly oxidized in the body.

Summary.—It will be observed that belladonna, generally speaking, first stimulates and then depresses the nerve centres, while it chiefly paralyzes the motor nerve terminations, including the inhibitory (vagus), the secretory (chorda tympani, etc.), and, to a less extent, the sensory nerves. Secondary depression of the cerebrum is not so profound as that of the great medullary centres, especially the respiratory centre, and there is sometimes a slight and brief stimulation of the motor nerves of the smooth muscles, viz., vagus, splanchnic, and possibly vasomotor nerves.

Full medicinal doses depress the peripheral filaments of the inhibitory and secretory nerves and the motor nerves of the unstriped muscles, as well as the muscles themselves, of the viscera (allaying spasm of bronchi, intestines, stomach, etc.), lessen the functional activity of the voluntary motor system, and, to a less degree, that of the afferent nerves. The pulse becomes quickened because of paralysis of the peripheral vagus endings and stimulation of the heart; the blood tension is augmented because of the increased cardiac action and stimulation of the vasomotor centres; and the respiration is accelerated because of excitation of the respiratory centres. The temperature is elevated owing to the circulatory exaltation and stimulation of the heat-producing centres. Slight delirium may be present from the exciting action of the drug upon the cerebral motor centres.

The spinal cord is unaffected by therapeutic doses. Locally applied belladonna is a direct paralyzant to nerves, muscles, vessels and cells.

Physiological Relations of Belladonna to Other Drugs

In stimulating nerve centres atropine resembles both caffeine and strychnine, with this difference, that caffeine excites chiefly the higher psychical centres of the brain, while strychnine sensitizes the connecting
neurones of the cord so that the motor centres respond more acutely to sensory stimuli.

A medicinal dose of atropine stimulates, while morphine depresses, the brain, respiratory functions, and intestinal peristalsis. This antagonism ceases when poisonous doses of the two drugs are combined, and therefore atropine should be given with caution in the treatment of opium narcosis, so as not to aggravate the already existing central nervous depression, particularly of the respiration. Morphine relieves pain, causes sweating, and contracts the pupil centrally. Atropine dilates the pupil, produces dryness of the skin, and depresses the functions of sensory nerves through its peripheral action. Atropine antagonizes phystostigma in so far as the latter stimulates the peripheral oculomotor nerve fibres, the vagi, diminishes blood pressure, depresses the respiratory centres, and stimulates the unstriated muscle of the intestines, and the secretions of the stomach, bowels and bronchial tubes.

Atropine is antagonistic—in part—to pilocarpine, which stimulates secretory nerve terminations in the sweat and salivary glands, the peripheral oculomotor filaments, and the nerve endings in the involuntary muscle of the heart, stomach, intestines and uterus. Atropine counteracts the influence of aconite upon the heart.

Toxicology.—Toxic doses of belladonna cause in animals dryness of the mouth, increased frequency of the pulse and respiration, elevation of temperature, dilation of the pupil and partial blindness, restlessness, nervousness, delirium, twitching of the muscles (occasionally erythema), and frequent micturition. These symptoms are succeeded, in fatal poisoning, by fall of temperature, retention of urine, muscular weakness, staggering gait, partial anesthesia, convulsions and paralysis (one preponderating over the other), weak, slow, irregular respiration, feeble, rapid pulse, paralysis of the sphincters, stupor and death. Death occurs mainly from asphyxia, but is due in part to cardiac failure. The physiological test consists in placing a drop of the urine (secreted by the poisoned animal) into the eye of a healthy animal, when mydriasis should follow if the case be one of belladonna poisoning. Three-quarters of a grain of atropine under the skin has proved fatal to dogs. Two grains of atropine produce mild toxic symptoms in the horse. Small dogs are slightly poisoned by gr. 1/80 of atropine; medium sized dogs by gr. 1/60 given hypodermatically. Cattle are as susceptible as horses, but neither are so readily influenced by the drug as carnivora. The pulse in dogs is greatly accelerated, sometimes as high as 400, while the pulse rate of the horse is not generally more than doubled. Rodents, as guinea pigs and rabbits, and pigeons, are particularly insusceptible to belladonna, in regard to its effect upon the pupil, circulation, etc.

The treatment of poisoning includes the use of the stomach tube, emetics, bromides, alcohol or ether in the stage of excitement; and cardiac stimulants, as caffeine, and artificial respiration in the later depression. Also external heat and general faradism.

Post-Mortem Appearances.—These are not generally characteristic, except of asphyxia. The blood is dark and poorly coagulable. There is
congestion of the lungs, general passive hyperemia, and sometimes ecchymoses in the brain, cord, and their membranes. Congestion of the retina is said, however, to be pathognomonic of belladonna poisoning.

Administration.—The fluidextract of belladonna root is the official preparation more commonly used for horses. The alcoholic extract of the leaves is given in pill or suppository to dogs, and in electuary to horses. Atropine sulphate is employed under the skin when a rapid effect is desired.

Uses External.—Local application of belladonna is more effective when combined with internal medication of the same drug. Belladonna is used for mammitis, applied by massage in the form of liniment, and given by the mouth. It relaxes spasm, contracts the blood vessels, and lessens inflammation and congestion; paralyzes the secretory nerves and so diminishes the amount of milk, vascular tension, pain and glandular activity. In fissure of the rectum, and in hemorrhoids, belladonna (with opium) in ointment or suppository, allays spasm and pain. Liniment of belladonna is useful in rheumatic or neuralgic pain, and rubbed upon the throat, in cases of pharyngitis and laryngitis, affords a serviceable application, when combined with the internal administration of the drug.

Uses in Connection with the Eye.—In examination of the fundus of the eye, the media, or lens for cataract, the pupil may be dilated to advantage with a weak solution (gr.1/20-3i.) of atropine sulphate. A drop will suffice, and no trace of its effect will remain after the second day. A strong solution (gr.iv.-7i.) is essential to completely paralyze the iris and ciliary muscle. In the normal animal, accommodation is paralyzed and vision disturbed for 8 or 12 days after the use of this solution. Atropine is particularly useful in keratitis and iritis. In the former disease, photophobia and blepharospasm are diminished by the paralyzing action of atropine upon the trigeminus, and pain, congestion and inflammation are diminished by contraction of the peripheral blood vessels. In central perforating ulcer of the cornea, with protrusion of the iris, atropine, by dilating the pupil, draws the iris away and prevents its permanent adhesion (anterior synechia) to the cornea, while the perforation is becoming filled with lymph and the anterior chamber is being restored. Strong solutions of atropine instilled at frequent intervals, are useful in iritis by (1) paralyzing and securing rest of the iris and ciliary muscles; (2) in lessening local blood supply, congestion and inflammation, and in preventing adhesions of the posterior surfaces of the iris to the anterior capsule of the lens (posterior synechiae), which both limits the normal variation in the pupillary diameter and interferes with the nutrition of the lens, and so predisposes to cataract. Atropine is contraindicated in glaucoma.

Uses Internal.—The general indications follow directly from our knowledge of the physiological action of the drug. They are as follows:—

1. To stimulate the respiration and circulation. 2. To diminish secretion. 3. To relieve spasm and pain.

1. Acute diseases, as colds, bronchitis, influenza, etc., are frequently treated at the outset with belladonna, with the intent of cutting short the inflammatory process by improving vascular tone. This applies more
particularly to pharyngitis, laryngitis and coryza where there seems good evidence to prove that sometimes a full dose of belladonna at the outset of these disorders may actually abort them. Besides there are the beneficial effects of the drug in relieving cough, spasm and obstructed breathing noted below. In the second stage of acute diseases, as pneumonia, atropine is a valuable agent in combination with strychnine, to stimulate respiration, prevent effusion and vasomotor and cardiac depression. In slow heart due to vagal disturbance (vagus bradycardia) atropine in full doses may prove curative. Belladonna is of service also as a respiratory, cardiac and vasomotor stimulant in poisoning by various drugs, including opium, chloroform, ether, aconite, prussic acid, physostigma and pilocarpine. Experiments by Reichert and others show that atropine, while stimulating the respiratory centre exerts a powerful depressing action on the pulmonic motor fibres of the vagi, and that in opium poisoning atropine, instead of strengthening, actually lessens respiratory power. Strychnine and caffeine are undoubtedly much better antidotes in this condition. Belladonna is an antidote in poisoning by antimony. In surgical shock, with low temperature, owing to vasomotor paralysis and vascular dilatation, and in collapse from injury and disease atropine is a most potent remedy, combined with camphor subcutaneously. In pneumonia, especially, belladonna is of great value following the crisis.

2. Belladonna is employed therapeutically to diminish excessive sweating and salivation, mercurial or otherwise. Injected half an hour before beginning ether anesthesia atropine is most useful in preventing excessive secretion and reflex vagal irritation, and in stimulating respiration. It is recommended in serous, or watery diarrhea. Edema of the lungs is combated most successfully with atropine (combined with strychnine) subcutaneously. In the second stage of acute respiratory diseases, as bronchitis, influenza, canine distemper, and pneumonia, belladonna diminishes secretion, irritability and cough, and stimulates the heart and respiration. It may be associated with opium to increase the sedative effect. In mastitis belladonna should be given internally, and rubbed on the inflamed gland 3 times daily in the form of the linimentum belladonnae, to lessen glandular activity, secretion and pain. Atropine is the best remedy, apart from antacids, to counteract gastric hyperacidity.

3. Belladonna does not have much influence over spasm of the voluntary muscles, unless injected (atropine) into their substance. Rheumatic lameness, neuralgia, and cramps and spasm due to injury of nerves, may be treated in this manner. Belladonna liniment or a local injection of atropine are indicated in that condition of the tender skin and muscles seen in horses and dogs after severe exercise. Spasm of involuntary muscle is, however, more easily overcome, and this action is of exceeding therapeutic importance. Intestinal spasmodic colic of horses succumbs most readily when atropine is given with morphine under the skin. In peritonitis and enteritis, full and repeated doses of atropine, with morphine, prevent reflex spasm and pain, and thus aid peristalsis. Large doses of atropine have been used in human medicine, and with remarkably good results, in the treatment of intestinal obstruction from impacted feces, and even in invagination and twist.
Cough, stridulous breathing, and spasm, associated with acute pharyngitis and laryngitis, are influenced favorably by belladonna, in the first stage. The drug acts locally to paralyze the ends of the motor nerves in the throat, relieves spasm, and also contracts the peripheral vessels and overcomes congestion and inflammation. It may be given to horses in electuary, and also applied in liniment or ointment externally. The following prescription is suitable for horses suffering from pharyngitis or laryngitis.

\[\text{R} \]
- Fluidextr. belladonnae rad. \(\frac{3}{4}\)i.
- Pulv. potassii chloratis \(\frac{3}{4}\)ii.
- Pulv. glycyrrhizae \(\frac{3}{4}\)v.
- Syrupi fusci \(\text{Q. S.}\)
M. et f. electuarium.
Sig. Give \(\frac{1}{2}\) ounce every two hours. (Furnish \(\frac{1}{2}\) ounce for sample dose.)

In bronchitis and asthma, belladonna also allays spasm and lessens secretion, irritation and cough. Other spasmodic conditions benefited by belladonna are, "thumps," lead colic, convulsions (with bromides), spasm of the rectum owing to fissure or other causes, and incontinence of urine due to spasm of the neck of the bladder. Belladonna is often used by dealers to hide the existence of heaves which it may abolish for a day but which become worse when the effects of the drug wear off. A dry mouth and dilated pupils suggest the use of the remedy. Tetanus is favorably influenced by extract of belladonna given in electuary. In this section may be included the effect of small doses of belladonna in acting indirectly as a laxative in constipation, and thus assisting the action of peristaltic stimulants, as aloe and strychnine. Atropine, with morphine under the skin, are the best remedies in anaphylaxis, or serum disease, where asthma and cyanosis follow the injection of foreign proteids at infrequent intervals. As the serums used in veterinary practice are usually from the same species of animal (homologous) anaphylaxis will not occur. Atropine is useful in paralysis of horses and dogs due to absorption of phenol or the cresols from washes. It has been recommended highly in hemorrhage following castration and in all hemorrhage in the splanchnic cavities.

\[\text{R} \]
- Aloini \(\text{gr. iii.}\)
- Extracti belladonnae fol. \(\text{gr. iss.}\)
- Extracti cascarae sagradæ \(\text{gr. vi.}\)
Misce et divide in pilulas No. xii.
Sig. One pill in morning for dogs with chronic constipation.

\[\text{R} \]
- Tincturæ belladonnae \(\text{5ii.}\)
- Sodii bromidi.
- Sodii iodidi \(\text{ââ 5ii.}\)
- Aquæ \(\text{ad } \text{3iv.}\)
M.
Sig. Teaspoonful three times daily for a dog with asthma. May be taken voluntarily in milk.
Hyoscyamus. Hyoscyamus. (U. S. P.)

Synonym.—Hyoscyami folia, B. P.; henbane, herba hyoscyami (P. G.), E.; feuilles de jusquiane noire, Fr.; bilsenkrant, G.

The dried leaves and flowering or fruiting tops of Hyoscyamus niger Linné (Fam. Solanaceae), yielding not less than .065 per cent. of the alkaloids of hyoscyamus.

Habitat.—Indigenous to England, the Continent, and Asia, and naturalized in the northern part of the United States.

Description.—Usually much wrinkled, with numerous stems and with the flowering or fruiting tops intermixed; leaves when entire attaining a length of 25 cm., a breadth of 10 cm.; odor heavy, distinctive; taste somewhat bitter and acrid.

 Constituents.—Two alkaloids: hyoscyamine C₉H₃N O₃, and hyosine. The first resembles atropine in composition and action. Impure, amorphous, commercial hyoscyamine is a dark-brown fluid and contains as its active principle mainly hyoscine.

 Incompatibility.—Incompatible with caustic alkalies and vegetable acids, lead acetate and silver nitrate. Hyoscyamus may be given in pill with the two latter mineral salts.

Dose.—H. & C., 3ss-i, (15-30); D., gr.v-xv, (3-1).

Preparations.

Extractum Hyoscyami. Extract of Hyoscyamus. (U. S. & B. P.)

Hyoscyamus in No. 40 powder, 1000 Gm. Made by maceration and percolation with diluted alcohol, and evaporation to pilular consistence to contain 0.25 per cent. of alkaloids of hyoscyamus.

Dose.—H. & C., gr.xx-5i, (1.3-4); D., gr.ss-ii, (.03-.12).

Fluidextractum Hyoscyami. Fluidextract of Hyoscyamus. (U. S. P.)

Made by maceration, percolation with alcohol and water, and evaporation, so that 1 mil = 1 Gm. of hyoscyamus. Each 100 mils of fluidextract contains 0.065 Gm. of alkaloids of hyoscyamus.

Dose.—H. & C., 3ss-i, (15-30); D., miv-xv, (3-1).

Tinctura Hyoscyami. Tincture of Hyoscyamus. (U. S. & B. P.)

Hyoscyamus, 100; diluted alcohol to make 1000. Made by maceration and percolation. Standardized to contain 0.0065 Gm. of alkaloids of hyoscyamus in each 100 mils of the tincture. (U. S. P.)

Dose.—D., 3i-iv, (4-15).

The dose of hyoscyamus preparations is generally two to four times that of similar belladonna preparations.

Succus Hyoscyami. Juice of Hyoscyamus. (B. P.)

Dose.—Same as tincture.

Hyoscynamis Hydrobromidum.

Hyoscyamine Hydrobromide. C₉H₃N O₃·NH Br. (U. S. P.)

Synonym.—Hyoscyaminum hydrobromicum, Fr.; hyoscyaminhydrobromid, G.

The hydrobromide of hyoscyamine, an alkaloid obtained from hyoscyamus and other plants of the Solanaceae. It should be kept in amber-colored, well-stoppered vials.

Properties.—White, prismatic crystals, without odor; deliquescent on exposure to the air. Great caution must be used in tasting it, and then only in dilute solution. Taste acrid, nauseous and bitter. Very soluble in water; soluble in 2.5 parts of alcohol, 2260 parts of ether, and in 1.7 parts of chloroform at 25° C.

Dose.—H., gr.i-ii, (.06-.12); D., gr. 1/60-1/30, (.001-.002).

Scopolaminis Hydrobromidum. (U. S. P.)

Scopolamine Hydrobromide. C₉H₃N O₃·NH Br.

Synonym.—Hyoscine hydrobromidum, hyoscine hydrobromide, E.; bromhydrate d’hyoscine, Fr.; skopolaminhydrobromid, G.

The hydrobromide of laevorotary scopolamine, also known as hyoscine, obtained from various plants of the Solanaceae. Preserve in well-closed containers, protected from light.

Properties.—Colorless, transparent, rhombic crystals, sometimes of large size;
odorless and having an acrid, slightly bitter taste. Soluble in 1.5 parts of water, and in 20 parts of alcohol; slightly soluble in chloroform.

Dose.—H. gr. ½-⅓ (.001-.015); D., gr. 1/100-1/80 (.0006-.002).

Action Internal.—The action of hyoscyamus is a resultant of that of its two alkaloids, hyoscine and hyoscyamine. The latter is practically atropine, except that its mydriatic action is shorter. Hyoscine, in poisonous doses, is a powerful depressant to the cerebrum, respiratory centre, spinal reflex centres, and motor tract. It differs from atropine in being a cerebral sedative, and in its greater paralyzant action upon the spinal cord. The tetanic stage succeeding spinal paralysis, observed in atropine poisoning, does not ensue with hyoscine. The latter alkaloid slightly depresses and slows the heart, and does not paralyze the vagus terminations, nor depress the motor and sensory nerves or muscles. The circulation is but slightly influenced, and vasomotor depression occurs only in the latter stage of lethal poisoning. Death occurs from paralysis of the respiratory centres. Poisoning in animals is exhibited by loss of muscular power, slowing and failure of respiration, dryness of the mouth, stupor and asphyxia. The pulse may be infrequent, the pupils are dilated and the skin is moist rather than dry. Delirium and convulsions sometimes occur in man. The effect of the combined action of hyoscyamine and hyoscine in hyoscyamus is shown when we compare the drug with belladonna. Hyoscyamus is more of a cerebral sedative and hypnotic, and less of a heart and respiratory stimulant. It is said to possess more power in overcoming spasm, and griping of cathartics, and in aiding intestinal movement. Hyoscyamus is also thought to exert a more pronounced antispasmodic action than belladonna upon the smooth muscles of the bladder and urethra.

Uses.—Hyoscyamus is generally applicable in the same disorders for which belladonna is indicated. In relieving some sorts of spasm, hyoscyamus is more efficient than belladonna, as in spasmodic colic, spasm of the bladder, and griping caused by cathartics. Tetanus, chorea, and epileptic convulsions in dogs, are benefited by henbane, but the drug does not possess a curative action. Hyoscyamine may be combined to advantage with strychnine, subcutaneously, in impaction of the bowels in horses. The former drug relaxes intestinal spasms, and assists the stimulant action of strychnine upon the intestinal muscle. Repeated small doses of oil will facilitate peristalsis in this condition. Hyoscine hydrobromide is indicated in spasmodic affections and in nervous and sexual excitement. It is a powerful drug and should be employed at the outset in small doses. To avoid contamination with hyoscine is difficult, and a pure preparation is to be recommended. Hyoscine has not been employed to any extent in veterinary practice. It is used in human medicine as a hypnotic and sedative in mania and delirium of the insane. It causes no unpleasant after-effects. Scopolamine is identical with hyoscine and is so named because obtained from *Scopolia atropoides*. Scopolamine, or hyoscine, with morphine under the skin have been employed to some extent as general anesthetics in human surgery to replace ether or chloroform. To aid in obstetric operations in cows, as in replacing an inverted uterus, scopolamine hydrobromide (gr.1/6) with morphine sul-
phate (gr.i.) may be injected subcutaneously, and the dose repeated in twenty minutes. Hyoscine (or scopolamine) is sometimes given to horses to aid the action of chloroform and prevent its excitement. One hour before operation gr. 1/6-1/3 may be injected under the skin for this purpose. To produce general anesthesia in dogs, morphine is given with hyoscine in 2 doses—one 2 hours, and the other 15 minutes, before operation. Thus (for each dose) morphine, gr.ss., with hyoscine, gr.1/100, is injected subcutaneously and will generally suffice for the performance of ordinary operations—although a few whiffs of ether may be required in addition. Dogs are comparatively insusceptible to scopolamine. It has been estimated by Bernardini that morphine may be given to the extent of gr.1/6 to each 2.2 lbs. of live weight; and hyoscine from gr.1/120 to gr.1/15 to each 2.2 lbs. live weight for dogs.

Cannabis. Cannabis. (U. S. P.)

Synonym.—Cannabis indica, Indian cannabis (B. P.)
The dried flowering tops of the pistillate plants of *Cannabis sativa* Linné or of the variety indica, Lamark (Fam. Moraceae). Cannabis, made into a fluidextract in which 100 mls represent 100 Gms. of the drug, when assayed biologically, produces incoördination when administered to dogs in a dose of not more than 0.03 mil of fluidextract per kilogram of body weight (gr.ss. per 22 lb).

Synonym.—Indian hemp, E.; chanvre indien, Fr.; indischer hanf, G.; herba cannabis indica, P. G.

Hashish is a confection of the drug. Arabic addicts of this preparation are frequently impelled by its influence to deeds of violence. They are called "hashashins"; hence the English, assassins. Gunjab, or ganga, is the dried plant used in India for smoking. Churrus is the resin and epidermis scraped off the leaves. Bhang consists of the young leaves, flowering and fruiting tops and resin resulting from the first season's growth.

Habitat.—Cannabis indica is indigenous to Asia, but the hemp plant (Cannabis sativa) grown in America and many other parts of the world is also active (Cannabis Americana and Africana).

Description.—In dark green or greenish-brown and more or less agglutinated fragments consisting of the short stems with their leaf-like bracts and pistillate flowers, some of the latter being replaced with more or less developed fruits; odor agreeably aromatic, taste characteristic. The powder is dark green, giving a strong effervescence with dilute HCl.

Incompatibility.—Water precipitates the active resinous principles. Lemon juice and other vegetable acids are the most efficient antidotes.

Constituents.—The active principle of cannabis indica is cannabinoil (O H C₂₀ H₂₅C/O H), a red oil or resin boiling at a high temperature, which apparently exerts the characteristic action (Marshall) of cannabis indica on man and animals. But the therapeutic value of the principle has not been sufficiently studied to enable it to be used as a substitute for the crude drug or its preparations. The drug yields various other bodies such as: 2. Cannabene, C₁₅H₂₀, or oil of Indian hemp, which is very toxic. 3. Cannabin, a resinoid. 4. Cannabindon, C₆H₃O, a dark, red syrup. 5. Cannabine, an alkaloid. 6. Cannabinone, a resin. The last three are given medicinally but have no advantage over the crude drug. 7. Cannabitetanine, a convulsant alkaloid.

PREPARATIONS.

Extractum Cannabis. Extract of Cannabis. (U. S. & B. P.)

Made by maceration and percolation with alcohol, and by evaporation to a pilular consistence. 0.004 Gm. per kilo of body weight in dogs produces incoördination.

Dose.—H., 3i-ii, (4-8); D., gr.¹/₄-i, (.015-.06).
Fluidextractum Cannabis. Fluidextract of Cannabis. (U. S. P.)
Made by maceration and percolation with diluted alcohol. 0.03 mil per kilo body weight produces incoordination in dogs.

Dose.—H., 5iv-vl, (16-24); D., mli-xl, (.12-6).
Administration.—The extract is given in ball, pill, electuary or suppository; or the fluid preparations may be used.

Tinctura Cannabis Indica. Tincture of Indian Cannabis. (U. S. & B. P.)
Indian cannabis, 100; alcohol to make 1,000 mils. Made by maceration and percolation. (U. S. P.) 0.3 mil per kilo body weight produces incoordination in dogs.

Dosè.—D., mxx-xxx, (1.3-2).

Action External.—Cannabis indica exerts a considerable irritant action when applied to mucous membranes. This is followed by local anesthesia.

Action Internal.—Indian hemp is a distinct depressant to the functions of the brain and cord in poisonous doses, although therapeutically stimulating these organs in small quantities, and producing in man a kind of intoxication and mild delirium. The reflex activity of the spinal cord is primarily increased, but this is succeeded by diminution of reflex movement, and, after large doses, by anesthesia and loss of voluntary motion. The sensory tract (centres and nerves) is depressed by considerable therapeutic doses. Polyuria is seen after the ingestion of cannabis indica in dogs. The pulse is sometimes slowed by the drug through stimulation of the vagus and depression of the heart muscle and death is said to occur from the latter cause.

Death is extremely rare after the largest doses, however. Our knowledge of the detailed physiological action of the drug is imperfect. The action of cannabis comes on slowly and continues for a long time. A horse, given by the writer ½ ounce of the solid extract, became drowsy. Sleep after a few hours deepened into stupor, and stupor into coma. The respiration became slow, the pulse slightly accelerated, and the animal so anesthetic that amputation of the penis was done on the following day without producing the slightest pain or struggling. The animal had to be supported in slings, and only recovered after three days. Frequently neither constipation, anorexia, or other deleterious after-effects follow the action of this drug.

The following are extracts from experiments of Muir* with cannabis indica.

Gelding, 8 years old; condition poor. Gave two doses of fluidextract (Park Davis & Co. normal fluid) undiluted of 12.5 cc. each (about 3 drams) intrajugularly, twenty minutes apart. Became rapidly nervous and excitable, increased by sounds or touch. In half an hour from first dose he became sleepy and stupid. A third dose of 15 cc. (½ ounce) was injected into the jugular about an hour after the first and caused sweating and a sleepy condition, in which the animal jerked and twitched his head as if dreaming. The temperature dropped to 96° F., and the sleepy state, alternating with excitement when annoyed lasted three hours, when delirium supervened and continued for six hours, at which time all the symptoms disappeared.

Pony 575 pounds; condition fair. Received 15 cc. (½ ounce) of the fluidextract intravenously. In two minutes became delirious; in ten minutes was asleep against stall. In half an hour fell to floor and slept there for eighteen

hours and could not be aroused. Temperature fell to 92.5° F. Respiration regular; pulse from 42 to 30 during experiment.

Gelding, 1050 pounds; in good condition. Given 45 cc. of fluidextract intravenously. In three minutes rearing, kicking, snorting and going on like one mad. He ran back and forth along one side of his stall like a caged tiger with sweat rolling off him and cutting and bruising himself, being apparently anesthetic. He endeavored to bite or strike anyone approaching and remained delirious and excitable for twelve to twenty-four hours.

Gelding, 650 pounds, 30 cc. of fluidextract injected into jugular. In four minutes became unsteady; in twelve minutes he was asleep; in half an hour he fell and so slept for eighteen hours. Temperature dropped to 91° F. from normal; the pulse was accelerated and the respiration slightly so.

Muir deduces from his experiments that as much as 50 cc. (5 iss.) of the fluidextract may be given with safety intravenously.

In the human being, cannabis induces very peculiar mental phenomena, including hallucinations, a sense of double consciousness, and great prolongation of time, so that minutes are drawn out into hours, and hours into days. Sometimes sexual excitement, exhilaration, and hilariousness are exhibited; at other times a dreadful premonition of impending death seizes the human subject. The drug is not fatal, except in colossal doses, but the effects may appear alarming. Intrajugular injection into a small dog, of five drams of the fluidextract (10 minims of which proved active in man) only caused death after several hours (Hare). Preparations of Indian hemp have varied greatly in strength, many being entirely inert, and this fact constitutes one of the principal objections to its use. This drawback is now abated by the physiological tests required by the 1916 U. S. P.

Uses.—Cannabis is indicated for the relief of: 1, pain; 2, spasm; 3, nervous irritability. It is not precisely comparable to morphine as an analgesic, on account of the slowness of its action, but is superior to opium in not causing constipation, anorexia and indigestion. In relieving pain and producing deep narcosis for operation it is, however, superior to opium in horses. It is used in single doses of an ounce of the extract in enteritis and colic and in laminitis, and often combined with chloral. The permanency of the action of Indian hemp suggests its use in conditions of long continued pain or spasm. In thirty-five cases of tetanus in the human being, treated with cannabis, twenty-one recovered and fourteen died. The results reported in veterinary practice have been almost as favorable; over half the cases have recovered when subjected to this medication. No drug, however, approaches magnesium sulphate in its success in the cure of tetanus. Cannabis indica is occasionally employed as a sedative for irritable cough and to relieve the spasms of chorea and quiet the delirium of parturient apoplexy. It is also very serviceable in bladder irritation and cystitis in overcoming spasm.

The intrajugular injection of 10 to 15 mls of a reliable fluidextract of cannabis indica in horses will produce a rapid and safe general anesthesia for surgical operations. The animal will often lie down and is both relaxed and unconscious for a considerable period. Operations on horses under cannabis narcosis are now commonly done by many practitioners. Palmer affirms, however, that intravenous injections of cannabis some-
times cause thrombus and lameness in horses months afterwards owing to its insolubility in the blood (Vet. Review, Dec., 1913).

Caffeina. Caffeine. \(\text{C}_8\text{H}_{10}\text{O}_4\text{N}_4\text{+H}_2\text{O} \). (U.S. & B.P.)

Synonym.—Theine, guaranine, E.; coffein, G.; caféine, Fr.

A feebly basic substance, obtained from the leaves of Thea sinensis Linné (Fam. Ternstroemiaceae), or from the seeds of Coffea arabica Linné (Fam. Rubiaceae), and found also in other plants; or prepared synthetically.

Habitat.—Indigenous to Africa, and cultivated in other tropical countries.

Derivation.—Crushed coffee is treated with successive portions of boiled water, and the resulting solution is precipitated with lead acetate and filtered. Hydrogen sulphide decomposes the excess of lead acetate remaining in the filtrate. The latter is then concentrated by evaporation and neutralized with ammonia water. Caffeine crystallizes on cooling. The alkaloid is purified by charcoal and recrystallization.

Properties._—White, flexible, silky, glistening needles, usually matted together in feecy masses; odorless and having a bitter taste; efflorescent in dry air. Soluble in 46 parts of water, 66 parts of alcohol, 530 parts of ether, and 5.5 parts of chloroform at 25° C. Its solubility in water is increased by the presence of certain salts,—_e.g._, potassium bromide, sodium benzoate, sodium salicylate, and others. Caffeine is neutral to litmus paper. Caffeine exists, curiously enough, as the active principle of the national non-alcoholic beverages in use all over the world. Coffee contains .6 to 2.2 per cent. of caffeine, together with glucose, fat, vegetable casein, tannic acid, and an empyreumatic oil developed by roasting, _i.e._, caffeine. Tea contains 1.36 to 3. per cent. of caffeine, or theine, and also a volatile oil and tannic acid. Guarana (the seeds of Paulinia cupana) contains 4 to 5 per cent. of caffeine; maté, or Paraguay tea (the leaves of Ilex paraguayensis), contains .45 to 1.2 per cent. Caffeine is found in kola nut (the fruit of Sterculia acuminata), used as a beverage in Africa, and now as a nervous stimulant in human medicine, and is allied to theobromine, occurring in chocolate beans, and to cocaine, existing in coca leaves.

Incompatibility.—Caffeine is incompatible with mercury salts, potassium iodide and tannic acid.

Dose.—H. & C., 5 to 10 (2-8); D., gr. ss to ii, (.03-.2); H., gr.xxx, subcut.

Caffeina Citrata. Citrated Caffeine. (U.S. P.)

Derivation.—Dissolve citric acid (50) in hot, distilled water (100); add caffeine (50) and evaporate the resulting solution to dryness, on a water bath, constantly stirring towards the end of the operation. Reduce the product to a fine powder and transfer it to well-closed containers.

Properties._—A white powder, odorless, having a slightly bitter, acid taste and an acid reaction. Citrated caffeine gives a clear, syrupy solution with a small quantity of water but caffeine precipitates on dilution. This precipitate redissolves on the further addition of water.

Dose.—H. & C., 5 to 10 (8-15); D., gr. i to vi, (.06-.36).

Caffeina Sodio-Benzoas. Caffeine Sodic Benzoate. \(\text{C}_8\text{H}_{10}\text{O}_4\text{N}_4\text{NaC}_7\text{H}_5\text{O}_2 \).

(U.S. P.) (Contains 46 to 50 per cent. of anhydrous caffeine.)

A mixture of caffeine and sodium benzoate. White powder, odorless, and has a slightly bitter taste. Soluble in 11 parts of water, in 30 of alcohol, and partly soluble in chloroform.

Dose.—Twice that of caffeine. H., 5 to 10 (4-8); D., gr. i to vi, (0.06-0.3), subcutaneously.

Action Internal.—Caffeine has no particular action upon the digestive tract, except in large quantities, when it may cause gastro-intestinal irritation. The effect of caffeine and raw coffee is identical, but when the latter is roasted, aromatic oils, or an empyreumatic oil, are developed (caffeone). It is impossible to separate completely the action of caffeine from caffeone in boiled coffee. Recent investigations appear to show that
the oil (caffeone), of which there is from one to one-half dram in a cup of the beverage, has no physiological action except to disturb digestion and cause biliousness. This result is not in accord with the general belief, and it is probable that caffeone possesses a transient action in stimulating intestinal peristalsis, the cerebral functions, and in lessening vascular tension.

Circulation.—Caffeine stimulates the heart muscle and vaso-constrictor centre. The action of the heart is strengthened and accelerated after moderate doses in most cases. Sometimes the stimulating action on the vagus centre overcomes that on the heart and the pulse is somewhat slowed. Blood tension is enhanced, but the coronary, pulmonary and cerebral arteries are dilated, because of absence of constrictor nerves and increase in general blood pressure.

Nervous System.—Caffeine is a certain and direct stimulant to the higher nervous centres (cerebral cortex). In moderate doses it produces wakefulness and restlessness (action of tea and coffee at night on man), and increases the capacity for mental and physical work (see muscles). In the lower animals caffeine often causes the most intense cerebral excitement and mania in large doses. The alkaloid affects the spinal cord like strychnine, and toxic quantities produce restlessness, increased reflex excitability and convulsions in the lower animals. It is undetermined whether the convulsions are of cerebral or spinal origin. The motor and sensory nerves are unaffected by medicinal doses. Caffeine opposes the depressant action of opium and alcohol. It antagonizes alcohol in stimulating the highest or controlling functions of the brain, the reasoning faculties, perception of sensory impressions and associations of ideas, and greater accuracy of touch and capacity for physical exertion.

Muscles.—The injection of caffeine solution into a frog's leg causes a stiffness and hardness of the muscles like that seen in rigor mortis. On muscle fibres, removed from the body, it acts in the same way by coagulating the muscle proteins. In small quantities in the body it stimulates the muscle to contract and increases its capacity (10-30%), and endurance for work. The action of tea and coffee, in enabling men to perform more physical work, has hitherto been ascribed to the action of caffeine on the nervous system, but is chiefly to be attributed to its effect on the muscles themselves.

Kidneys.—Caffeine often increases the blood supply and volume of the kidneys, as shown by Roy's oncometer. But diuresis occurs in the isolated kidney, and without rise in general blood pressure. Also when the kidney is enclosed in plaster-of-paris so that it can not expand. Therefore diuresis is not due to circulatory changes. The renal cells must be stimulated, and perhaps resorption in the tubules is lessened, since, under caffeine, the composition of the urine is more like that of the blood (increased chlorides). The drug is therefore a local diuretic and (with theobromine) is the most efficient and powerful. No other drug can produce such a flow of urine.

Respiration.—The respiratory centres (and muscles) are stimulated (along with the vagus and vasomotor) by caffeine in moderate doses, and depressed by toxic amounts.
Metabolism.—Caffeine increases tissue change and therefore the elimination of urea and carbonic dioxide—contrary to the time honored teaching.

Toxicology.—Caffeine is a spinal and muscle poison to the frog. Tetanic convulsions occur in the batrachian similar to those produced by strychnine, but there is also muscular rigidity. These phenomena follow the direct stimulation of the spinal motor tract and muscles, and are succeeded by paresis. In man, stimulation of the cerebral cortex occurs, while both stimulation of the brain and cord are observed in the domestic animals. The symptoms of poisoning in dogs, cats and mammals generally, are restlessness, occasionally vomiting in dogs, rapid breathing, primary reduction followed by rise in temperature, clonic or tonic convulsions, muscular weakness, and general paresis. Death occurs from heart or respiratory failure. The minimum fatal dose is about 1 gr. to 1 lb. of live weight in the cat.

Administration.—Caffeine and its ordinary salts are decomposed by water and therefore should not be given subcutaneously. The alkaloid is best administered in solution with sodium salicylate, or benzoate, as follows:

\[
\begin{align*}
\text{R} & \\
\text{Caffeinae.} & \text{Sodii salicylatis} & 2 \text{gr.xxx.} \\
\text{Aquae destillatæ} & & 5 \text{ii.} \\
\end{align*}
\]

\[
\begin{align*}
\text{M.} & \\
\text{S. Give at one dose hypodermically to horse.} & \\
\text{Ten drops to dog.} & \\
\text{R} & \\
\text{Caffeinae sodio-benzoatitis.} & 3 \text{i.} \\
\text{Aquae destillatæ} & & 5 \text{ii.} \\
\end{align*}
\]

\[
\begin{align*}
\text{M.} & \\
\text{S. Give at one dose subcutaneously, to horse.} & \\
\end{align*}
\]

The soluble citrate may be given internally, but it is not a definite or reliable preparation, and inferior to caffeine, which may be administered in solution with a little citric acid, or as above.

Uses.—Three indications for the use of caffeine may be deduced from our knowledge of its physiological action. 1. To stimulate the brain. 2. To stimulate the heart. 3. To cause diuresis.

1. Its application as a cerebral stimulant is very limited in veterinary medicine. It acts thus as an antidote to opium poisoning. One and a half grains of caffeine will save cats poisoned by the minimum fatal dose (gr. \(1\frac{1}{2}\)) of morphine.

2. Caffeine possesses particular value in the treatment of dropsy of cardiac origin in dogs, because of its diuretic action, as well as stimulant effect upon the heart. The therapeutic indications are not the same as for digitalis, as caffeine differs from digitalis in the following particulars:

- Does not slow the heart.
 Is not cumulative.
- Does not regulate the heart.
 Is transient in its effect.
Caffeine, in combination with acetanilid and other modern coal tar products is used to prevent circulatory depression but the U. S. Public Health Service (Hale) has shown that the toxicity of acetanilid is enhanced by caffeine. Caffeine, tea and coffee are serviceable in the treatment of acute asthenic diseases in the horse (influenza and pneumonia), dog (distemper), and in foals and calves, acting as nervous and cardiac stimulants and perhaps restraining tissue waste. A cup of tea contains 1 to 2 grains, and a cup of coffee $\frac{1}{2}$ to 3 grains, of caffeine. Caffeine is chiefly valuable in emergencies demanding immediate stimulation of the heart, respiration and vaso-motor centres as in belladonna, ether, alcohol, chloral, opium and cocaine poisoning.

3. The diuretic property of caffeine renders it appropriate in aiding the absorption of pleuritic effusion, ascites, and dropsics, particularly of cardiac and renal origin, and in the hepatic form as well. Diuretin, or sodio-salicylate of theobromine, a crystallizable, bitter, volatile alkaloid, is probably the most active diuretic agent at our command and particularly useful in dropsy of cardiac or renal origin, non-irritating to the kidneys, but should not be used in acute nephritis. Theobromine has a similar action to caffeine, chiefly stimulating the secreting epithelium. The dose is 1 dram in 24 hours for dogs. Two capsules, each containing 10 grs., are given 3 times daily.

SECTION II.—DRUGS ACTING ON THE SPINAL CORD

Class I.—Stimulating the Inferior Cornua.

Synonym.—Semen strychni, P. G.; poison nut, Quaker button, E.; noix vomique, Fr.; krähen-augen, brechmuss, G.

The dried, ripe seed of *Strychnos Nux-vomica* Linné (*Fam. Loganiaceae*), yielding not less than 2.5 per cent. of the alkaloids of nux vomica.

Description.—Oribicular, nearly flat, sometimes irregularly bent, 15 to 30 mm. in diameter, 4 to 5 mm. thick; very hard when dry; externally grayish or greenish-gray; covered with appressed hairs, giving it a silky luster; inodorous; taste intensely and persistently bitter.

Constituents.—Two alkaloids. 1. Strychnine, 0.2-0.6 per cent. 2. Brucine ($C_{19}H_{22}N_{2}O_{2}$), 0.5-1.0 per cent. Similar in action to strychnine, but weaker and slower. Both alkaloids exist in combination with igasuric acid. Brucine occurs in rectangular octahedral crystals; is soluble in alcohol, in 7 parts of chloroform, and possesses a bitter taste. With sulphuric and nitric acids a beautiful blood-red color is developed. Nux vomica contains also, igasuric acid with which strychnine and brucine are combined, and loganin, $C_{21}H_{30}O_{16}$, an inert glucoside occurring in colorless prisms.

Dose.—H. & C., 3i-ii, (4-8); Sh., gr.xx-xl, (1.3-2.6); Sw., gr.x-xx, (6-1.3); D., gr.i-ii, (.06-.12).

PREPARATIONS.

Extractum Nucis Vomica. Extract of Nux Vomica. (U. S. & B. P.)

Made by maceration and percolation with diluted alcohol. Concentrate by distilling off alcohol. Wash residue with benzoin and water. Decant benzoin and agitate with dilute H_2SO_4; then alkalinize with ammonia water and shake with chloroform. Add chloroform solution to residue and evaporate to dryness. Add dried starch and magnesium oxide so that extract contains 16% of the alkaloids of nux vomica.
Dose.—H. & C., gr.vii-xv, (.5-1); Sh., gr.iiss-v, (.15-.3); Sw., gr.i-ii, (.06-.12); D., gr.½-¾, (.008-.016).

Fluidextractum Nucis Vomicae. Fluidextract of Nux Vomica. (U. S. P.)
Made by maceration and percolation with alcohol and water. The alcohol is distilled off. Alcohol and water are added to residue, so that the fluidextract shall contain 2.5 per cent. of alkaloids of nux vomica.

Dose.—H. & C, 3i-ii, (4-8); Sh., mxx-xxx, (1.3-2); Sw., mx-xx, (.6-1.3); D., m-ii, (.06-.13).

Tinctura Nucis Vomicae. Tincture of Nux Vomica. (U. S. & B. P.)
Made by maceration and percolation of nux vomica, in alcohol, and water, and menstruum added so as to contain 0.25 per cent. of the alkaloids of nux vomica.

Dose.—D., mV-x, (.8-6).

STRYCHNINA. Strychnine. C₂₁H₂₂O₄N₂. (U. S. & B. P.)
An alkaloid obtained from nux vomica, and also obtainable from other plants of the Loganiaceæ.

Derivation.—Nux vomica seeds are powdered and strychnine is extracted with water acidulated with hydrochloric acid. The solution is concentrated and strychnine precipitated with lime. It is then redissolved in boiling alcohol and the crystals are deposited upon concentration of the solution.

Properties.—Colorless, transparent, prismatic crystals, or a white crystalline powder; odorless, and having an intensely bitter taste, perceptible even in solutions of 1 in 700,000. Strychnine should be tasted with extreme caution. Permanent in the air. Soluble in 6420 parts of water, 136 parts of alcohol, 5 parts of chloroform, 180 parts of benzin. A solution of about 0.1 Gm. of strychnine in 2 mils of H₂SO₄ is not more than pale yellow (readily carbonizable organic impurities), but on adding a fragment of potassium dichromate, a deep blue color is momentarily produced, changing to deep violet, then to purplish-red, cherry-red, and finally to orange or yellow.

Dose.—Same as strychnine sulphate or nitrate (minimum quantities), which are preferable on account of their greater solubility.

STRYCHNINE SULPHATE. Strychnine Sulphate.
(C₂₁H₂₂O₄N₂)₂H₂SO₄+5 H₂O. (U. S. & B. P.)

Derivation.—Made by the action of sulphuric acid on strychnine.

Properties.—Colorless, or white, prismatic crystals, or as a white crystalline powder; odorless, and having an intensely bitter taste, perceptible in highly dilute (1 in 700,000) solution. Great caution must be used in tasting it and then only in very dilute solutions. Efflorescent in dry air. Soluble in 32 parts of water and in 81 parts of alcohol, and in 220 parts of chloroform. In other respects strychnine sulphate responds to tests for strychnine.

Dose.—H. & C, gr.½-i, (.015-.06); Sh., gr. 1/8–1/4, (.004-.015); D., gr. 1/200-1/40, (.0008-.0015). The larger doses are to be used when strychnine is given orally.

Strychnina Nitras.—Strychnine nitrate, occurring in colorless, odorless, glistening needles, or as a white, crystalline powder, is now official. Has very bitter taste; soluble in 42 parts of water.

Dose.—Same as strychnine sulphate.

Strychnina Hydrochloridum. (B. P.)

Dose.—Same as strychnine sulphate.

The dose of strychnine should be proportioned to the weight of the case of all animals, but more particularly dogs. Otherwise, convulsive attacks or a fatal result may occur. The dose can be accurately determined by the following data:

Dose per kilo (2.2 lbs. avoirdupois) live weight:

Horse, sheep and cattle..................... .0001-0.002 (gr.1/600-1/300)
Swine...................................... .0002-0.003 (gr.1/300-1/200)
Dogs....................................... .0001 (gr.1/600)
In accordance with the foregoing figures, the dose for the

<table>
<thead>
<tr>
<th>Animal</th>
<th>Weight</th>
<th>Dose (gr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse</td>
<td>1,000 lbs</td>
<td>.045-0.09</td>
</tr>
<tr>
<td>Dog</td>
<td>100 lbs</td>
<td>.0045</td>
</tr>
<tr>
<td>Dog</td>
<td>50 lbs</td>
<td>.00225</td>
</tr>
<tr>
<td>Dog</td>
<td>25 lbs</td>
<td>.00112</td>
</tr>
<tr>
<td>Dog</td>
<td>10 lbs</td>
<td>.00045</td>
</tr>
</tbody>
</table>

The foregoing table refers to oral administration; the subcutaneous dose of strychnine is but one-half of the dose by the mouth.

Moreover, these doses may be given every three hours without producing poison by their cumulative action. Notwithstanding the foregoing figures, caution should be exercised in prescribing strychnine to dogs, as these animals appear sometimes extremely susceptible to strychnine, and it is therefore advisable to begin with a minimum dose (gr. 1/200) in small animals.

The dose of one grain should not be ordinarily exceeded in the case of horses, as one and one-half grains proved fatal in an exceptional case. If animals are depressed by disease, poison, or shock, they will often bear much larger doses than could ordinarily be administered with safety.

Action External.—Strychnine is a powerful antiseptic, but is of no practical value on account of its poisonous properties. Brucine is a local anesthetic.

Action Internal.—Digestive Tract.—Strychnine and nux vomica act as bitter stomachics in increasing appetite, gastric secretion and motion. In addition to this they improve the local tone of the alimentary canal; probably by exciting the various spinal centres. Strychnine also stimulates the intestinal muscular tunic and therefore increases peristaltic action.

Circulation.—Experiments on animals show that the chief action of strychnine on the circulation consists in stimulation of the vasomotor centres with slight increase of blood pressure. Clinically, however, strychnine appears to accelerate and strengthen the heart-beat and this is thought to result from excitation of the cardiac muscle. There is, however, no experimental evidence to show that medicinal doses of strychnine influence directly the mammalian heart (Cushny). Experimentally it has been found that either the vagus or accelerator centres may be sensitized, so that either slowing or quickening of the mammalian heart may result. Also that strychnine actually depresses the perfused heart muscle of the frog. The heart is accelerated by muscular activity in convulsions. Very large doses slow and weaken the heart. In poisoning, blood tension is still further enhanced through asphyxia and muscular movements occasioned by convulsions forcing the blood out of the abdomen.

Nervous System and Muscles.—The effect of strychnine, which stands preëminent before all others, consists in the production of greatly exaggerated reflex action. Under its influence slight sensory stimuli result in the most marked and uncontrollable motor impulses (convulsions). It is proved also that afferent impulses must reach the cord through the sensory tract for convulsions to occur. Section of the spinal cord from
the brain in animals shows conclusively that strychnine convulsions are of spinal origin.

Ingenious experiments furthermore indicate that the tract in the spinal cord—which is acted upon to cause increased motor responses to sensory stimuli—is situated between the entrance of the sensory roots into the cord and the motor cells of the inferior cornua. The receptive neurons (connecting the motor and sensory spinal neurons) appear to be directly influenced by strychnine so that nerve impulses pass through unhindered.

Increased reflex excitability produced by strychnine has been heretofore attributed to the direct stimulating action of the drug on the motor tract of the cord. This is apparently not the case, for, when a solution of strychnine is applied to the cord at the level of the cells controlling the forelegs, and the forelegs are irritated, there is increased contraction of the hind as well as the fore limbs. The motor cells of the hind limbs, in this experiment, are not directly acted upon by strychnine at all.

According to Cushny, strychnine removes the natural resistance to the passage of afferent impulses to the motor cells and therefore a greater force remains to be expended on the motor cells. To put it more briefly, strychnine increases the conductivity of the cord for sensory impulses, both across and up and down the cord. As muscle tone depends upon afferent stimuli strychnine is supreme as a tonic. Metabolism is stimulated through the greater glandular and muscular activity caused by the increased irritability of the central nervous system.

In fatal strychnine poisoning general paralysis ensues through depression of the spinal sensory and motor centres. This may be immediate after enormous doses, with absence of convulsions; or appear at the end of fatal poisoning. The motor nerve endings are also paralyzed but this is secondary in mammals to the more important paralysis of the motor and sensory spinal centres. The voluntary muscles and afferent nerves are not directly affected by strychnine.

Respiration.—Strychnine has hitherto been regarded as chief among respiratory stimulants but recently noted clinicians have found little effect from it on the respiration in large therapeutic doses. In pathologic conditions with exhaustion it is likely the action, as upon other spinal centres, is indirect, i. e., the respiratory centres are made to respond more forcibly to sensory stimuli.

Organs of Special Sense.—The sense of sight, smell, hearing and touch is rendered more acute by strychnine.

Elimination.—Strychnine escapes to some extent unchanged, in the urine. It appears within half an hour of ingestion and a part is delayed in the tissues and may be discovered in the urine from 3 to 8 days thereafter. The greater part of strychnine is probably oxidized in the body. The drug is not cumulative, in the sense of producing sudden and violent action following its continual use in increasing doses. A tolerance for it can be acquired in man and with difficulty in dogs.

Administration.—For tonic purposes, strychnine may be given to
dogs in pills or tablets, and to horses in solution dropped on the tongue. Nux vomica is given to horses upon the food in the form of powder, or in fluidextract upon the tongue; while the tincture is more appropriate for dogs. When large doses of strychnine are used, or an immediate action is desired in acute diseases and emergencies, the alkaloid should be given hypodermically.

Toxicology.—One-twentieth of a grain of strychnine nitrate, injected subcutaneously by the writer into a dog weighing 25 lbs., caused uneasiness and excitement, with protrusion of the eye-balls, and in the space of ten minutes, tetanic convulsions. The breathing was shallow and almost imperceptible, the pulse rapid and irregular, the lips were covered with foam, the tail was stiff and extended, the ears laid back, and there was general muscular rigidity the animal lying on his side in a state of opisthotonos. This condition lasted about three minutes, and was followed by a period of relaxation. But the slightest noise or irritation of the skin brought on convulsions. The convulsions became less frequent and violent, and ceased altogether within half an hour. The same animal was given gr. 1/40 of the alkaloid on the following day, but without producing any appreciable result. One-tenth of a grain, given on another day and in the same manner, caused immediate uneasiness and restlessness, and in ten minutes induced a severe convulsion, lasting for three minutes, in which the animal was so rigid that he could be lifted bodily without bending. The ears were drawn back, the limbs were extended and stiff, the tail was straight and rigid, and there was twitching of the muscles of the jaw and limbs. The corners of the mouth were drawn back (risus sardonicus), the mouth was covered with foam, and there was some trismus. The breathing was nearly suppressed, owing to tetanic spasm of the respiratory muscles. Following this convulsion, the jaw dropped, the muscles relaxed and another attack could not be produced by noises or external irritation. Some twitching of the temporal muscles persisted. Evidently the second stage of poisoning had ensued, and the motor nerves and cells of the inferior cornua had become paralyzed. Death occurred in general paralysis within half an hour, and without any recurrence of convulsions or tetanic condition. Death takes place more commonly in strychnine poisoning from asphyxia, during a convulsion, and is caused by spasm of the respiratory muscles, or, more rarely, by spasm of the glottis. Sometimes death ensues, after enormous doses, in general paralysis from depression of the respiratory centre—without the occurrence of convulsions. Rarely death occurs from exhaustion between the paroxysms. When strychnine is given medicinally in large doses the appearance of restlessness, excitement, and muscular twitchings, should warn one of the danger of approaching poisoning.

The lethal dose for dogs has been set at gr. 1/6-gr. 1/3. This is much too large, as evidenced by the experiment mentioned above. The fatal amount varies greatly in accordance with the weight of an animal; probably less than gr. 1/20 by the mouth would kill toy terriers, and cases are reported where they have been destroyed by gr. 1/60 of the alkaloid. The therapeutic dose should therefore be proportioned as
advised, to the weight of the animal. Five to eight grains of nux vomica will kill dogs.

The minimum fatal dose of strychnine for man is one-half a grain. Usually four to seven grains constitute a lethal quantity, but recovery has ensued following the ingestion of 22 grains, after a full meal.

Horses.—The toxic symptoms in horses resemble those already described in the dog. They do not appear for some time (20 minutes to 6 hours), depending on the rapidity of absorption when the drug is swallowed, and include excitation, muscular spasm and convulsions, increased frequency of the pulse, and difficult respiration. Death occurs in convulsions or in the interim between them. The minimum fatal dose of strychnine, when given under the skin, is about 1 1/2 to 3 grains, and when swallowed, 3 to 5 grains of the alkaloid, or 1 to 2 ounces of nux vomica. A 1000-pound mare having clonic spasms in early stages of azoturia died with typical symptoms of strychnine poisoning within three minutes of receiving one grain of strychnine subcutaneously.

Cattle are similarly affected with horses and dogs. There are exhibited muscular spasms, frequent pulse, difficult respiration, sensitiveness to light, sounds and external stimuli, protrusion of the eyeballs and convulsions. The fatal dose, by the mouth, varies greatly owing to difficulty of absorption in the complicated and capacious digestive apparatus of these ruminants. This is true of all medicines. When given under the skin, the lethal dose is a little larger than that for horses. The fatal dose for swine is said to be from gr. 1/6-gr. 3/4. Chickens are comparatively insusceptible; also guinea pigs and some monkeys.

Strychnine poisoning differs from tetanus in the fact that muscular rigidity is continuous in the latter, but disappears to a considerable degree, if not completely, in the periods between the convulsions, in the case of strychnine poisoning. Moreover, in tetanus the body and limbs are less, and the jaw more affected; while in strychnine poisoning the condition is reversed.

Treatment.—The treatment embraces the use of chemical antidotes, as iodine or its salts, or tannic acid; animal charcoal and emetics or the stomach tube, before absorption has occurred. Chloroform, chloral and amyl nitrite were formerly considered the best antidotes to strychnine but recent experiments prove these too depressant to the respiratory centres. Artificial respiration is of service in paralysis, but not in convulsions, unless air be forcibly driven into the trachea through a catheter. The best treatment consists in ether anesthesia, intratracheal insufflation and intravenous saline infusion (Githens & Meltzer, 1912).

Post-Mortem Appearances.—These are simply those of asphyxia, with the usual congestive lesions and dark fluid blood, except spinal hyperemia is observed.

Uses Internal.—The indications for the employment of strychnine may be directly deduced from its physiological actions. The indications are as follows:

1. To stimulate the respiratory and vasomotor centres and nervous system.
To stimulate the spinal cord; more particularly the motor cells of the inferior cornua.

3. To stimulate appetite, digestion, muscles, and intestinal peristalsis in atonic conditions.

4. To destroy dogs and other small animals.

5. As an aphrodisiac.

1. Strychnine is a good remedy to stimulate the respiration, vasomotor centres and nervous system, and to promote appetite and digestion in acute diseases. It is commonly employed in the treatment of pneumonia and influenza and in all acute diseases when the necessity arises. In the acute stages, with prostration and failing respiration, to stimulate the spinal and respiratory centres; and in convalescence to sharpen the appetite, and increase general tone. In pneumonia, when collapse is threatening, it is well to give strychnine subcutaneously with atropine to stimulate the respiratory centres. It should be realized, however, that strychnine is not in any way comparable to digitalis as a heart stimulant and in heart weakness in pneumonia, or other diseases, digitalis is infinitely preferable. Strychnine is useful in influenza by counteracting nervous depression and improving the appetite and digestion. In collapse and shock, following surgical operations, or in ether, chloral, chloroform and opium poisoning, strychnine is usually prescribed as a cardiac and respiratory stimulant, given in large doses subcutaneously. In surgical shock Crile finds strychnine harmful and it is undoubtedly true that morphine is much more effective. Strychnine has been popularly regarded as the heart stimulant, but the fashion of so regarding and using it is departing since physiological experiments do not substantiate this view. While Cabot does not find it useful in raising blood pressure in disease yet strychnine is undoubtedly of service in some cases of chronic cardiac trouble. The alkaloid has proved extremely serviceable in chronic bronchitis, emphysema, and in that combination of these disorders, often associated with asthma and known as “broken wind” or “heaves,” in horses. It is also useful in asthma and chronic bronchitis of dogs.

The beneficial effect in these diseases is explained by the stimulating action of the drug on the respiratory centres, and the favorable influence exerted on digestion. Strychnine is also appropriate in convalescence from acute diseases for the same reason.

2. In mild cases of chorea in dogs, strychnine is prescribed to advantage with Fowler’s solution. In accordance with its physiological action, strychnine is indicated in various paralyses of spinal origin, but should not be used where there is irritation or inflammation of the spinal motor tract. It is employed in hemiplegia and paraplegia, resulting from hemorrhage, after the lapse of several weeks, when irritation produced by the clot has passed away. After paralysis of the motor tracts of the brain or cord, strychnine is, however, contraindicated since the reflexes below the lesion are cut off from normal cerebral control and they are over-active and the muscles in a state of overtone. Strychnine is essentially indicated in asthenia but not in conditions associated with a spasmodic
condition of muscles. Strychnine is said to be efficacious in the after-treatment of cerebro-spinal meningitis of horses, and also in the paraplegia of cattle (from parturient fever, and in the paraplegia coming on before parturition in weak cows and not disappearing after labor) and that of dogs resulting from various and often undiscovered causes. Strychnine is serviceable in the paralysis of lead poisoning, and in that form caused by traumatism or toxemia following influenza, distemper in dogs, and rheumatism. When injected into the muscular tissue, the alkaloid is believed to stimulate the peripheral nerves and muscular fibres, and is employed with benefit in localized paralyses affecting groups of muscles before atrophy has occurred, as in "roaring" in horses.

Either retention or incontinence of urine, resulting from atony or paralysis of the bladder, may be relieved by strychnine; also prolapse of the rectum induced by similar causes. Strychnine has proved curative in some cases of amaurosis, when injected in the region of the temple.

3. Strychnine or nux vomica, associated with iron, quinine, and arsenic, form the most generally satisfactory tonic combination for the horse and dog, particularly with reference to the digestion. Atonic forms of indigestion and constipation, the accompaniments of anemia, are those amenable to the influence of the drug, which stimulates peristalsis, and therefore hinders fermentation, prevents relaxation, and so over-secretion from loss of vascular tone.

Tonic for horse.

\[
\begin{align*}
&\text{Arseni trioxidii} \quad \text{5i.} \\
&\text{Pulveris nucis vomicæ.} \\
&\text{Ferri sulphatis exsiccati} \quad 3iv. \\
&\text{M. Divide in chartulas No. xxx.} \\
&\text{S. One powder on feed t. i. d.}
\end{align*}
\]

Tonic for dogs.

\[
\begin{align*}
&\text{Ferri reducti.} \\
&\text{Quininae sulphatis.} \\
&\text{Pulveris nucis vomicæ} \quad 5ss. \\
&\text{M. et fiant pilulae No. xxx.} \\
&\text{S. One pill t. i. d.}
\end{align*}
\]

Strychnine is a valuable remedy in overloaded rumen and omasum, and chronic tympanitis of cattle; or in overloaded and impacted large intestines of the horse. It should be given subcutaneously in these conditions, and frequently in combination with pilocarpine, eserine or arecoline.

Constipation, and, on the other hand, diarrhea, are benefited by strychnine when they are due to atony of the intestinal muscular coat. It is more commonly in the former disorder that the drug finds its usefulness. The aloin, strychnine and belladonna pills, with cascara sagrada, are useful in habitual constipation in dogs, but the weaker formula, containing gr. 1/120 of strychnine, should be employed. The value and application of strychnine in anorexia and atonic digestive disorders has been sufficiently treated above.
4. There is no more convenient or humane agent for destroying small dogs and cats and other small animals than strychnine injected into the gluteal muscles (gr.ss to gr.i).

Death occurs usually without struggling, pain or convulsions, and in less than a minute in many cases. But in others convulsive movements may persist for a time. For large dogs, and for the larger animals generally, a well directed bullet is the most rapid, effective and humane method of accomplishing euthanasia.

5. Strychnine is useful in sexual asthenia as a stimulant to the spinal centres and reflexes, and as a general nervous tonic.

Class 2.—Depressing the Inferior Cornua.

Physostigma. Physostigma. (U. S. P.)

Synonym.—Physostigmatis semina, B. P.; Calabar or ordeal bean, faba physostigmatis, S. faba Calabarica, E. The dried ripe seed of Physostigma venenosum Balfour (Fam. Leguminosae), yielding not less than 0.15 per cent. of the alkaloids of physostigma.

Habitat.—Calabar and the region of the mouth of the Niger, in Western Africa.

Description.—Oblong or ellipsoidal, somewhat compressed reniform, 15 to 30 mm. long, 10 to 15 mm. thick; externally reddish- or chocolate-brown, smooth, somewhat wrinkled near the brownish-black groove which extends almost the entire length of the convex edge; taste at first starchy, afterwards acrid.

 Constituents.—The principal constituent is the alkaloid physostigmine, or eserine. There are also the alkaloids calabarine (resembling strychnine), a product resulting from the decomposition of eserine, and eseridine, similar to action in eserine, but weaker; and a neutral principle, physoterin, resembling choleretic.

Calabar Bean Dose.—H., gr.xv-xxx, (1-2); D., gr.⅓-i, (.015-.06).

The official preparations are the extract and tincture of physostigma, but physostigmine is solely used in veterinary medicine, since it is more certain and generally free from calabarine, which produces, in toxic doses, a tetanic condition followed by paralysis.

Physostigmine Salicylas. Physostigmine Salicylate.

C₁₄H₁₂O₆N₂.S₂ (U. S. P.)

Synonym.—Eserine salicylate; salicylate d’ésérine, Fr.; physostigmin-salicylat, G. The salicylate of an alkaloid obtained from physostigma.

Dérivation.—Physostigmine is obtained from the alcoholic extract of Calabar bean by dissolving the extract in water, adding sodium bicarbonate, shaking the mixture with ether, and evaporating the ethereal liquid. The salicylate of the alkaloid—the most stable salt—is made by adding physostigmine to a solution of salicylic acid in boiling distilled water, when the salt crystallizes on cooling.

Properties.—Colorless, or faintly-yellowish, shining, acicular, or short, columnar crystals; odorless, and having a bitter taste. Soluble in 75 parts of water, and in 16 parts of alcohol; in 6 parts of chloroform. It acquires a red tint when long exposed to the air and light. Great caution must be used in tasting it. (U. S. P.)

Dose.—H. & C., gr.iss-iii, (.09-.18); D., gr. 1/100-1/30, (.0006-.0002).

Given usually subcutaneously, intravenously or intratracheally to horses.

Physostigmine Sulphate. Physostigmine Sulphate. (B. P.)

Synonym.—Eserine sulphate, E.; sulfate d’esérine, Fr.; physostigmin sulphat, G.

Properties.—A white, or yellowish-white, micro-crystalline powder, odorless, and having a bitter taste. It is very deliquescent when exposed to moist air, and gradually turns reddish by exposure to air and light. Very soluble in water, chloroform and in alcohol.

Dose.—H. & C., by the mouth, gr.iss-iii, (.09-.18); D., gr. 1/60-1/10, (.001-
Physostigmine.

Action Internal.—**Alimentary Tract.**—The flow of saliva is at first stimulated, whether by direct excitation of the salivary cells or not, is undetermined. Salivation ceases when the gland is deprived of blood by general vascular contraction. The peristaltic action of the stomach and bowels is increased by the direct local action of the alkaloid on the motor nerve endings (vagus) of the smooth muscles. There are three stages, in reference to this action, observed in poisoning. First, there is stimulation of peristaltic action, then tetanic contraction and diminution of the intestinal calibre, and finally relaxation and dilatation of the bowels. The secretions in the digestive tract are augmented by the expulsion of considerable mucus per rectum. When the alkaloid is given to horses, under the skin, within the trachea or intravenously, defecation and expulsion of gas commonly occur in the space of half an hour, occasionally in a few minutes, and is often considerable in amount (11-20 lbs. of feces). The essential action of the drug is to stimulate the secretory nerve endings of glands, and the motor nerve endings of smooth and striated muscle.

Circulation.—Eserine is readily absorbed, but exerts no influence on the blood. Moderate doses render the cardiac pulsations slower and more forcible, and increase vascular tension. Large toxic doses cause the heart to beat more rapidly and less forcibly. The first effect is due probably to stimulation of the peripheral vagi and heart muscle, and possibly the involuntary muscular fibres in the vessel walls. The second phenomenon follows depression of the heart and peripheral vagi, and terminates in cardiac paralysis and diastolic arrest. The action on the circulation is entirely subordinate to the influence of the drug upon the nervous system, and is unimportant from a therapeutical standpoint.

Nervous System and Muscles.—The essential central action of physostigmine consists in depressing the respiratory centre in the medulla and the cells of the inferior cornua. This has been abundantly and directly proved by application of the alkaloid to the spinal cord. The superior columns are finally depressed; perception of pain is wanting, but that of touch persists. The sensory nerves are not affected, and the motor nerve trunks but slightly. The muscular tremors are due to stimulation of the motor nerve endings or myoneural junctions. These are characteristic of physostigma poisoning in animals, but are not so frequently observed in man. Calabarine may be present in old preparations of physostigma, from decomposition of physostigmine, and acts like strychnine on the spinal cord. In poisoning by such, calabarine may induce convulsions. The involuntary muscles throughout the body are stimulated, including those of the stomach, intestines, gall bladder, bronchial tubes, heart, blood
VEGETABLE DRUGS

vessels, iris (?), spleen, uterus, and bladder. In the case of some of these organs, it has not been decided whether the muscles themselves, or the motor nerve terminations, are affected.

Respiration.—The respiration is not disturbed by medicinal doses. Toxic quantities at first quicken, and then retard the respiratory movements, and death occurs from asphyxia, before cessation of the heart, owing to paralysis of the medullary respiratory centre. The acceleration of breathing is due to the stimulation of the respiratory centre and of the pulmonary vagal endings.

Secretions.—Secretion is generally increased, through stimulation of the secretory nerve endings and glandular tissue, including that of the salivary, gastric, intestinal, sudoriparous and lachrymal glands. In this respect eserine is antagonistic to atropine.

Eye.—Physostigmine is a myotic, applied locally or administered internally. Intraocular tension is diminished and there is spasm of accommodation. In all probability contraction of the pupil is brought about by stimulation of the oculomotor nerve endings (because absent in degeneration of the third nerve). Eserine is thus directly antagonistic to atropine in its effect upon the eye, but they resemble each other in that they both exert a local action and do not affect the irides of birds. Enormous doses of physostigmine paralyze the oculomotor nerves and dilate the pupil.

Elimination.—Eserine is rapidly absorbed and eliminated, mainly by the urine, but also in the other secretions.

Toxicology.—Physostigma has been called "ordeal bean," because native Africans suspected of crime are given the crude drug. Vomiting it, they are proved innocent and survive the ordeal. Retaining it, they die, and so are properly and primitively punished. Animals poisoned by Calabar bean exhibit muscular tremors which continue throughout the toxic period, and are often so violent as to simulate convulsions. Soon there is loss of muscular power and the animal falls or lies down. The respiration becomes rapid, labored, and stertorous; the pulse is increased in frequency by large toxic doses, and the temperature slightly elevated. There are salivation and sweating. The pupil is sometimes contracted and, when enormous lethal doses have been injected, dilated. Vomiting occurs in animals capable of the act, and loud peristaltic noises are heard, followed by the expulsion of feces, mucus and flatus, with colicky pains and tenesmus. Reflex action is diminished or abolished, but sensation is preserved until late in the toxic period. The muscles are completely relaxed and powerless, notwithstanding the tremors which afflict them. The breathing becomes weak and irregular, and death occurs from respiratory failure.

In experiments of Winslow and Muir conducted independently and at different times the following cases may be of interest:

A healthy gelding, weighing 1,050 lbs., was strapped upon the dissecting table and given three grains of eserine sulphate intrajugularly. Within a few minutes slight muscular tremors appeared in the neck; the pulse rose to 120, the
respiration was 24, and the temperature normal. There was slight sweating. The pulse soon fell to 60, and was strong and hard, while the respiration became rapid and labored. No other symptoms developing within twenty-five minutes after the first dose, three grains of the alkaloid were administered in the same manner as before. The pulse became more frequent (78), the respiration (48) was difficult, and the muscular tremors increased in violence till they resembled convulsions. Sweating was profuse, while saliva dropped freely from the mouth. The respiration and pulse were now reduced in frequency and became weaker. The pupils were unaffected, but the eyes were staring. Half an hour after the second dose increased peristaltic action was evidenced by loud noises and the expulsion of gas and dung. Recovery began in two hours from the exhibition of the second dose. It is possible that the severe muscular tremors were caused by contamination of the eserine with calabarine, as the former was not a fresh preparation. An aged express horse, suffering for a week from impaction of the colon, was given twelve minims of a commercial extract of calabar bean. He fell down almost immediately, perspired freely, exhibited muscular tremors, and expired within a few minutes. The writer is unable to state the minimum fatal dose for horses, but eserine should be used with caution in weak subjects.—WINSLOW.

A gelding, 800 lbs., poorly nourished, temperature normal, pulse 60, was given physostigmine sulphate gr. 1½ (0.1) in ½ dram of water intrajugularly. Muscular tremors and colic came on in seven minutes; in eleven minutes defecation occurred, the heart became more rapid and colic increased. Passages from the bowels were frequent for two hours—about fifteen in all—the feces weighing twenty pounds in the aggregate. All symptoms abated after three hours from the time of receiving the drug.—Muir.*

A gelding, thirteen years old, in good condition and weighing 1,205 lbs., temperature and pulse normal, was given 3 grains (0.18) of eserine sulphate under the skin. After thirty-two minutes elapsed, defecation began and continued with the expulsion of considerable mucus and flatus until six passages had occurred within one hour and twenty minutes. During this time the pulse had increased in frequency and the animal was restless and pawing the ground. An hour and a half after the first dose, a second dose of 3 grains (0.18) was given in the same way. In twenty minutes muscular tremors and weakness became marked, for the first time, and great distress was evident, the patient appearing to be in much pain; the respiration short, jerky and labored, and nostrils distended and working. The evacuations continued until twenty-three had been passed from the time of receiving the first dose and until one and one-half hours after the second dose. The feces were quite liquid and contained much mucus and during passage were attended with considerable straining. The weight of feces aggregated 17 lbs. Four hours after the last dose all symptoms disappeared.—Muir.*

Summary.—Full medicinal doses of physostigmine (gr. 1½-3), given subcutaneously or intravenously, produce slight to considerable colic, increased peristalsis and mucus secretion, muscular tremors and weakness, and frequent defecation—beginning in ten to twelve minutes after intravenous use, about thirty minutes or more after injection under the skin—and being twice as copious when the former mode of administration is employed than after the latter. Moreover, the disagreeable accompaniments of purging last twice as long (five hours) after the hypodermic method than after the intravenous injection (two and a half hours). Muir deduces from his experiments that physostigmine is a safe and active cathartic for the horse and is free from evil after-effects; that along with increased peristalsis and mucus evacuation from the bowels there are colic and more rapid pulse-rate with muscular tremors and weakness; that eserine acts more quickly and effectively when injected

into the external jugular vein, and that it safely may be given in this manner in a dose of 3 grains dissolved in 30 minims of water, to horses in fair condition and of average weight.

The toxic line is too closely approached, however, when physostigmine is used in this way, and we should be careful not to cross it by extending the dose. Arecoline hydrobromide acts as rapidly and without the unpleasant accompaniments of purgation caused by eserine, so that the former is generally preferable as a cathartic for use by the intravenous method. According to Quitman eserine given subcutaneously in divided doses (gr. 1/12 every 20-30 minutes to effect) is far more effective in emptying the bowels than arecoline given in this manner. Seldom more than one and one-half grains are required and in doses of this size it is safe even for aged animals.

The minimum fatal dose of physostigmine is stated to be from gr. 1/15-1/12 for dogs, and gr. 1/30-1/20 for cats. The treatment should be pursued with emetics, or the stomach tube, and the antidote, atropine. The latter will prevent death in rabbits when given five minutes after the administration of three times a minimum fatal dose. Atropine should be given under the skin, together with alcoholic stimulants, digitalis, and ammonia by the mouth. Artificial respiration should be practised and external heat applied. The essential action of atropine in antagonizing eserine, consists in stimulation of the respiratory centres, while it depresses the peripheral cardiac vagi, and so, to a certain extent, counteracts the primary influence of eserine on the heart. Large doses of atropine may only exaggerate the secondary depression of eserine upon the peripheral vagi in the heart, and so hasten a fatal result. Strychnine is antagonistic to eserine in stimulating the respiratory centres and inferior cornua.

Uses External.—Physostigmine has been injected empirically, but it is asserted with good results, into chronic dropsical effusions of joints and bursa of tendons in horses, after removal of the fluid by aspiration. From .05-1 Gm. is used, dissolved in 5-10 Gm. of sterile water; and this treatment is followed by cold applications for several days afterwards.

Uses Internal.—Three physiologic actions of eserine are put to therapeu tic uses.

1. The myotic action on the eye.
2. Stimulation of the involuntary muscles.
3. Depression of the inferior cornua.

1. Eserine is useful, in alternation with atropine, to break up adhesions to the iris; to lessen intraocular tension in glaucoma; and to prevent prolapse of the iris and staphyloma, after wounds and ulcers of the cornea. It is also employed to contract the pupil and shut out the light in photophobia, and to antagonize the influence of atropine on the eye. The action of eserine is, however, not nearly so powerful or persistent as that of atropine on the eye, and is somewhat painful. It is employed in 1 per cent. solution.

2. Physostigmine is mainly of value for its action in rapidly stimu-
lating the unstriated muscles of the alimentary canal. In obstinate constipation of horses it is particularly useful; eserine sulphate being given subcutaneously or intravenously with pilocarpine sulphate; the latter to increase the intestinal secretions. Strychnine sulphate may be added to counteract the depressing action of eserine on the respiratory centres and inferior cornua. For a horse with obstinate constipation or impaction of the bowels.

R	Physostigmine sulphatis .. gr.i.
M.	Pilocarpine hydrochloridæ .. gr.iii.
M.	Strychnine sulphatis ... gr.ss.
M.	Aquæ destillatæ .. 5i.

Sig. Give at once subcutaneously.

Physostigmine, in combination with pilocarpine, is serviceable for its speedy action in flatulent colic and impaction of the cecum, colon, and rectum in horses, and has been employed to expel calculi and foreign bodies from the intestines.

Physostigmine is contraindicated in spasmodic colic, when it may increase the trouble by exciting intense peristaltic contractions. Its employment is also attended with some danger in overloaded or greatly distended stomach or bowels, in view of possible rupture of these organs. In pregnant animals it may produce abortion. The drug, like other purgatives, may aggravate the damage produced by twist or intussusception. In twist of the pelvic flexure of the colon in the horse, commonly mistaken for enteritis, eserine is often life-saving and the remedy at our command.

In atomic conditions of the stomach and bowels, and in indigestion due to chronic intestinal catarrh, small and repeated doses of eserine are sometimes of benefit. In cattle, eserine (gr.-i.) and pilocarpine (gr.-iii.) subcutaneously are of great value in tympanites and impaction of the rumen and omasum, in acute gastritis, and in parturient apoplexy, to quickly empty the digestive canal. Eserine is sometimes given subcutaneously to foals (gr. 1/12-1/6) for retention of meconium. It is effective in obstinate constipation of dogs given by the mouth (gr. 1/60-1/12) in pill, twice daily.

Eserine has been employed in chronic bronchitis, asthma and emphysema, to improve the tone of the bronchial mucous membranes and expel secretions.

3. Eserine is one of the drugs commonly used in the treatment of tetanus in human and veterinary practice, with only a moderate degree of success. It must be employed early, given every three or four hours, and pushed to the physiological limit. Chorea and epilepsy have been treated with eserine without any pathological basis, as far as epilepsy is concerned, and with little therapeutic advantage in either instance. In some cases of paraplegia, resulting from myelitis, a favorable effect has been obtained in man. Eserine is an appropriate purgative (hypodermatically) in acute meningitis. Eserine has been used in strychnine
poisoning, but is inferior to chloral bromides and anesthetics, and while it is antagonistic to a certain extent, and alters the character of strychnine convulsions, yet animals die more quickly when poisoned by both strychnine and eserine, than by strychnine alone.

Gelsemium. Gelsemium. (U. S. & B. P.)

Synonym.—Radix gelsemi, yellow jessamine, E.; jasmin sauvage, Fr.; gelsemic, G. The dried rhizome and roots of *Gelsemium sempervirens* (Linné) Aiton filius (Fam. Loganiaceae).

Habitat.—Southern United States.

Description.—Rhizome cylindrical, usually in pieces from 2 to 20 cm. in length and from 3 to 30 mm. in diameter; externally light yellowish-brown, longitudinally wrinkled, with purplish-brown longitudinal lines and transverse fissures; odor slight, taste bitter. The powder is dark yellow.

Constituents.—The most important is the first alkaloid. 1. Gelsemine, C_{9}H_{19}N_{4}O_{2}. A colorless, crystallizable, bitter principle, soluble in alcohol and ether, and slightly in water. 2. Gelseminine, a brown, amorphous, bitter alkaloid. 3. Gelseminic acid. 4. A volatile oil.

Dose.—H., 5i-ii, (4-8); D., gr.v-x, (3-6).

Preparations.

Fluidextractum Gelsemii. Fluidextract of Gelsemium. (U. S. P.)

Made by maceration, percolation and evaporation, so that 1 mil = 1 Gm. of the crude drug.

Dose.—H., 5i-ii, (4-8); D., miv-x, (3-6).

Tinctura Gelsemii. Tincture of Gelsemium. (U. S. & B. P.)

Gelsemium, 100; alcohol and water to make 1,000. Made by maceration and percolation. (U. S. P.)

Dose.—H., 5ss-i, (15-30); D., mivv-5i, (1-4).

Gelsemina. Gelsemine.

(Non-official and uncertain in strength.)

Dose.—H., gr.1/4-1/2, (0.015-0.03); D., gr.1/60-1/30, (0.001-0.002).

Action External.—None.

Action Internal—Gelsemium exerts no action on the digestive apparatus, or on the blood, after its absorption; neither does it affect the circulation in medicinal doses, but in toxic quantities it directly depresses the heart. The influence of the drug on the vasomotor system is unknown.

Nervous System and Muscles.—The prominent action of gelsemium is that on the nervous system, as evidenced by paralysis and convulsions after large doses. Both the convulsant and paralyzant effects are of spinal origin. That the convulsions are not cerebral is shown by the fact that they occur below the point of section in mammals (under the influence of the drug), with divided spinal cord. That they are not peripheral is proved by their occurrence in the hind extremities when the posterior aorta is tied before the animal is poisoned. The paralyzant action of gelsemium is due to direct depression of the cells of the inferior cornua, and this is followed, in the later stages of poisoning, by depression of the motor nerve endings and spinal sensory tract, with general anesthesia.

The cause of the secondary convulsions is undetermined. A tetanizing principle in gelsemium, antagonistic to gelsemine, such as we find in phystostigma, has been thought to be the cause of the convulsions. The
muscles, motor (except those of the face) and sensory nerves are unaffected by gelsemium.

Respiration.—Gelsemium, in toxic doses, progressively weakens and paralyses the medullary and spinal respiratory centres, and death occurs from asphyxia.

Eye.—In poisoning, in animals, there is dilatation of the pupil produced in the latest stages of the toxic period. In man, there is in addition to this, paralysis and drooping of the eyelids (ptosis), and paralysis of the recti muscles with strabismus. These symptoms have been attributed with apparent reason to paralysis of the motor cells in the floor of the fourth ventricle and aqueduct of Sylvius, since they are a prolongation of the spinal motor tract. As the pupil is dilated, however, by the application of much smaller doses than are required by the mouth, it seems probable that mydriasis results from local paralysis of the oculo-motor nerve endings.

Toxicology.—Poisoning in animals is exhibited by muscular weakness, especially in the fore legs, staggering gait and falling. These symptoms are followed by convulsive movements of the muscles of the head, fore legs, and sometimes of the hind legs. The respiration is slow and difficult, the pulse feeble; temperature is reduced, and there is sweating. Consciousness is preserved until the occurrence of asphyxia. Death takes place from respiratory failure, with almost simultaneous cardiac arrest. Morphine subcutaneously has proved a successful antidote. Respiratory and heart stimulants should be employed in poisoning by gelsemium, such as strychnine, atropine, alcohol, and digitalis, together with artificial respiration, after evacuation of the stomach.

Uses.—Gelsemium possesses little value in veterinary medicine. There is no therapeutic indication for gelsemium which cannot be filled to better advantage by some other remedy. Thus, gelsemium has been employed as a cardiac depressant and antipyretic in acute diseases (pneumonia and pleurisy), but its other actions are disadvantageous and it is inferior to aconite, veratrum viride, or the modern antipyretics. In spasmotic diseases, irritable cough, vesical irritation, tetanus, chorea, etc., it is less satisfactory as a motor depressant than opium, belladonna, chloral, and bromides. Zuill, however, reports very successful results in horses from gelsemine (0.08 Gm.) in tetanus. The dose should be given under the skin every half hour till muscular relaxation occurs. Lobeline is, however, in favor for this purpose. The drug has been used considerably to relieve rheumatic and neuralgic pains, but these succumb more readily to opium, coal tar products, etc. As a mydriatic, gelsemine is not to be compared with atropine for general purposes, but its action is more transient. A solution (gr.8-5i) is instilled (in man) in drop doses every fifteen minutes for one hour, and then every thirty minutes for two hours, to secure wide dilatation of the pupil; or discs, containing gr. 1/300 of gelsemine (with gelatine) are used for application to the eye.
VEGETABLE DRUGS

SECTION III.—DRUGS ACTING CHIEFLY ON THE MOTOR NERVES.

Class 1.—Depressing the Motor Nerves.

Tabacum. Tobacco.

(Non-official.)

Synonym.—Tabaci folia, B. P., Fr.; Tabak, G.

The commercial dried leaves of Nicotiana Tabacum Linneé (nat. ord. solanaceæ).

Habitat.—Tropical America. Cultivated in various temperate and tropical parts of the earth.

Description.—The leaves are up to 50 cm. long, oval, or ovatelanceolate, acute, entire, brown, friable glandular-hairy of a heavy, peculiar odor and a nauseous, bitter and acrid taste.

Constituents.—Chiefly nicotine, C_{10}H_{14}N_{2} (0.7-5.11. per cent.). A colorless, volatile, oily alkaloid, resembling tobacco in odor and taste. Freely soluble in alcohol and ether; less so in water. Nicotine is decomposed by heat and therefore tobacco smoke contains little of it, but in its stead, pyridine, C_{5}H_{4}N, and various allied alkaloids, viz., picoline, C_{6}H_{6}N; lutidine, C_{6}H_{5}N; rubidine, C_{8}H_{11}N; coridine, C_{14}H_{18}N; parvoline, C_{13}H_{17}N; and collidine, C_{10}H_{15}N; together with small amounts of sulphur, creosote, acetic and hydrocyanic acids and carbon compounds. Pyridine resembles nicotine in depressing the central nervous system and motor nerves and in paralyzing respiration, and is said to be formed more in pipe smoke, while, in the smoke of cigars, the less harmful collidine is produced by dry distillation. Furfurol is another harmful constituent of tobacco smoke—one of the constituents of fusel alcohol in new whiskey and distilled liquors producing headache. There is as much furfurol in some cigarettes as in 2 ounces of whiskey. Nicotine and furfurol exist to very slight degree in Turkish tobacco.

Dose.—Nicotine, H. & C., gr. 1/60-1/20, (.001-.003).

Action of Tobacco and Nicotine.

Action External.—Tobacco is a local anodyne, antiseptic and parasiticide.

Action Internal.—Digestive Tract.—The physiological effect of tobacco is due to nicotine. Nicotine increases peristaltic action and, in large doses, causes tetanic spasm of the intestines, even when it is injected into the blood. This happens through paralysis of the inhibitory or splanchnic ganglia, and stimulation of the motor ganglia (Auerbach's) in the bowel walls. In toxic quantities nicotine is a powerful gastro-intestinal irritant, and produces the usual symptoms of pain, vomiting (in animals capable of the act), purging and collapse.

Circulation.—The action of nicotine on the circulation is complicated. The chief effect is due to primary stimulation of the vagus centre and heart muscle with more forcible contractions and slowing of the heart, followed shortly by depression of the cardiac vagus ganglia and heart muscle, with feeble and rapid pulse—after large toxic doses. In the same manner there is a transient stimulation followed by depression of the vasoconstrictor centres and ganglia, with consequent primary rise and subsequent fall in blood tension.

Nervous System and Muscles.—Nicotine acts first to stimulate the reflex excitability of the spinal cord, medulla and hind brain in large
doses—but this action is quickly followed by depression and paralysis of the whole central nervous system and motor nerves. The muscles and sensory nerves escape its influence. The most characteristic specific action of nicotine consists in a transient stimulation, followed by complete loss of function, of the peripheral sympathetic ganglia, as seen in the effect of the drug upon digestion, the heart, secretions, and pupil.

Respiration.—The respiratory centres are primarily stimulated but later depressed and paralyzed by fatal doses of nicotine and death occurs through respiratory failure.

Secretions.—The secretions of sweat, saliva and bronchial mucus are at first increased and then diminished by the action of nicotine in stimulating and then depressing the ganglia in the course of the secretory nerves.

Eye.—Nicotine affects the pupil variably. It is transiently dilated in the dog and cat; constricted in the rabbit; and, in man, contraction is followed by dilation. These differences appear to depend upon whether the drug stimulates more the sympathetic (dilation) or the oculomotor (contraction) ganglia.

Elimination.—Nicotine is in part destroyed by the liver and adrenal secretion. It is also eliminated chiefly by the kidneys but also is found in the saliva and sweat.

Toxicology.—Nicotine is one of the most powerful and rapidly acting poisons. When swallowed, it causes, in animals, local irritation and pain in the throat and stomach; muscular tremors and weakness, on account of which the animal falls. These symptoms are followed, first, by severe tonic and clonic convulsions, and then by abolition of voluntary motion and quietude. There are vomiting (in the case of some animals), purging and micturition. The respiration is at first shallow and rapid, but becomes weaker and slower, and death occurs from respiratory failure and general collapse. The pulse is primarily slow and intermittent, but later becomes rapid. The treatment of poisoning consists in evacuation of the stomach; the use of tannic acid; respiratory and heart stimulants, as strychnine, atropine, caffeine, and alcohol; together with external heat and artificial respiration. The minimum lethal dose is about one dram of tobacco, or one minim of nicotine, for small dogs. For horses, five to ten drops of nicotine or one-half pound of tobacco.

Uses.—Tobacco is not a particularly valuable medicinal agent. Its internal action is often violent, and causes great nausea. Absorption and poisoning may follow its external application in the smaller animals. The drug may be employed for four purposes, as follows:

1. As a local sedative.
2. As a parasiticide.
3. As a motor depressant.
4. As a cathartic.

External.—1. Tobacco is an efficient sedative in decoction (1:40), for relieving pruritus ani and vulvae. It must be remembered that absorp-
tion and poisoning may occur when larger amounts are used externally than can be administered with safety by the mouth.

2. The latter remark applies also to the use of tobacco decoctions in killing parasites on the skin, such as the acari of mange and scab, together with lice and fleas. For sheep with full fleece tobacco is one of the best curative and preventive agents in mange or scab as follows: Manufactured tobacco, 1 lb.; flowers of sulphur, 1 lb.; water, 5 gallons. The tobacco is soaked in cold or tepid water for 24 hours and, on the night before the dipping, the solution is brought to a boil for a minute and the tobacco allowed to remain in it over night. Mix the sulphur in a pail to the consistency of a gruel with water. Strain and press the liquid out of the tobacco and add it to the sulphur and enough water to make 5 gallons. After dipping, the sheep must be turned into a clean yard or barn to drain.

Internal.—3. Tobacco has been employed as a motor depressant in spasmodic disorders, such as asthma, tetanus (given by the rectum or under the skin), and strychnine poisoning, but it is inferior to, and more dangerous than, other drugs.

4. The Germans prescribe tobacco to stimulate peristalsis in ruminants, in doses of 2 ounces, with one-half pound of common salt and one pound of Glauber's salt for cattle; and for sheep, 1/2 ounce, with 2 ounces of salt and 3 ounces of Glauber's salt. Tobacco was given formerly in colic and intestinal obstruction, but this use is obsolete. The decoction (1 to 2 per cent.) may be injected into the rectum of horses, in non-toxic quantities, to kill oxyurides and ascarides, and to excite peristalsis and relieve spasm in colic.

Tobacco smoke is sometimes used in the same manner to destroy worms in the lower bowels.

Conium. Conium. (Non-official.)

Synonym.—Conii fructus, B. P.; hemlock fruit, E.; grande ciguë, Fr.; schierling, G.

The full-grown, but unripe fruit of *Conium maculatum* Linné (Fam. Umbelliferae), carefully dried and preserved, and yielding not less than 0.5 per cent. of conine. After being kept for more than two years, conium is unfit for use.

Habitat.—Indigenous to Europe and Asia, but naturalized in the United States.

Description.—Broadly ovoid, greenish-gray; odor slight, but when triturated with a solution of potassium hydroxide, strong, disagreeable, and mouse-like; taste characteristic, disagreeable, afterwards somewhat acrid. Conium fruit resembles carraway and anise seed, but these have oil-tubes or vitiae.

Dose.—Coninae hydrochloridum. H., gr. 1/6-1/2, (0.45-0.1); D., gr. 1/60-1/30, (0.001-0.002).

Constituents.—There are two essential principles in conium; conine, or conine, and methyl-conine.

Action of Conium.

Nervous System and Muscles.—The predominant action of conium consists in paralyzing the voluntary and involuntary muscles, with loss of motion but without loss of consciousness or sensation. This effect is due to paralysis of the motor nerves.
Toxicology.—The minimum fatal dose of conium is uncertain, owing to the proneness of the alkaloid to decomposition, and to the volatility and the variable amount contained in the crude drug. A few drops of the alkaloid will kill small cats and dogs. Herbivora, as goats, sheep and horses, are less susceptible than carnivora.

The domestic animals occasionally become accidentally poisoned by eating hemlock at pasture. The symptoms exhibited are dulness, loss of muscular power (at first in the hind legs), stumbling and falling, or lying down. We observe, also, nausea, salivation (sometimes amaurosis), dilatation of the pupil and ptosis, sweating, and often muscular tremors and clonic convulsions. The pulse becomes slow and feeble, the breathing faint, the surface cold and clammy, and the animal often lies as still as though dead, so complete is the paralysis. Death finally occurs from asphyxia, frequently associated with coma. The respiration ceases before the heart-beat. The urine of poisoned animals may be used as a physiological test in frogs, to decide doubtful cases. The treatment of poisoning consists in evacuation of the stomach and the use of tannic acid, artificial respiration, external heat, and respiratory and cardiac stimulants, as strychnine, atropine, caffeine and alcohol. The post-mortem appearances are those of asphyxia, with sometimes evidences of gastro-intestinal irritation.

Uses Internal.—Conium is rarely used in veterinary medicine on account of the uncertainty of its preparations and natural therapeutic limitations.

Lobelia. Lobelia. (U. S. P.)

The dried leaves and flowering tops of Lobelia inflata Linné (Fam. Lobeliiaceæ).

Synonym.—Indian or wild tobacco, E.; lobélie enfleée, Fr.; lobelienkraut, G.

Habitat.—Eastern and central North America.

Description.—Stems cylindrical, coarsely and irregularly furrowed, yellowish-green, occasionally purplish and with numerous spreading hairs; leaves alternate, sessile or narrowing into a short petiole, usually more or less broken; when entire, lamina ovate or oblong, from 2 to 9 cm. in length; pale green and with scattered, bristly hairs; flowers blue in long, loose racemes with short pedicels; seeds brownish, oblong and coarsely reticulate; odor slight, taste strongly acrid. The powder is dark green, odor irritating.

Constituents.—1. An alkaloid, Lobeline (C_{18}H_{22}O_{3}?) in broad, colorless, odorless, tasteless, crystals. 2. Lobelic acid. 3. Lobelacrin. 4. Inflatin. 5. Lobelianin, a volatile oil. 6. A gum. 7. A resin.

Preparations.

Fluidextractum-Lobeliov. Fluidextract of Lobelia. (U. S. P.)

Made by maceration and percolation with acetic acid and diluted alcohol, and evaporation so that 1 ml = 1 Gm. of the crude drug.

Dose.—3ii-viii, (8-30); D., µi-v, (.06-3).

Tinctura Lobeliov. Tincture of Lobelia. (U. S. P.)

Lobelia powder, 100; alcohol to make 1000. Made by maceration and percolation.

Dose.—H., iii-ii, (30-60); D., Emetic, iii-iv, (4-15); D., Expectorant and sedative, µxx-xxx, (0.6-2).

Dose.—Lobeline sulphate (subcutaneously).—H. & C., gr. ½-⅓; D., gr. 1/100-1/10.
Action of Lobelia and Lobeline.

Lobelia, or wild tobacco, resembles closely in action real tobacco. It is a motor nerve paralyzant like conium, curarce and tobacco. Again, like tobacco, it exerts a stimulant action on the sympathetic ganglia and causes vasoconstriction. Its degree of poisonous action is debatable. In human medicine great depression and fatalities have occurred, especially when vomiting does not follow large doses. There also appears to be a difference in the strength of preparations.

Toxic doses cause emesis, in animals capable of the act, purging, prostration, feeble pulse, cold sweating, fall of blood pressure, coma, collapse, and sometimes convulsions. Moderate doses injected into a vein (lobeline), lead to fall of blood pressure and slow pulse, owing to vagus stimulation (central and peripheral), and, later, accelerated pulse and rise in blood pressure from stimulation of the vasoconstrictor ganglia. Edmunds found that a heart arrested by muscarine will begin beating again after the use of lobeline which appears, therefore, to stimulate the heart muscle. Like tobacco it increases secretion by stimulation of the sympathetic ganglia. Emesis is due to stimulation of the vomiting center and local irritant action on the stomach. Purging is probably due to stimulation of Auerbach's plexus and the drug is eliminated from the blood by the stomach and intestines. Lobelia relaxes spasm of the bronchioles by depressing the bronchomotor nerves, and increases secretion in its action as a nauseating expectorant.

While it first stimulates the respiratory center, in poisoning the center is paralyzed. Treatment in poisoning consists in the use of heart and respiratory stimulants, as caffeine, camphor, atropine and strychnine with heat externally.

Uses, Internal.—Hypodermatic.—Lobelia is used infrequently in human medicine and then only in bronchial asthma where it must be pushed to its physiological limit to relax spasm. This results frequently in emesis and is unpleasant. In bronchial asthma of dogs 20 minims of the tincture given every 15 minutes, till vomiting occurs, may give relief.

It has not proved of value in heaves of horses. The therapeutic use of lobeline depends directly upon its antispasmodic action in paralyzing motor nerves and in its causing emesis. Lobeline sulphate (gr. 1/10) combined in tablet (Abbott) with arecoline hydrobromide (gr.ss), and strychnine sulphate (gr.1/8) has been found most successful in colic of horses. Spasm and pain may be so quickly relieved that morphine will not be required and at the same time catharsis secured. Lobeline is especially favorable in colic in subjects of heaves as it relaxes the bronchioles while arecoline alone will increase dyspnea in these patients.

Lobeline acts most satisfactorily in overcoming motor excitement in azoturia or hemoglobinuria of horses, when given under the skin.

In tetanus of horses lobeline may relieve muscular spasms so that the animal is enabled to eat and drink, while it favors the action of cathartics. Given in conjunction with antitoxin, the use of slings, and maintenance of quiet and darkness, the drug has proven of great value.

Lobeline appears to be a most useful antidote in strychnine poison-
ing. If given experimentally to dogs after the drug has been ingested, the emesis and motor relaxation may prevent all toxic symptoms. It has even proven an antidote to strychnine when given 10 minutes after a lethal dose has been injected subcutaneously, and also when given prior to the injection of a toxic dose of strychnine. In strychnine poisoning in horses successful results have been reported by Quitman with lobeline, but emptying the stomach by tube would seem also indicated. One-half grain of lobeline has been given subcutaneously to dogs (10-lb. dog) with only emesis, purging and salivation resulting (Browne), so that the drug would not be regarded as very toxic in these animals.

Spasmodic conditions of dogs successfully treated by lobeline include chorea, eclampsia of bitches, and strychnine poisoning. In poisoning by any agent lobeline has an advantage over apomorphine in causing purging as well as emesis, and a hypodermatic tablet of gr. 1/60 is made for this purpose. A case is reported of strangulated hernia treated with lobeline resulting in so great relaxation that taxis was successfully performed, which was impossible before.

SECTION IV.—DRUGS ACTING ON THE SENSORY NERVES.

Class 1.—Depressing the Sensory Nerves.

Cocainæ Hydrochloridum. Cocaine Hydrochloride.*

C₉H₁₈NO₄ HCl. (U. S. & B. P.)

Synonym.—Chlorhydrate de cocaine, Fr.; cocain-hydrochlorid, G.

The hydrochloride of an alkaloid obtained from Erythoxylon coca and its varieties. Cultivated in Peru and Bolivia and introduced into medicine by Koller in 1854.

Derivation.—Cocaine hydrochloride is recovered by agitating an acidulated alcoholic solution of coca leaves with ether. The ethereal liquid is made alkaline with sodium carbonate and evaporated. The residue is purified, decolorized, neutralized with hydrochloric acid, and finally crystallized.

Description.—Colorless, transparent, monoclinic prisms, in flaky, lustrous leaflets or a white crystalline powder; odorless; permanent in the air; of a saline, slightly bitter taste, and producing on the tongue a tingling sensation followed by numbness of several minutes’ duration. Soluble in 0.4 part of water, 3.2 parts of alcohol, and in 12.5 parts of chloroform at 25° C.; soluble in glycerin, insoluble in ether. Its aqueous solution is neutral to litmus paper, and is levorotatory.

Dose.—H₃, gr.v-x, (.3-.6); D₃, gr. ⅛-⅜, (.008-.045).

Action External.—Solutions of cocaine (4-10 per cent.), applied to mucous membranes, produce perfect local anesthesia by paralyzing the sensory nerve endings. The functions of the nerves of special sense are abolished before those of ordinary sensibility. Stronger solutions para-

*These are also official:

Oleatum Cocainæ (5 per cent.). U. S. P.

Unguentum Cocainæ (4 per cent.). B. P.

Injectio Cocainæ Hypodermica (10 per cent.). B. P.
lyze the motor nerve terminations. The local application of cocaine causes pallor and shrinking of the mucous membrane. The local anesthesia and vascular constriction last from 15 to 60 minutes. If solutions stronger than 5% are used there may be some destructive action on protoplasm and cells, as some local necrosis if injected under the skin, or ulceration of the cornea, if dropped in the eye. Thus strong solutions used for surgery are more prone to be followed by inflammation but such are not required for production of local anesthesia.

Action Internal.—Digestive Tract.—Cocaine exerts a local anesthetic action upon the gastric mucous membrane, and in this way lessens the appetite and sometimes stops vomiting. Intestinal peristalsis is increased by moderate doses, but is decreased and destroyed by the paralytic action of large doses of cocaine.

Nervous System.—The general action of cocaine on the nervous system may be summed up in descending stimulation followed by depression, beginning with the cerebrum and affecting in order the cerebellum, medulla and spinal cord. Thus mental exhilaration and stimulation of the vital medullary and heat-producing centres (in poisoning) occur. Full doses of cocaine stimulate the psychical functions of the brain and cause intoxication, which is followed, in poisoning, by stupor and convulsions. The convulsions are mainly of cerebral origin, but may be due in part to irritation of the spinal reflex centres. These latter centres are first stimulated by toxic doses, but depression and paralysis of the spinal cord follows; the sensory before the motor tract. The sensory nerves are paralyzed and the motor nerves depressed by toxic doses. The voluntary muscles, and probably motor nerve endings, are stimulated by medicinal doses of cocaine, and the alkaloid relieves fatigue and, experimentally, more than doubles the response to stimuli in wornout muscles. Voluntary muscles are paralyzed by the local application of large quantities of cocaine. Cocaine is essentially a protoplasmic poison when applied even in dilute solution, directly to animal or vegetable cells, including epithelial cells, leukocytes, spermatozoa, muscle and nerves, and all motion or action of these instantly ceases.

Circulation.—The action of cocaine upon the heart and vessels is not very marked, except in poisoning. The alkaloid is, however, a slight cardiac stimulant in moderate doses, increasing the pulse rate and tension. The action upon the heart is caused, probably, by stimulation of the accelerator center and cardiac muscle. There is a brief initial stimulation of the cardio-inhibitory centre which is overcome by the muscular and accelerator effect. Vascular tension is increased because of stimulation of the medullary vasomotor centres, smooth muscle of the vessel walls, and because of the increased action of the heart. On the other hand, both small and large doses may diminish the pulse rate. Toxic doses depress and paralyze the heart muscle and vaso-constrictor centres, and rarely therapeutic doses, used in local anesthesia, may cause sudden collapse through some inexplicable action.

Respiration.—Cocaine is a respiratory stimulant in medicinal doses, but a paralyzant in toxic amounts. The respiratory centre is first stimu-
lated and the breathing is made deeper and quicker. Depression and paralysis of the respiratory centre follows; cyanosis supervenes, and the respiration is shallow and irregular. Death occurs from asphyxia.

Temperature.—The body heat is elevated, sometimes to an excessive degree, by poisonous doses of cocaine. Medicinal doses do not affect the temperature. The rise of temperature is said to follow stimulation of the thermogenetic center in the caudate nucleus.

Kidneys.—The greater part of the cocaine absorbed is oxidized within the body. The smaller part is eliminated by the kidneys. Experimental evidence concerning the influence of the alkaloid upon the secretion and composition of the urine is conflicting and indefinite. The amount of secretion probably depends upon the state of vascular tension and calibre of the vessels.

The Eye.—Cocaine is used very largely in the eye. It produces local anesthesia, constriction of the blood vessels and dilatation of the pupil with lowering of intraocular tension. The action on the pupil seems to follow stimulation of the terminations of the cervical sympathetic in the radial muscle of the iris.

Toxicology.—Moderate doses produce in dogs mental exhilaration and joyousness, so that they bark and jump about with delight. Poisoning with large doses (gr. 1/4 of cocaine to 2 lbs. of live weight) may be divided into three stages. In the first stage, there is restlessness, anxiety and terror, with rhythmical movements. Noises frighten the animal and he fails to recognize his master. The second stage is characterized by a joyful condition, in which dogs bark, dance about and lick people's hands. In the third stage, weakness and nervous phenomena appear,—as muscular twitching, rhythmical movements a pendulum-like motion of the head, convulsions and stupor. There is dyspnea, feeble pulse and failing respiration. In an experiment upon a Newfoundland dog, weighing about 100 lbs., conducted by the writer, there were no symptoms produced by 3 grains of cocaine under the skin, except dilation of the pupils and a constant lapping with the tongue. In man, an amount of cocaine exceeding gr. 3/4 should not be employed under the skin, or upon mucous membranes, and death has occurred in susceptible patients from even smaller doses. The most powerful action follows the use of cocaine in very vascular parts, as about the face. One-half a grain of cocaine given subcutaneously to a girl of eleven years old, was followed by a fatal result in 40 seconds, and the writer has seen violent convulsions produced by the instillation of a few drops of a 2 per cent. solution into the eye of a man. On the other hand, spontaneous recovery has obtained in the human subject after the ingestion of 22 grs. of the alkaloid. In the horse, a toxic dose of cocaine (5i) causes restlessness and excitement, muscular twitching and trembling, rhythmical movements of head (as nodding and weaving), dilated pupils and salivation, culminating within an hour in a state of acute mania and intense excitement. These symptoms are followed by gradual recovery after the lapse of a few hours. Three grains of cocaine given under the skin, will sometimes induce nervous excitement in susceptible horses. The treatment of dangerous forms of cocaine poi-
soning, with respiratory and heart failure, consists in the use of opium and rapidly acting stimulants, as morphine sulphate under the skin, nitroglycerin upon the tongue, and strychnine atropine and brandy subcutaneously. A short inhalation of ether has been shown to be a remarkably successful antidote in cocaine poisoning.

Uses External.—Cocaine and its synthetic chemical substitutes are the most valuable agents we possess to cause complete local anesthesia for surgical purposes. Cocaine in surgery can often be combined most advantageously with adrenalin. The operations most suitable for the hypodermatic application of cocaine are included in the following.

- Removal of tumors.
- Docking and pricking the tail.
- Tarsal tenotomy.
- Firing.
- Neurectomy.
- Herniotomy.
- Operations about the rectum, vagina and uterus.
- Examinations and operations about the larynx.

Opening of abscess.
- Injuries and operations upon the eyeballs and eyelids.
- Operations about the feet in horses.
- Operations upon mucous membranes.
- Laparotomy in bitches.

The alkaloid may also be employed to dilate the pupil for examination of the eye, and to detect lameness. In a case of doubtful foot lameness in the horse, injection of cocaine into the plantar nerve trunk, on either side of the leg and a little above the point of selection for plantar neurectomy, will often completely abolish sensation in the foot. This fact may be determined by pricking the soft parts above the hoof. If there is complete anesthesia of the foot, and the seat of lameness be situated therein, the horse will go sound while the anesthesia lasts. This method may be taken advantage of in the diagnosis of localized lameness elsewhere. If cocaine is injected over an area (suspected to be the cause of lameness), and the animal goes sound while the cocaine anesthesia lasts, the site of lameness becomes certain.

It has been discovered that injections of powerful cocaine solutions into a sensory nerve trunk will paralyze its sensibility throughout the peripheral distribution (regional anesthesia). When ligation of a limb, or part, can be secured between the operative field and the heart, the anesthetic action of cocaine is more profound and toxic symptoms are less liable to occur, since the drug is not drained away in the blood during the operation. Many operations can be performed under cocaine, as neurectomy, firing, tenotomy, etc., without casting the horse. In using cocaine for the removal of tumors or opening of abscess, the solution is injected at several points in a circle about the base of the tumor or abscess, and not in the inflamed tissue of the latter. Following the first injection, the succeeding applications may be made painless by inserting the needle within the area made anesthetic by the previous injection (circumferential anesthesia).

The amount of cocaine solution to be injected is of importance. This depends upon the strength of the solution, the weight and species of the animal, and the seat of application. A solution stronger than 4
per cent. is irritating to the eye. A ± or 2 per cent., or even a much weaker solution, will ordinarily produce anesthesia when introduced under the skin. In the horse, subcutaneous injection of a 5 or 10 per cent. solution may be made to the amount of 2 drams of the former, or 1 dram of the latter solution (cocaine, gr. 6), but hinders wound healing and may produce necrosis, since cocaine is a protoplastic poison. Larger doses may induce restlessness, excitement, etc., which, although not indicative of danger may interfere with operative procedures. When larger quantities are desirable, 2½ drams of a ± per cent. solution, or 5 drams of a 2 per cent. solution, may be employed (equivalent to 6 grs. of the alkaloid), or Schleich’s solution may be utilized. It is unwise to inject more than 10 grains of cocaine into horses, or more than gr.ii into large dogs, or more than gr. ¾ into small dogs, while a safe maximum for the cat is gr. ¼. The fatal dose for dogs is said to be 5 to 8 gr., and for horses 2 to 3 drams (Wooldridge).

Novocaine is usually preferred to cocaine in both human and veterinary practice (see p. 323).

It is commonly used in ½ to 2 per cent. solutions and almost any amount may be given subcutaneously in 1 per cent. solution without any fear of toxic action.

The writer would recommend generally the employment of a normal salt solution (4 grains sodium chloride to 1 dram of water), containing from ½ to 2 per cent. of novocaine or cocaine. These weaker solutions will usually cause complete and safe local anesthesia. The solutions should always be warm—at body temperature—and not over twenty-four hours old, as acid develops which interferes with the anesthetic action. They are most conveniently made by solution of cocaine tablets in salt solution at the time of operation. It is commonly advisable to add 5 to 10 drops of 1/1,000 adrenalin solution (see p. 449) to each ounce or two of novocaine or cocaine solution.

Ritter has secured most satisfactory general anesthesia in dogs by injecting intravenously 10 mls of a 1 per cent. solution of cocaine for small animals; and 5 mls of a 3 to 5 per cent. solution in normal salt solution for large dogs. The anesthesia came on in 2 to 5 minutes and lasted 15 to 30 or more minutes. Moreover there were no untoward results and operations on any part of the body could be painlessly done without any struggling on the part of the patient.

Both novocaine and cocaine have been used with success for work on a limb by injection into a vein between the site of operation and body. A tourniquet is first applied about the limb proximally to the point of injection.

Local applications to mucous membranes may be reapplied, once or twice, at intervals of five minutes, to secure perfect anesthesia. A larger quantity of cocaine than recommended above for hypodermatic use, should not be employed. Cocaine, as already stated, produces a primary astringent action and, when properly diluted and applied in the first stage of inflammation, it may prove a valuable abortive and sedative agent.
Hemorrhage from mucous membranes can be arrested by its topical application; coryza aborted, and hemorrhoids relieved by this method. Pruritus, about the anus and vagina, is allayed by cocaine. In relation to the eye, 5 to 10 drops (horse) of cocaine solution (1 to 4 per cent.) are employed for various purposes, embracing examination, removal of foreign bodies, operations, and the relief of suffering in acute inflammation resulting from natural causes or mechanical irritation. The following prescription is of value in superficial inflammatory and painful conditions of the eye:

R.
Cocaine hydrochlor.......................... gr.v.
Acid. borici...................................... gr.x.
Aq. dest. ad....................................... 3i.

M.
S. Instill a few drops into the eye hourly.

Injection into the eyeball is preferable to instillation for enucleation.

Solutions of cocaine should be freshly made, and must not be sterilized by boiling, although they should be made with sterile water, or, better, normal salt solution. The tablets supplied by pharmaceutical chemists are convenient for hypodermatic use. Ten grains of boric acid will preserve an ounce of cocaine solution for a month.

Spinal anesthesia has come into use in both human and veterinary practice. Leonard Corning was the pioneer having shown in 1885 that cocaine injected between the 11th and 12th dorsal spines caused analgesia of the lower limbs in man. The point of injection in animals is in the lumbo-sacral space. This is found by drawing a line connecting the spines of the lumbar and sacral vertebrae and another at right angles connecting the summits of the internal angles of the ilium.

Directly at the point of intersection of these lines is the place for puncture in the dog and cat and about 3⁄4 of an inch forward of this point is the site for puncture in the horse. The hair must be clipped and shaved from the dry skin and the site well swabbed with tincture of iodine and as soon as dry the puncture may be made with a boiled needle or trochar and canula.

The smaller animals should be on their side with back arched. The needle or trocar is thrust in perpendicularly till the resistance lessens and cerebro-spinal fluid drops from the needle. This proves entrance into the spinal canal. No more fluid should be lost than is to be replaced by the injection. Sepsis means death, so that the necessity of asepsis will be fully appreciated. Anesthesia affects chiefly the posterior portion of the body and hind limbs but the fore limbs are also partly anesthetic. This action begins in 2 to 10 minutes, is fully developed in 20 to 30 minutes, and lasts from 1 to 5 hours. While never generally accepted as a substitute in human surgery for ether, and while perhaps its use is diminishing, yet there is more reason for its employment in veterinary surgery on account of the expense of general anesthesia. The mortality from it has been about 3 per thousand in human surgery.
In addition the following undesirable results have been occasionally seen: sepsis and meningitis, 4 to 14 per cent. of failures to secure good anesthesia, collapse, retention of urine, chills, fever, vomiting, sweating, persistent paraplegia, pain in back and legs for months, nausea, cramps in the limbs, incontinence of urine, etc.

Cocaine or its substitutes must be sterile for spinal anesthesia. As cocaine cannot be boiled it may be dissolved in ether and when the ether has evaporated sterile water is added. A 2 per cent. solution of cocaine is commonly employed. Of this the dose is as follows: H., \(\frac{m}{x}xx \) to \(\frac{xlv}{xlv} \); Dog and Cat, \(\frac{m}{v}v \) to xv. The puncture may be made with the syringe attached to the needle for a handle. Then detach the syringe. After the spinal fluid drips from the needle which has entered the dura the syringe, already filled with the cocaine solution should be again attached to the needle and the proper amount injected. On removing the needle the puncture should be closed by collodion and cotton.

Rudolf Klapp (Deutsche Zeitschr. f. Chir. 1904, Vol. lxxi, p. 187) has experimented upon animals with spinal injections for the production of anesthesia, and finds by combining gelatin, adrenalin and cocaine, the toxic effect of the latter is wholly averted and that this combination is a safe and perfect anesthetic for dogs. Five mils of a sterilized 10 per cent. aqueous gelatin solution, containing \(\frac{m}{x}x \) of adrenalin (1-1000 solution) and 0.02 to 0.04 Gm. of cocaine, are then injected through the trocar and the puncture sealed with iodoform collodion.

The following operations have been performed painlessly under spinal anesthesia in the lower animals: neurotomy, tenotomy, cauterization, oöphrectomy, castration, operations on the uterus and rectum, urethrotomy, herniotomy, etc. Wherever local anesthesia is available spinal anesthesia should not be used on account of its much greater dangers but its field of usefulness is wider than in human surgery.

Use Internal.—Cocaine may be administered in aqueous solutions for the relief of persistent vomiting in dogs. The alkaloid is occasionally used as a stimulating and supporting agent in asthenic fevers and adynamic conditions of the human patient. The subcutaneous injection of cocaine (gr.iii) is of great value in heat prostration of horses. According to Quitman, no other agent equals cocaine for instilling courage and confidence in a horse that is down on the street and refuses, or is apparently unable, to rise. For this purpose it should be given in full medicinal but not toxic doses (gr.ss for each 100 pounds of live weight).

Procaïne. (Novocaine.)

Novocaine is the German name but now that the drug is made in America it is called procaine.

Procaïne, \(\text{NH}_2 \cdot \text{C}_6 \text{H}_4 \cdot \text{COCl} \cdot \text{H}_2 \text{N} \cdot (\text{C}_6 \text{H}_5)_2 \), occurs in colorless crystals very soluble in water. It is the latest and apparently the best substitute for cocaine as it is equal to cocaine as a local anesthetic and is one-seventh as toxic and much less irritating to the tissues—less, indeed, than either eucaine or stovaine.

One-half to two per cent. solutions are suitable for subcutaneous use. Dropped into the eye in 5 to 10 per cent. solutions it will anesthetize the eye so that operations may be done on the eyeball or lid. It does not constrict vessels and therefore should be combined with adrenalin—25 minims to 100 mils of procaine solution, using normal saline as a solvent. This combination is the best
local anesthetic we possess at present for safety and efficiency. Two or three
drams of a 3 per cent. solution injected into the nerve on either side of the limb
are sufficient in the diagnosis of lameness in the horse. Its action is increased by
combination with adrenalin and with the added hemostatic action this combination
is useful injected about the circumference of tumors to aid their painless removal.
Solutions keep well and may be repeatedly boiled.

Eucaine Hydrochlorate. Eucaine Hydrochlorate.

C₂₉H₄₇NO₄·HCl. (Non-official.)

This is a laboratory product, formerly known as eucaine hydrochlorate "B."
Eucaine is used in 2 per cent. aqueous solution in the eye, and in 10 per cent. on
mucous membranes, and is said to be harmless in any ordinary amount.

It is employed as a substitute for cocaine in the same manner and for the same
purposes, but with the following advantages: Safer, 0.414 as toxic; cheaper; does
not decompose on keeping in solution; can be sterilized by boiling; less irritating;
does not dilate the pupil; is a slight antiseptic.

Ophthalmologists find that the drug does dilate the pupil after several in-
stillations, and that it does irritate the already inflamed eye. It, moreover, does
not contract vessels when locally applied, and does sometimes produce poisoning
like cocaine, but much less frequently.

Stovaine. (C₁₄H₁₆NO₂·HCl). (Non-official.)

Occurs in small, lustrous scales, very soluble in water, acetic ether and alco-
hol. It is a synthetic product used as a substitute for cocaine but is only 6/10
as toxic; slower to induce anesthesia (15 to 30 minutes); and the anesthesia is of
longer duration (2 hours). Solutions may be boiled without harm to the drug.

It produces some vasoconstrictor relaxation, but solutions may be combined with
m₉ₓ of adrenalin solution to avert this. 3 to 5 grs. in 6 draums of sterile water
may be used safely and successfully in spaying bitches of setter size (gr.lii for
fox terriers). Two and one-half draums are injected intraperitoneally in the
region of the internal inguinal rings, on each side, and 1 dram into the skin
incision. After keeping the animal on its back for 20 or 30 minutes the operation
is begun (Eggleston and Miller).

Cocaine (gr. ½⁻¾) injected into the muscle of the abdominal wall in dogs,
along the line of incision, will induce anesthesia of the abdominal organs to a
considerable degree.

Stovaine is used in 5 per cent. solution to produce anesthesia by intraspinale
injection. The dose of this solution for this purpose is for horses, 5⁻ιιι; D.,
m₂₅ₓ⁻ₓₓₓ; Cats, mₓ⁻xBB. For excision of the eyeball in the horse one dram of a 5
per cent. solution is injected under the conjunctiva at four or five points.
In the dog one dram of a 2 per cent. solution is sufficient for this operation. For
subcutaneous use 1 to 2 per cent. solutions are suitable.

Alpylene is another substitute for cocaine and is closely related in composition
with stovaine. It is not, however, superior to cocaine since it is both more toxic
and irritating.

Apothesine. (Non-official.)

Apothesine is a local anesthetic, the cinnamic erster of gamma-diethylamin-
prophyl-alcohol hydrochloride. It occurs in white crystals readily soluble in water
and alcohol, slightly so in ether and acetone. It is slightly less toxic than no-
vojaine and is used in 1 and 2 per cent. solution, with or without adrenalin. It
can be sterilized by boiling, and does not come under the narcotic law. Apo-
thesine is widely used and is equal to novocaine, except that its anesthesia is not so
lasting.

Yohimbine Hydrochloride. C₂₂H₂₈N₂O₄·HCl.

Yohimbine is obtained from the bark of the yohimbe (Corynanthe
yohimbe), and occurs in silky, prismatic crystals, or as an amorphous, white
powder, slightly soluble in water, soluble in alcohol, ether, chloroform and acids.
Yohimbine alters and turns yellow on exposure to air and light, but its hydro-
chloride is permanent and is therefore to be preferred.

Dose.—H. & C., gr. 3₄⁻½₂, (.045-.01); Sh. & Sw., gr. ½₂, (.03); D., gr.
1/12-1/6, (.005-.01); small dogs, gr. 1/120, (.0005).
Tablets are sold under the name of vetol for use in veterinary practice. The stronger tablets contain Gm. .1, or gr. 1½ of yohimbine hydrochloride, are colored red and are suitable for the larger animals. The weaker tablets are gray and contain Gm. 0.01, or gr. 1/6 of yohimbine and are suitable for sheep and swine, or divided, for dogs. Treatment should be begun with the smaller doses thrice daily and gradually increased to the larger if no effect is observed from the smaller doses. The drug is given with food or drinking water, or in tablet form.

Action.—External.—Yohimbine, in 1 to 2 per cent. solution, has a decided local anesthetic action similar to that of cocaine on the nerve trunks and terminations. Unlike cocaine it does not contract vessels (dilates them) nor cause mydriasis in the eye. It also resembles cocaine in its toxic action on the central nervous system.

Action.—Internal.—Circulation.—Yohimbine occupies rather a unique position in medicine. Its peculiar therapeutic action consists in stimulation of the sexual organs. Cantharides, used for this purpose, is a powerful irritant to the urinary tract which is not the case with yohimbine.

Strychnine, phosphorus, and alcohol stimulate the spinal sexual centres but are uncertain aphrodisiacs. Yohimbine has a specific action in causing local dilatation of the vessels of the testicles, ovaries, penis and vulva so that swelling and congestion of these parts occur.

The testicles of rabbits, under its influence, become many times their natural size and the external genitals of the larger female animals may be seen to become swollen. Moreover, the lumbar spinal centres concerned with erection and the sexual act are directly excited by the drug. The sexual reflexes are made more acute for this reason and because of the increased irritability of the external genitals.

In the male frequent and prolonged erections appear and sexual excitement is marked in both males and females following its ingestion.

The author has noted ovarian pain in women taking the drug which may be attributed to swelling of the ovaries. The vascular dilatation is due to direct action of yohimbine on the vessel walls. The cutaneous vessels also dilate, the ears become warmer and redder and the combs in fowl become more brilliant. Vascular dilatation of the internal organs is said to occur also, with marked lowering of blood pressure.

The heart is not affected by ordinary doses.

Nervous System.—Large doses stimulate the central nervous system so that mental excitement and exhilaration (in man), and restlessness ensue.

Respiration.—Even medicinal doses stimulate the respiratory centre and the movements become deeper and more rapid.

Mammary Gland.—The action on this gland is similar to that on other parts of the sexual apparatus and congestion and increased milk secretion are observed.

Toxicology.—Large doses induce restlessness and excitement, rapid pulse and respiration, with fall in blood pressure. Toxic amounts cause convulsions and paresis, diarrhea, salivation, dyspnea and heart weakness. One-half a grain is said to have proved fatal to a dog.

Uses.—Yohimbine is indicated in functional impotency in the male
due either to lack of sexual desire or to lack of sexual power. Impotency may be symptomatic as of sexual excess, irritability, chronic prostatitis or vesiculitis, malnutrition, anemia, overwork and obesity. But in apparently healthy animals where no removable cause can be discovered yohim- bine offers most hope of a cure. It stimulates sexual desire by exciting the centres and peripheral reflexes, and sexual power in the male by causing erections.

In the female also lack of sexual desire and absence of estrum may be corrected by the drug.

Yohimbine appears to be more successful in veterinary than in human practice where the failures in the treatment of impotency are more frequent than the successes. In impotent bulls, stallions, rams, boars, and dogs, and in barren and frigid mares, cows, ewes, sows and bitches the drug often acts favorably.

Its use has been extended to other conditions. Thus it is reported to have been successful in the treatment of chronic metritis by occasion- ing active uterine hyperemia. As a nerve stimulant it has been employed with supposed favorable results in bovine parturient paraplegia and in paraplegias of dogs. The drug is rather expensive at present.

SECTION V.—DRUGS ACTING ON THE SECRETORY NERVES.

Class 1.—Pilocarpus and Pilocarpine.

Pilocarpus. Pilocarpus. (U. S. P.)

Synonym.—Jaborandi, B. P.; the dried leaflets of Pilocarpus jaborandi Holmes, known in commerce as Pernambuco jaborandi, or of Pilocarpus microphyllus Stapf., known in commerce as Maranham jaborandi (Fam. Rutaceae), yielding not less than 0.6 per cent. of alkaloids of jaborandi.

Habitat.—Brazil in the neighborhood of Pernambuco.

Description.—Pernambuco jaborandi. Leaflets when entire, oval, oblong or elliptical, from 4 to 10.5 cm. in length and from 2 to 4 cm. in breadth; peculiarly aromatic when crushed; taste bitterish, becoming somewhat pungent and having a sialogogue effect. Maranham jaborandi. Leaflets rhomboidally oval to obso- vate, or elliptical, from 1.5 to 5 cm. in length and from 1 to 3 cm. in breadth, the lateral ones nearly sessile, the terminal ones on margined petioles. The powder is dark green or greenish-brown.

Constituents.—1. Pilocarpine, C_{15}H_{30}N_{2}O_{4} (.25-5 per cent.) is the alkaloid to which jaborandi owes its principal effect. 2. Jaborine, C_{12}H_{22}N_{2}O_{6} an alkaloid resembling atropine in its action on the heart, pupils, intestines and salivary glands. It occurs occasionally as an impurity in commercial pilocarpine, to which it is antagonistic. It is soluble in alcohol. (Recent investigators deny the action or even existence of such a substance in pilocarpus.) 3. Pilocarpidine (C_{10}H_{14}N_{2}O_{5}), an alkaloidal product of the decomposition of pilocarpine, which is inert. It is soluble in alcohol. 4. A peculiar acid. 5. A volatile oil, chiefly pilo- carpene, C_{16}H_{30}.

Dose.—H. & C., 5ii-iv, (8-15); Sh. & Sw., 5ss-1, (2-4); D., gr-v-5i, (.3-4).

PREPARATIONS.

Fluidextractum Pilocarpi. Fluidextract of Pilocarpus. (U. S. P.)

Made by maceration and percolation with diluted alcohol, and evaporation, so that each 100 mls of the fluidextract contains 0.6 Gm. of the alkaloids of pilo- carpus.

Dose.—H. & C., 5ii-iv, (8-15); Sh. & Sw., 5ss-i, (2-4); D., mlv-3i, (.3-4).
PILOCARPINE

Extractum Jaborandi Liquidum. (B. P.)

Dose same as above for fluidextract.

Pilocarpine Hydrochloridum. Pilocarpine Hydrochloride.

C₃H₆N₂O₂HCl. (U. S. P.)

Synonym.—Chlorhydrate de pilocarpine, Fr.; pilokarpin-hydrochlorid, G.

Derivation.—The hydrochloride of an alkaloid obtained from pilocarpus, with alcohol and hydrochloric acid, by distillation and evaporation. The residue is dissolved in a slight excess of ammonia and chloroform, shaken with water, and neutralized with hydrochloric acid. Crystals of the hydrochloride form on evaporation. The salt is purified by recrystallization.

Properties.—Colorless, translucent crystals, odorless and having a faintly bitter taste; hygroscopic on exposure to the air. Soluble in 0.3 part of water and in 3 parts of alcohol; in 366 parts of ether; insoluble in chloroform.

Dose.—H., dialogogue, gr.i-ii, (.06-.12); cathartic, gr.ii-v, (.12-3); C., cathartic, gr.v-x, (.3-.6); H., diaphoretic, gr.vi-xii, (.36-.72), dangerous; Sh., gr.i, (.06); D., gr. 1/6-1/3, (.006-02).

Synonym.—Azotate de pilocarpine, Fr.; pilokarpin-nitrat, G.

Properties.—Shining crystals, faintly bitter-tasting; odorless; permanent in the air. Soluble in 4 parts of water and in 75 parts of alcohol.

Dose.—Same as for hydrochloride.

Action of Pilocarpus and Pilocarpine

Internal.—Alimentary Canal.—Pilocarpine increases enormously salivary secretion, and, in a less degree, the gastric and intestinal secretions. It stimulates peristaltic action of the stomach and bowels as well, and acts as a purgative. Salivation is due to direct excitation of the secretory nerve (chorda tympani) endings in the gland cells. Salivation occurs when pilocarpine is injected into the gland and prevented from entering the general circulation; also when the secretory nerves are severed. The action on the salivary glands is set aside by atropine. The parotid, submaxillary, and sublingual glands become somewhat tense and tender under the influence of pilocarpine, and the saliva is rich in salts and ptyaline, and contains a slight excess of urea. The unstripped muscle of the stomach and intestines is stimulated by pilocarpine through its action on the effereent nerve endings and muscular tissue.

Circulation.—Pilocarpine increases leukocyte formation in the blood. In the lower animals the alkaloid stimulates the vagus endings in the heart. The action is succeeded by depression of the vagus terminations and, after large doses, by depression of the heart muscles and vagus centres.

The pulse is then at first slow, next it becomes accelerated, and finally slow and weak with loss of tension.

Sometimes in man, and occasionally in dogs, the pulse, at the beginning, is frequent from vagus centre depression. Slight initial stimulation of the vaso-constrictor center is followed by paralysis—after toxic doses.

Respiration.—The respiration is not directly affected by the drug, in moderate doses, but the bronchial secretions are greatly increased, the bronchioles are much constricted (stimulation of ends of bronchomotor nerves), and in poisoning there are, in consequence, edema of the lungs and dyspnea. Weakness of the circulation and contraction of the bronchial muscles (lack of oxygen) account for the edema and dyspnea.
There is also great excess of secretion which may result in a drowning process. A poisoned animal is drowned in its own secretion. The respiration becomes weak and slow and death occurs from asphyxia after lethal doses.

Nervous System and Muscles.—Medicinal doses do not cause any functional disturbance of the nervous system, but very large doses excite the spinal motor tract and reflex centres and cause convulsions in frogs, succeeded by spinal depression and paralysis. The latter is due in part to an influence on the muscles themselves. Tremors occur occasionally in man and the domestic animals in poisoning. The sensory nerves escape unscathed. The involuntary muscles are stimulated throughout the body, owing to the direct action of the drug upon their motor nerve terminations.

Skin.—Moderate doses of pilocarpine stimulate but slightly the secretion of sweat in the lower animals, but in man the secretion is enormous (1 qt. to 1 gal.). The salivary secretion appears to supplant that of the skin in the domestic animals, unless very large doses are employed (H., gr.vii-xii), which cause diarrhea, salivation and loss of body weight (40 to 60 lbs.), and may entail pulmonary edema and heart failure. In the horse, after a therapeutic dose of pilocarpine is given under the skin, salivation occurs within 10 minutes and may last 2 hours, but the skin is only slightly moist—if at all. The secretory nerve terminations are stimulated. The secretions of tears, nasal mucus and milk are slightly increased in the same manner, and the growth of hair is rendered more luxurious.

Temperature.—The temperature is reduced by evaporation from the skin, if there is much sweating.

Genito-Urinary Organs.—Pilocarpine exerts a slight and uncertain oxytocic action on the pregnant uterus and has sometimes precipitated parturition in pregnant animals at full term. The unstriped muscle of the spleen and bladder is stimulated, and micturition is frequent. Pilocarpine, in repeated small doses, augments the flow of urine and probably increases tissue waste and the excretion of urea by its general action on the secretions. It is eliminated unchanged by the urine.

Eye.—Pilocarpine contracts the pupil when applied to the eye; it also reduces tension of the eyeball and induces contraction of the ciliary muscle. The myosis is due to stimulation of the peripheral oculomotor nerve endings. When the alkaloid is given internally it may contract the pupil, but jaborandi, or the fluid extract, is less likely to do so on account of the opposing alkaloid (jaborine), which tends to dilate the pupil.

Summary.—Pilocarpine possesses two important actions. 1. To increase secretions (stomach, pancreas, intestines, salivary glands, sudoriparous, lachrymal and mammary glands, kidneys, bronchial and nasal mucus membranes, and ear). 2. To stimulate the involuntary muscles (stomach, intestines, heart, bronchial tubes, uterus, bladder, spleen, vessels and iris). Both actions are peripheral and are exerted on the secretory and motor nerve terminations.

Administration.—Pilocarpine is given usually when an immediate
PILOCARPINE

Effect is desired. Therefore the hydrochloride or nitrate is employed subcutaneously. If prescribed in combination with eserine, the sulphate of both alkaloids may be used, or eserine sulphate and pilocarpine hydrochloride may be injected separately.

Toxicology.—Symptoms appear in five or ten minutes after the subcutaneous injection of pilocarpine, and in fifteen to twenty minutes after the injection of jaborandi. Salivation alone occurs after small doses, but with toxic quantities there are present salivation, accompanied by more or less sweating, contracted pupils, intestinal colic, purging and perhaps vomiting, a slow, weak pulse, and dyspnea. Muscular tremors are observed sometimes in man, and convulsions in frogs, but spasmodic movements are uncommon in the domestic animals. Dogs have been killed by gr. 3/4 of pilocarpine. The administration of an amount larger than 5 grs. of the alkaloid to horses, subcutaneously, is attended with danger. Cattle withstand as much as 18 grains of pilocarpine subcutaneously without a fatal result. Atropine is the physiological antagonist of pilocarpine in relation to the heart, secretions, pupils, and, in large doses, probably to the intestines. On the other hand pilocarpine is not nearly so efficient an antidote to atropine as atropine is to pilocarpine. Enormous amounts of pilocarpine are required to antagonize small doses of atropine.

So that it has not proved very useful in atropine poisoning and as an antidote an amount should be given at least 4 times that of the atropine taken.

Atropine should be given along with strychnine, caffeine and artificial respiration, in jaborandi or pilocarpine poisoning.

Uses External.—The fluidextract of pilocarpus, 1 part, is often used with tincture of cantharides, ½ part, and alcohol 2 parts, for the cure of alopecia; or as follows.

R. Fluidextracti pilocarpi Tincturæ cantharidis 3ss Glycerini Petrolati liquidi .. 3i. M. S. Apply externally.

Pilocarpine stimulates the skin in its elimination, and is sometimes of service in chronic eczema, psoriasis, prurigo and chronic urticaria.

Uses Internal.—The chief value of pilocarpine in veterinary medicine consists in its use as a purgative to stimulate peristaltic action, and, to a certain extent, secretion—in combination with physostigmine—in obstinate constipation of horses, and in impaction of the rumen and omasum, and in acute gastritis of cattle (pilocarpine, gr.iii, with eserine sulphate gr.i, subcutaneously). It is also given in colic, and in obstructions from twist and intussusception, with physostigmine. Pilocarpine has been recommended in pneumonia and bronchitis as an expectorant but its tendency to pulmonary edema and heart weakness would contraindicate its use in these disorders. The alkaloid is a good substitute for eserine for application to the eye (in ½ to 1 per cent. solution), and is less painful. Jaborandi is employed to remove waste matters from the blood and sys-
tem (in nephritis and effusions), but is of little value in veterinary practice, compared with its efficiency in human medicine, on account of its feeble sudorific action. It has been recommended (gr. 1/12-1/6, subcut.) in dropsy of cardiac origin, not uncommon in dogs, but is dangerous, since it tends to produce pulmonary edema and heart weakness. For the same reason it is inadvisable in pleuritic effusions and renal dropsy, and in all three conditions it is inferior to purgatives and diuretics stimulating to the heart, as caffeine and theobromine, and paracentesis. Pilocarpine is highly recommended by the Germans in cerebral and spinal meningitis, to assist absorption of effusion. It is recommended in chronic rheumatism as an eliminative, and in acute inflammation of the brain, and it may be employed to stimulate the gland in chronic idiopathic parotitis. Small doses of pilocarpine have been employed successfully to stimulate a failing milk secretion, and to prevent excessive sweating in general debility. Jaborandi relieves dry throat and excessive thirst. Obesity, in robust dogs, may be treated with pilocarpine under the skin, in one-half grain doses daily. Success sometimes attends this method. The drug is contra-indicated when there is impairment of the respiratory functions, a weak or fatty heart, and in unconsciousness, when excessive secretion may obstruct the air passages. Also it is inadvisable in pregnancy, on account of the danger of abortion; and in conditions where swallowing is difficult (pharyngitis, tetanus) because of the profuse salivation.

SECTION VI.—DRUGS ACTING ON THE HEART.

Class 1.—Increasing the Force and Decreasing the Frequency of the Heart.

Digitalis. Digitalis.

Synonym.—Digitalis folia, B. P.; foxglove, digitalis leaves, E.; digitale, feuilles de digitale pourprée (de grande digitale), Fr.; fingerhutkraut, G.

The carefully dried leaves of Digitalis purpurea Linné (Fam. Sirophulariaceae). In the form of the official tincture the minimum lethal dose should not be greater than 0.006 mil of tincture for each Gm. of body weight of frog.

Description.—Leaves, when entire, attaining a length of 30 cm. and a breadth of 15 cm., ovate to oval, abruptly contracted into winged petioles; thin, dull, pale green or gray and densely pubescent on the under surfaces; odor slight, characteristic; taste strongly bitter.

Constituents.—The active principles of digitalis are four glucosides; the three first represent its stimulant action. They are:

1. Digitoxin, the most poisonous and active. Said to be cumulative. It occurs in crystals, soluble in alcohol, and chloroform, slightly in ether, and insoluble in water.

Dose.—Gr., 1/6-1/4 (.008-.015); D., gr. 1/250-1/50 (.00025-.00125).

2. Digitalein, an amorphous, bitter substance, soluble in water and alcohol and non-cumulative.

Dose.—H., gr. 1/6-1/4 (.008-.015); D., gr. 1/100 (.0006).

3. Digitalin, a bitter, crystalline body, soluble in alcohol, and sparingly soluble in water and ether.

Dose.—H., gr. 1/6-1/4 (.008-.015); D., gr. 1/200-1/100 (.0003-.0006).

4. Digitonin* (C$_3$H$_4$O$_3$), resembling, or identical with, saponin of senega.

*There exists another glucoside in digitalis—digitophyllin—which has been insufficiently studied.
Soluble in water. It is a heart depressant, muscular paralyzant and powerful irritant, besides being antagonistic to digitalis.

In addition to these principles, there are: 5. Digitin, an inert body. 6. Digitalic and antirrhinic acids. 7. Tannin, coloring matters, starch, sugar, gum, a volatile oil, salts, etc., common to most vegetables.

Five substances are found in commerce:
1. Nativelle's digitalin (C_{25}H_{36}O_{15}), occurring in white crystalline tufts composed of needles. It is bitter, and soluble in alcohol and chloroform; insoluble in water or ether. It contains digitoxin, digitalin, digitalein and digitonin, but chiefly digitoxin, and is cumulative.

 Dose.—H. & C., gr. $\frac{1}{4}$-$\frac{1}{2}$, (.015-.03); D., gr. 1/60-1/30, (.001-.002).

2. Homolle's or Quévenne's digitalin, an amorphous, whitish powder, or small scales; very bitter, inodorous, and soluble in alcohol and in 2,000 parts of water. It is composed largely of digitalin, with a little digitoxin.

 Dose.—H. & C., gr. $\frac{1}{4}$ (.015) = gr. $2\frac{1}{2}$ of digitalis leaves; D., gr. 1/60-1/30 (.001-.002) = gr. $1\frac{1}{2}$-3 of digitalis leaves.

3. German digitalinum purum, consisting chiefly of digitalein with some digitalin and digitonin.

 Dose.—H., gr. ss-i, (.08-06); D., gr. 1/60-1/30, (.001-.002).

 Neither Nativelle's nor Homolle's digitalin form a complete substitute for digitalis, and their use is not recommended. Schmiedeberg's digitalin, however, is said by eminent authority to be the best substitute. This preparation is the digitalin "German" of Merck, and may be given in the same doses as Homolle's digitalin. No one glucoside of digitalis represents the action of the whole drug, as obtained by use of the tincture or fluidextract.

4. Digitoxin (too irritating for hypodermic use), see above for doses. 5. Digitalin, see above for doses. While there are at least 4 different "digitalins" on the market, none is the real glucoside but they consist of mixtures of the glucosides and do not represent the full therapeutic value of digitalis.

Incompatibility.—Digitalis is incompatible with tannic acid, lead acetate, cinchona and ferric salts.

Digitalis Folia Dose.—H., gr. x-5i, (.6-4); C., 5ss-iss, (2-6); Sh. & Sw., gr. v-xxv, (.3-1); D., gr. ss-iii, (.03-2).

Preparations.

Fluidextractum Digitalis. Fluidextract of Digitalis. (U. S. P.)

Made by maceration and percolation with alcohol and water, and evaporation so that 1 mil = 1 Gm. of the crude drug. The minimum lethal dose should not be more than 0.0006 mil for each gram of body weight of frog.

 Dose.—H., m x-5i, (.6-4); C., 5ss-iss, (2-6); Sh. & Sw., m v-xxv, (.3-1); D., m ss-iii, (.03-2).

Tinctura Digitalis. Tincture of Digitalis. (U. S. & B. P.)

Made by maceration and percolation of powdered digitalis (100), with sufficient alcohol and water to make 1,000. (U. S. P.)

 Dose.—H. & C., 5ii-iv, (8-24); Sh. & Sw., m xxx-5iss, (2-6); D., m v-xxx, (.3-2). Lethal dose 0.006 mil for each gram of body weight of frog.

Infusum Digitalis. Infusion of Digitalis. (U. S. & B. P.)

Digitalis, 15; cinnamon water, 150; boiling water, 500; cold water to make 1,000. By maceration. (U. S. P.) The infusion is not so good a preparation as the tincture or fluidextract because the most powerful glucoside, digitoxin, is not soluble to any extent in water.

 Dose.—H. & C., 3ii-iv, (60-180); Sh. & Sw., 5ss-i, (15-80); D., 5i-iv, (4-15).*

Digitalalone is a watery, fluidextract corresponding in strength to the tincture (10 per cent. of crude drug) preserved by admixture with chloretone (0.6 per cent.) and representing all the active principles of digitalis. It is moreover standardized by physiological tests and is sterile.

 It is excellent, therefore, to use under the skin in emergencies as in heart

*The infusion contains chiefly digitoxin and digitalein, on account of their solubility in water, and therefore is lacking in the most stimulating principles.
failure from disease, after operations, and in shock and poisoning. Two other preparations are of value for injection into vein, muscle, or under the skin. (1) Digipuratum, of which 1 tablet or 1 ml = gr. 1½ of digitalis, is an extract freed from digitonin and a mixture of digitoxin and true digitalin. (2) Digalen is a solution of digitoxin or digitalein in water, alcohol and glycerin, and is given intramuscularly or intravenously in the same dose as the tincture by mouth. It is not so reliable as digipuratum. The tincture or fluidextract should not be given under the skin because they are precipitated in the tissues. The action of digitalis being slow, such drugs as alcohol, ammonia and camphor should first be resorted to in heart failure.

Action of Digitalis.

External.—None.

Internal.—Alimentary Canal.—Digitalis in large doses is a gastrointestinal irritant, and in poisoning causes nausea, colic, purging, and vomiting in animals capable of the act. It has been shown that vomiting is due to irritation of the vomiting center by large doses and occurs when the drug is given under the skin.

Circulation.—The dominant action of digitalis is expended upon the heart and blood vessels. After medicinal doses we find the pulse becomes: 1. Slower. 2. Fuller and stronger. 3. More regular in rhythm, if previously irregular. In poisoning, these phenomena are reversed and the pulse is: 1. Rapid. 2. Weak. 3. Irregular. The therapeutic effects following moderate doses are due to: 1. Stimulation of the heart muscle, and perhaps its contained ganglia (pulse stronger and somewhat less frequent). 2. Excitation of the vagus centre and the vagus cardiac terminations (pulse infrequent). 3. Stimulation of the muscular walls of the vessels and vasomotor centres (increased vascular tension). When given by the mouth in therapeutic doses digitalis often does not cause either general vascular constriction or rise in blood pressure. The laboratory results are obtained by large doses given intravenously. Clinically, digitalis acts by favorably altering an abnormal flow and distribution of blood, owing to venous stasis, without necessarily increasing blood pressure. In consequence of the action on the heart the ventricular contractions are complete and forcible (stimulation of the heart muscle); and the diastolic period is lengthened (increased dilatation of the ventricle owing to vagus stimulation); therefore, more blood enters the viscera and more is squeezed out with each contraction. In poisoning, the symptoms noted above follow: 1. Excessive irritability of the heart muscle (pulse rapid). 2. Insufficient filling of the vessels and paralysis of the vessel walls (pulse weak). 3. Irregularities of rhythm occur (pulse irregular). There may be several systoles with scarcely any diastolic periods; the heart may beat slowly and weakly at one time, and rapidly and strongly at another. All sorts of indescribable irregularities in rhythm may be seen. At one time the heart beats slowly and weakly; at another time the heart beats rapidly and strongly. The heart, during this irregular toxic period, is seen to be unequally affected, in that one portion (the apex) may be firmly contracted while the rest of the ventricle is dilated. Moreover, the auricles and ventricles do not act synchronously, owing to inhibition of impulses (heart-block) from auricle to ventricle. The
irregularities and rapidity of rhythm increase more and more (delirium cordis), until both auricles and ventricles lapse into fibrillary contractions, and death in mammals occurs in diastolic arrest with dilatation to the extreme limit. Recent work shows that in the last stage of poisoning by digitalis irritability of the heart muscle accounts for the acceleration of the heart, while the fact that one pair of chambers is acted upon more readily than the other pair explains the arrhythmia. The nutrition of the heart is improved by digitalis in various ways. The coronary arteries are filled from the aorta with the most highly oxygenized blood in the body, during ventricular systole, but their finer ramifications are supplied during diastole. Digitalis increases pressure in the aorta and prolongs diastole, both augmenting coronary flow. The more forcible systole aids in completely emptying the coronary veins. Experimentally digitalis solution flowing through the coronaries constricts them. But it is highly improbable that this happens with clinical doses, while digitonin (also adrenalin and caffeine) has been found to actually dilate coronary vessels. The normal pulsations of the heart and arteries create a kind of self-massage of these parts, causing a sucking in and expulsion of blood and lymph through the vessels of the heart and arteries—a process vital to their nutrition. Drugs stimulating the circulation (digitalis) thus greatly increase the self-massage and nutrition of the heart and vessels.

It must be especially emphasized here that the peculiar and beneficial action of the digitalis series is due mostly to its action in directly stimulating the heart muscle which results in this organ doing two and one-half times its usual work (Gottlieb and Magnus).

In the frog the action of digitalis in exciting cardiac contractions is much more marked than in mammals. Here the ventricular contractions become longer and stronger and the rest periods shorter and weaker until in lethal poisoning the heart stops in one prolonged systole with complete obliteration of the ventricular chamber. The physiologic standard consists in 0.007 Gm. digitalis per Gm. of frog causing systolic arrest of the heart. The slowing of the rhythm in the frog is due to prolonged systole. In mammals slowing in rhythm is due to both prolonged systole and diastole, mainly the latter.

Slowing of the heart owing to increased diastolic rest would naturally diminish the total output of the heart but with medicinal doses of digitalis the stimulating effect on the heart muscle is much more marked than vagus stimulation. When diastole is much prolonged by an over-dose of the drug then the total output of the heart is actually lessened. In the normal mammalian heart dilatation of the ventricles is favored by digitalis but, in the heart dilated by disease, the dilatation may be overcome by the drug’s action in stimulating the heart muscle.

The action of digitalis on the heart is more pronounced in dogs and sheep than in horses and cattle. The characteristic effect of digitalis is observed when it is applied locally to the isolated nerve-free apex, or when the vagi are previously cut or paralyzed by atropine, and when the spinal cord is destroyed. These facts show that the heart muscle is influenced. That the peripheral vagi are stimulated, is shown by the fact that an amount of galvanic stimulation of the vagi, ineffective before poisoning,
will, after exhibition of digitalis, cause diastolic arrest of the heart. In
regard to the vessels, experiments conducted on the terrapin exhibit the
fact that when the vessels are deprived of their nerve supply, the heart
excised, and an artificial circulation substituted, even then vascular con-
traction and retardation of flow will occur under the influence of digitalin
added to the factitious blood. The resultant of the various actions of
medicinal doses of digitalis is increased work of the heart, so that more
blood is pumped throughout the body in any given unit of time. We may
sum up the action of digitalis on the circulation as follows:
1. It increases the force of cardiac systole.
2. It causes more blood to be expelled during each systole.
3. It slows the heart, chiefly through prolonging diastole.
4. It acts in a certain degree to cause vaso-constriction and in-
creased blood pressure, but this is often not in evidence with therapeutic
doses by the mouth.
5. It alters the distribution and rate of flow of blood in various
parts of the body through its stimulating effect upon the heart.

Respiration.—The respiratory centres are only influenced by toxic
doses, being first stimulated and then depressed by digitalis: the respira-
tion is first rapid and deep, and later weak and imperfect.

Nervous System and Muscles.—These are not influenced by therapeu-
tic doses of digitalis. Toxic quantities cause loss of reflex action,
muscular weakness, vomiting, and convulsions in the frog. The first two
phenomena are due to primary stimulation of the inhibitory reflex centres
of Setschenow in the medulla, followed by general paralysis of the spinal
cord, and direct depression of the motor nerves and muscles; while the
convulsions are also caused by stimulation of the medulla.

Temperature.—The temperature is unaffected by medicinal doses.
Toxic doses reduce temperature. Fever is lowered by large doses of
digitalis, but it is rarely safe to use the drug as an antipyretic. More-
over, digitalis is sometimes inoperative as a heart stimulant in fever,
because the functional activity of the vagus centres and peripheral termi-
nations is depressed and insensitive to the action of the drug.

Kidneys.—Metabolism and Elimination.—The influence of digitalis
on the amount of urinary secretion is variable. It may exert a slight
stimulating effect upon the renal secreting cells, (albumin and blood in
urine in poisoning). The consensus of opinion among the best authori-
ties is, however, that digitalis exerts little direct action upon the renal
epithelium or blood vessels but that it acts as a diuretic chiefly in over-
coming a poor circulation (low blood pressure and venous stasis, or
obstructed venous flow from the kidneys) in heart weakness. The effect
of digitalis on tissue waste is uncertain and the mode of its elimination
is unknown. Experiments relative to the composition of the urine are
conflicting. The smooth muscle of the uterus is said to be stimulated to
contraction by digitalis.

Cumulative Action.—Digitalis and strychnine are said to be cumula-
tive in their action. Evidence is stronger in the case of the former drug
than in that of the latter. By cumulative action is meant sudden transi-
tion from a therapeutic to a toxic effect. This may be due to three causes. 1. Tardy absorption. 2. Increasing susceptibility. 3. Delayed elimination and accumulation of the drug in the system. The cumulative action of digitalis is chiefly due to the latter cause. It should never be administered in full medicinal doses uninterruptedly for any considerable length of time.

Toxicology.—Poisoning may occur from large single doses within 3 to 10 hours of their ingestion, and last for 16 or more hours with a fatal result; or may appear suddenly after the administration for several days of large medicinal doses (cumulative action). A minimum fatal dose for the horse is about 5vi of digitalis, or gr.iss of Homolle’s digitalin. For dogs, 3i of digitalis, or gr. 1/4 of digitalin. Cattle take enormous doses of digitalis by the mouth without toxic effect.

Large doses may, however, induce abortion and a dose of two and a half drams is said to have caused premature labor in a cow.

The symptoms exhibited are chiefly concerned with the digestion and circulation. They consist in dullness, lassitude, loss of appetite, nausea, flatulence, diarrhea, infrequent, full pulse (reduced 6-10 beats in the horse), and contracted pupils. There is vomiting in dogs. In fatal cases these symptoms are followed by severe colic and tympanites; rapid, feeble, dicrotic, irregular or intermittent pulse (120-140 in horses), while the heart may be heard and felt beating wildly and strongly, and a systolic blowing murmur can frequently be detected. This is due to mitral or tricuspid regurgitation caused by irregular contraction of the columnæ carnae. The pulse is imperceptible because of the failure of the heart to fill the vessels. The extremities are cold, the eye is protruding, and salivation occurs. Bloody diarrhea is very often present and the urine may be suppressed. The breathing finally becomes difficult and death ensues within a few hours, or as late as several days.

Treatment.—Evacuation of the stomach and bowels. Tannic acid, as a chemical antidote, alcohol, opium, and aconite, which is the physiological antagonist in depressing the action of the heart and lowering blood tension. In addition, external heat should be applied and complete quiet and rest secured.

Administration.—In view of its slow absorption and elimination full doses of digitalis should not be given by the mouth oftener than twice daily or once in twenty-four hours, after its effect has been secured. Very large doses may be given, however, repeatedly, in case of threatened heart failure, by the subcutaneous method. The appearance of indigestion, nausea or dullness, and a decided fall in the pulse rate, should be a warning to stop the administration at once. The best preparations are the tincture, infusion, and fluid-extract.

Uses External.—Digitalis is occasionally employed as a poultice of the leaves, applied over the loins to promote diuresis, or in local inflammation, to contract vessels.

Uses Internal.—Among all other drugs digitalis stands out pre-eminently as the heart stimulant. None may take its place. Yet it has even been classified as a heart depressant. It may, however, exert a
sedative effect upon a weak, rapid, irregular heart, by increasing the inhibitory and muscular power. Digitalis is indicated: (1) In all conditions where the heart is weak, irregular or intermittent, and the circulation sluggish; (2) as a diuretic, chiefly in dropsy secondary to cardiac disease, but also in that of renal origin.

1. In syncope following disease, shock, injury or poisoning (aconite), digitalonc is invaluable when injected subcutaneously together with alcoholic stimulants. Its action is slow, however, and in emergencies it should be reinforced by the use of caffeine or adrenalin. In acute diseases, digitalis is one of the most generally serviceable stimulants. The drug is peculiarly applicable in the second stage of pneumonia, because it strengthens the right ventricle, forces the blood through the obstructed lung, and prevents systemic venous engorgement and arterial anemia. In other words, it equalizes the circulation. Moreover, in stimulating the peripheral vagi, digitalis improves the tone of the bronchioles and prevents collapse of the air vesicles, and, by the same action, steadies the rhythm of the breathing. The drug is likewise an efficient circulatory stimulant in influenza of horses and distemper of dogs. Digitalis is frequently prescribed in chronic bronchitis and emphysema, to strengthen the heart and obviate passive pulmonary congestion and cough. Valvular disease of the heart, in its various phases, is the most common field of usefulness for digitalis in human medicine, but in veterinary practice these disorders are rarer and the exact lesion difficult or impossible to diagnose. Also horses with valvular or organic disease of the heart are unsafe and useless for work. In cattle digitalis by the mouth appears to be without action, from probable destruction in the rumen, as the drug is active given intravenously. In mitral stenosis and regurgitation and aortic stenosis, with lack of compensatory hypertrophy of the heart and evidence of circulatory disturbances, digitalis is clearly indicated. In these conditions the drug enables the heart to pump more blood into the arteries and prevents engorgement of the right heart and veins and the occurrence of dropsy. Digitalis cures irregularity of the heart due to auricular fibrillation because it either inhibits the fibrillating auricles or the functions of the bundle of His in transmitting the pathological stimuli to the ventricles. Digitalis may be contra-indicated in aortic insufficiency, because in prolonged diastole it allows more time for the blood to flow back from the aorta through the leaky valve into the ventricle. In the second stage of aortic disease when the mitral valve is beginning to break down digitalis is decidedly indicated. As a general proposition, digitalis is inferior to aconite in simple cardiac hypertrophy. But this does not apply when enlargement of the heart is insufficient to compensate for valvular lesions.

Digitalis is extremely successful in palpitation of the heart (horses) following over-exertion, but is not appropriate in palpitation due to nervousness (dogs), or to indigestion. Digitalis may be exhibited to advantage in rheumatic fever and in endocarditis or pericarditis to quiet the heart and secure rest by prolonging diastole.

2. Digitalis is a valuable diuretic in dropsy of cardiac origin by
stimulating the heart and overcoming venous stasis in the kidneys and elsewhere. Digitalis is frequently prescribed to dogs with squill and calomel (D., gr. i of each) in pills for this purpose. It is often desirable to combine iron preparations with digitalis. Turbidity results from the action of iron on the tannic acid contained in digitalis when in solution, but this can be removed by the addition of a little diluted phosphoric acid.

STROPHANTHUS. Strophanthus. (U. S. & B. P.)

The dried, ripe seeds of Strophanthus Kombé Oliver, or of Strophanthus hispidus De Candolle (nat. ord. Apocynaceae), deprived of the long awns.

Synonym.—Strophanthi semina, B. P.; strophanthussamen, G.; semence de strophanthus, Fr.

Habitat.—Tropical Africa. There are eighteen species, and the seeds from two are found in commerce. This has led to some confusion, as the chemical and physiological properties of their different products vary to some extent.

Description.—Lance-ovoid, flattened and obtusely edged; from 7 to 20 mm. in length, about 4 mm. in breadth, and about 2 mm. in thickness; externally of a light fawn color, with a distinct greenish tinge, silky lustrous from a dense coating of closely appressed hairs (S. kembe), or light to dark brown, nearly smooth and sparingly hairy (S. hispidus), bearing on one side a ridge running from the centre to the summit; fracture short and soft; fractured surface whитish and oily; odor heavy when the seeds are crushed and moistened; taste very bitter.

The minimum lethal dose should not be greater than 0.00006 mil of tincture for each gram of body weight of frog.

Constituents.—The chief one is (1) Strophanthin, C₃₁H₆₀O₁₂ (8-10 per cent.), a glucoside occurring in white or yellowish powder, and having a very bitter taste. Soluble in water and alcohol, and insoluble in chloroform or ether. Decomposed by sulphuric acid into glucose and strophanthidin. Strophanthin is said to be contained only in S. Kombé. It varies in composition and strength and decomposes in solution. (2) Kombic acid. (3) An alkaloid, ineine. (4) Tanghin-in, occurring in rhombic prisms.

Preparation.

Tinctura Strophanthi. Tincture of Strophanthus. (U. S. & B. P.)

Made by maceration and percolation of strophanthus (100) with alcohol and water to make 1000. (Standardized as above.) (U. S. P.) The tincture becomes inert in a few days when combined with water.

Dose.—H. & C., 5i-iv, (4-15); D., mli-x, (.12-.6). The minimum doses should be used at first, since preparations vary in strength.

STROPHANTHINUM. Strophanthin. (U. S. P.)

White or yellowish-white powder, very soluble in water and dilute alcohol.

Dose.—H., gr. ⅓-⅔ (.012-.03); D., gr. 1/200-1/60 (.0003-0.001). The glucoside is not always pure and the dose is uncertain and must be given with caution in the smaller doses first.

Action External.—Strophanthus is a local anesthetic.

Action Internal.—Strophanthus is a gastro-intestinal irritant in large doses, like digitalis, and produces violent purging and sometimes vomiting. It occasionally causes diarrhea in medicinal doses. On account of its bitter qualities it may act in small medicinal doses as a stomachic, improving appetite and stimulating gastric secretion and motion.

Circulation.—The action of strophanthus on the circulation is very similar to that of digitalis, but it is a more powerful and uncertain heart stimulant and produces less vascular constriction. By its influence the heart beats are made more forcible, infrequent and regular. Diastole is
prolonged and systole is strengthened but unaltered in time. Arterial tension is raised and the pulse wave is increased in volume and force. The physiological details are not so well ascertained as are those of digitalis, but it is known that strophanthus directly stimulates the heart muscle in moderate doses. The vessels are slightly contracted, but not as much so as by digitalis. Increased blood pressure results mainly from the augmented heart's action. In poisoning, the peripheral vagi are paralyzed and vascular tension falls, owing probably to tetanic contraction of the ventricles. The heart is arrested in systole or diastole.

Nervous System.—**Muscles and Respiration.**—Strophanthus is a powerful muscle poison. Therapeutic doses increase muscular activity and tone, while toxic quantities paralyze voluntary muscles. Medicinal doses not only stimulate the voluntary muscles, but also the unstriped muscle of the heart, and to some extent that of the vessel walls. The nerve centres and trunks are unaffected except by the local application of strophanthus, which paralyzes the sensory nerve endings and muscular tissue. The respiration is uninfluenced by therapeutic doses of strophanthus, but in poisoning death sometimes takes place from respiratory failure following paralysis of the respiratory muscles.

Kidneys.—The kidneys are irritated by large doses of strophanthus and the urine is albuminous. Inflammation of the renal tubules with minute hemorrhages are found post mortem. The renal vessels are not dilated, and the oncometer shows that the size of the kidney is not increased. Strophanthus has not so much diuretic action as digitalis. The active principle is eliminated in the urine. A cumulative action in the lower animals and in man has been noted by several observers.

Uses Internal.—In general, it may be stated that the indications for strophanthus are identical with those for digitalis, but the former is not so certain in its effects. It is of value as a substitute for digitalis when this medicine is not effective, as sometimes occurs when it hinders the transmission of impulses over the bundle of His. Strophanthin has been used with remarkable success as a heart stimulant given once daily intravenously or intramuscularly, well diluted with water, as it is too irritating subcutaneously. Strophanthus is indicated in mitral disease, cardiac dropsy, pericardial effusions, pulmonary edema, and chronic nephritis; but in heart disease digitalis should be tried first.

Scilla. Squill. (U. S. & B. P.)

Synonym.—Squills, E.; meerzwiebel, G.; scille, squille, Fr.; bulbus scillæ, P. G.

The fleshy, inner scales of the bulb of Urginea maritima (Linné) Baker (Fam. Liliaceæ), cut into pieces and carefully dried.

Habitat.—Southern Europe, on the shores of the Mediterranean.

Description.—In irregular, more or less curled, somewhat flattened pieces; from 0.5 to 5 cm. in length, yellowish-white, somewhat translucent, nearly smooth and lustrous; odor slight; taste bitter and astringent. The minimum lethal dose (as tincture) not more than 0.006 ml for each gram body weight of frog.

Constituents.—Various active principles have been recovered, but it is doubtful if any completely represent the action of the drug. All possess some poisonous properties. Merck sells three substances derived from squill: (1) Scillitoxin,
a glucoside. (2) Scillipicrin. (3) Scillin. In addition the drug contains mucilage.

Squill Dose.—H., 5i-ii, (4-8); C., 5ii-iv, (8-15); Sh., gr.xv-xxx, (1-2); D., gr.i-v, (.06-.3).

PREPARATIONS.

Fluidextractum Squillae. Fluidextract of Squill. (U. S. P.)
Made by maceration and percolation with diluted alcohol, alcohol and water, and evaporation. Minimum lethal dose not more than 0.00006 mil for each Gm. of body weight of frog.

Dose.—H., 5i-ii, (4-8); C., 5ii-iv, (8-15); Sh., m xv-xxx, (1-2); D., m i-v, (.06-.3).

Tinctura Squillae. Tincture of Squill. (U. S. & B. P.)
Made by maceration and percolation of squill, 100; with alcohol and water to make 1000. Standardized as above. (U. S. P.)

Dose.—H., 5vi-5iss, (24-45); C., 5iss-iii, (45-90); Sh., 5iss-iii, (6-12); D., m v-xxx, (.3-2).

Syrupus Squillae. Syrup of Squill. (U. S. & B. P.)
Made with vinegar of squill, 450; adding sugar, 800; straining and adding water to make 1000. (U. S. P.)

Dose.—H., 5ss, (15); D., 5ss-i, (2-4).

Incompatible with ammonium carbonate.

Syrupus Squillae Compositus. Compound Syrup of Squill. (U. S. P.)

Synonym.—Coxe’s Hive Syrup. Fluidextract of squill, 80; fluidextract of senega, 80; antimony and potassium tartrate, 2; distilled water, 10; syrup, q. s. to make 1000.

Dose.—D., m v-xxx, (.3-2).

Pil. Ipecacuanhae cum Squilla. (B. P.)
Contains 5 per cent. opium. Dogs, gr.ii-viii. The compound syrup (U. S. P.), or the pill of ipecac with squill (B. P.), is a good cough remedy for dogs.

Action Internal.—Gastro-intestinal Tract.—Therapeutic doses do not exert any effect, but toxic quantities cause vomiting and purging in dogs, with fall of temperature, stupor, intermittent paralysis, convulsions, suppression or scanty secretion of bloody urine, and death within 12 or 15 hours. Lesions of gastro-enteritis and congestion of the kidneys are found after death.

Circulation.—The action of squill on the heart and vessels is practically identical with that of digitalis.

Respiration.—Clinical experience, rather than physiological experiments, has shown that squill acts as an expectorant during its elimination from the bronchial mucous membrane, thereby increasing secretion and vascularity.

Kidneys.—Squill is eliminated mainly by the kidneys, and in its excretion directly stimulates them and increases the amount of urine. In toxic doses it produces acute parenchymatous nephritis and urinary suppression. Squill is a more powerful diuretic than digitalis.

Uses Internal.—Squill is useful in ascites of dogs, resulting from valvular lesions or otherwise, to stimulate the heart and cause diuresis. It may be given to advantage in pill with digitalis, calomel, and extract of hyoscyamus—one grain of each. Small doses of squill are often exhibited to dogs in the second stage of acute bronchitis, and occasionally to horses, as an expectorant; and in large doses as an emetic for dogs in the form of the simple or compound syrup. The drug is indicated in bronchitis, with scanty secretion, or when exudation is excessive to improve the tone of the bronchial mucous membrane.
Cough syrup for dogs.

B

Syropi ipecacuanhæ 3iii.

M

Syropi scillæ ad 3iv.

S. Teaspoonful every 3 hours.

Class 2—Decreasing the Force and Frequency of the Heart.

Aconitum. Aconite.

Synonym.—Aconiti radix, B. P.; aconit napel, Fr.; tubera aconiti, P. G.; eisenhut, stormhut, G. The dried tuberous roots of Aconitum Napellus Linné (Fam. Ranunculaceæ). Should yield not less than 0.5 per cent. of ether-soluble alkaloids of aconite. Minimum lethal dose not more than 0.00004 mil of fluid-extract per Gm. of body weight of guinea-pig.

Habitat.—Northwestern North America, Europe and Asia in mountainous regions, and cultivated in the United States for its showy flowers.

Description.—More or less conical or fusiform, from 4 to 19 cm. in length, and from 1 to 2 cm. in diameter at the crown; externally dark brown or grayish-brown, smooth or longitudinally wrinkled; odor very slight; taste sweetish, soon becoming acrid and developing a tingling sensation, followed by numbness.

Constituents.—The alkaloid representing the action of the drug is aconitine (C₃₆H₆₅NO₁₄), which is precipitated by ammonia from an aqueous solution of an alcoholic extract of the root of various species. Pseudo-aconitine (C₃₆H₆₅NO₁₄), aconine (C₃₆H₆₅NO₁₄), and other alkaloids, as benzoconine and picroaconitine, with aconitic acid (C₆H₄O₄), are inert.

Aconite Dose.—H. & C., gr.iii-xx, (2-1.3); D., gr. 1/10-ii, (.006-.12).

Aconitæ Nitras. (Squibb.) Dose.—Subcutaneously. H., gr. 1/30, (.002); D., 1/200-1/100, (.0008-0.0006).

Aconitina. Aconitine. (U. S. & B. P.)

It is colorless, or occurs in white, rhombic tables or prisms, odorless and permanent in the air, almost insoluble in water, and soluble in 28 parts of alcohol, in 65 parts of ether, and 1 part of chloroform. Its salts are soluble in water. Aconitine or its solutions, unless very dilute, are too poisonous to be tasted.

Commercial preparations vary in purity and strength (as much as a hundredfold), owing to its ready decomposition by hydration, and since it is extremely poisonous (an Indian arrow poison) its internal administration is undesirable.

Aconitine often contains a considerable proportion of aconine and benzoconine, and so varies in activity, which is a great objection to the use of one of the most powerful drugs known.

PREPARATIONS.

Tinctura Aconiti. Tincture of Aconite. (U. S. & B. P.)

Synonym.—Teinture de racine d'aconit, Fr.; eisenhutlinkeur, G. Made by maceration and percolation of aconite, 100; with alcohol and water to make 1000. Minimum lethal dose not more than 0.0004 mil per Gm. of body weight of guineapig. (U. S. P.)

Dose.—H., m₁xx-5i, (1.3-4); C., 5ss-iss, (2-6); Sh. & Sw., m₁x-xx, (.6-1.3); D., m₁ii-x, (.12-6).

Fluidextractum Aconiti. Fluidextract of Aconite. (U. S. P.)

Made by maceration and percolation with alcohol and water, and evaporation. Assayed so that each 100 mils contains 0.45-0.55 Gm. of alkaloids of aconite. (Standardized as above.)

Dose.—H. & C., m₁iii-xx, (2.1-3); D., m₁1/10-ii, (.006-.12).

Unguentum Aconitii. (B. P.) (2 per cent.)

Linimentum Aconiti. (B. P.)

Fleming's Tincture. (Non-official.) (79 per cent.)

Dose.—H., m₇vii-xxv, (.5-.1); D., m₁/₄-ii, (.015-.12).
Aconite and Aconitine.

Action External.—Aconite or aconitine applied to mucous membranes, raw surfaces or the unbroken skin, irritates and then paralyzes the nerves of touch and temperature. This is evidenced in the human subject by a sensation of tingling and burning, followed by numbness and local anesthesia.

Action Internal.—Digestive Tract._—Aconite in medicinal doses has no special effect on the digestive organs. Toxic doses produce nausea and retching, and, in animals capable of the act, vomiting.

Circulation.—The chief therapeutic value of aconite depends upon its influence over the heart and vessels. It reduces the frequency of the cardiac pulsations, owing to stimulation of the vagus centre in the medulla, and lowers blood tension. This is the chief effect of aconite on the circulation in medicinal doses. The action on the heart is not to weaken it in therapeutic doses but simply to slow it—pure inhibition. It is improper, therefore, to classify aconite as decreasing the force of the heart, save in toxic doses. In medicinal doses it makes the systolic contractions more powerful and causes increased dilatation in diastole. It may, however, be regarded as a circulatory depressant in slowing the heart and lessening the output of blood, since it thus weakens blood pressure. In fatal poisoning by the drug the action of the heart becomes rapid and irregular. The time of contraction of the auricles does not correspond with ventricular contraction (heart block) and the lack of rhythm and irregularity increase until the heart is thrown into delirium and fibrillation, as with digitalis.

Depending on this condition of the heart, the blood pressure is naturally subject to momentary variations. The rapidity and irregularity of the heart are due to paralysis of the inhibitory apparatus and great irritability of the cardiac muscle, with weakened contraction and conduction, occurring simultaneously.

The vasoconstrictor-centre is slightly stimulated by medicinal doses, but the blood pressure is lowered through the slowing of the heart beats, prolonged diastole, and lessened cardiac output. In poisoning there is paralysis of the vasomotor centres.

The heart is arrested in diastole, but death immediately results from respiratory failure.

Nervous System.—The most striking effect of aconite on the nervous system (in man) consists in tingling followed by loss of sensation and temperature sense after large medicinal doses. This phenomenon is due to stimulation succeeded by depression of the sensory nerve terminations. The drug is not comparable with opium, since doses large enough to produce a general anodyne action are dangerous.

Poisonous doses of aconite cause muscular twitching and loss of motor power, which result from excitation, and finally paralysis of the motor nerve endings. Convulsions occur in poisoning. These are thought to follow stimulation of the medulla as the higher cerebral centres are often unimpaired. Stimulation and then depression of the lower divisions
of the nervous system—especially the medulla, spinal centres, and peripheral sensory and motor nerves—describe the general effect of aconite.

Respiration.—Following primary stimulation, with increased depth and frequency of breathing, the breathing of animals under the influence of aconite resembles that observed after section of the vagi. The respiration is slow and labored; the expiration is prolonged, and is succeeded by a considerable interval before the next inspiration. This condition is brought about by depression of the medullary respiratory centres.

Temperature.—The bodily heat is reduced by aconite in fever, after medicinal doses, and in poisoning by the drug. Heat loss is due to stimulation of the heat regulating centres which reduce a febrile temperature to normal; to diminished action of the heart; and to sweating, if it occurs.

Skin.—Aconite sometimes produces slight diaphoresis, due to stimulation of the nerve endings in the sweat glands and to dilation of the peripheral blood vessels.

Kidneys and Elimination.*—Aconitine is chiefly eliminated in the urine.

Toxicology.—The minimum fatal dose of aconite is about 3i for the horse; gr.xx for medium sized dogs; and gr.v-vi for cats. The smallest fatal dose recorded in man is a teaspoonful of tincture of aconite (U. S. P. 1890), equivalent to about gr.xxx of the crude drug. The minimum lethal quantity of aconitine is gr. 1/6 for man, and about the same for cats. For dogs it is from gr. 1/4 to gr. 1/2. The writer has found that cats will live from fifteen minutes to half an hour after receiving the smaller deadly doses under the skin, but large doses produce death immediately by paralyzing the heart. Large therapeutic doses cause, in horses, restlessness, pawing the ground, shaking of the head, champing of the jaws, increased secretion of salivary mucus, and attempts at swallowing probably owing to the peculiar sense of irritation produced by the drug in the throat. Nausea and retching are observed in all animals, while vomiting occurs in dogs and cats. The pulse and respiration are weakened and generally retarded. After lethal doses these symptoms are intensified. We observe violent retching, frequent and difficult attacks of swallowing, ejection of frothy mucus from the mouth, copious sweating in horses; pulse first weak and infrequent, later rapid, running and almost imperceptible; respiration slow, interrupted, and shallow, and reduction of temperature. Death is preceded by muscular twitchings in the horse and loss of strength, so that the subject falls and is unable to rise; or in the case of cats and rabbits, the animals jump vertically into the air, topple over backwards and go into convulsions, lying helpless on their side. The labial muscles are retracted, and the lips drawn back, showing the teeth covered with foam. The face is

*While a time-honored remedy in veterinary practice recent experiments by Mackensie, Price, and Rudolf and Cole, independently, have failed to find that aconite lowers pulse or fever in usual medicinal doses.
anxious, the eyeballs are retracted or protruded, and the pupils more commonly dilated. Death takes place usually from asphyxia, occasionally from syncope. The post-mortem appearances are simply those resulting from asphyxia.

Treatment.—Evacuate the stomach by siphon. Emetics are contra-indicated as disturbing the heart. Cardiac and respiratory stimulants are to be given subcutaneously, as alcohol, ammonia, ether, digitalone, atropine and strychnine, in addition to inhalation of amyl nitrite. The patient must be kept quiet, and artificial respiration done if practicable and necessary. Experimental evidence seems to prove atropine the most valuable single antidote to aconite in stimulating the respiratory and vasomotor centres.

Uses External.—Aconite may be applied in liniment (fluid extract of aconite, 40; chloroform liniment, 60) to relieve pain of an inflammatory, neuralgic, or rheumatic character; or as aconitine in ointment (2-4 per cent.) for the same purposes. Aconitine is very expensive, however. Care must be exercised to prevent undue absorption and poisoning, and danger of animal licking it.

Uses Internal.—Aconite is useful in fever because:

1. It diminishes the frequency of the heart and reduces blood pressure.
2. It lowers temperature and produces sweating and diuresis.
3. It relieves pain and restlessness to some extent.

Aconite is particularly applicable, conjoined with sweet spirit of nitre, in the first stages of febrile diseases; in those attacking the young; and in those of self-limited and short duration, viz., coryza, laryngitis, pharyngitis, pleuritis, bronchitis and pneumonia uncomplicated with influenza. It is also indicated in the initial period of acute muscular rheumatism, enteritis and peritonitis (combined with opium), and in mammitis, lymphangitis, and laminitis.

Fever in Horses.

\[\text{Fluidextracti aconiti} \ldots \text{Siss.} \]
\[\text{Spiritus ætheris nitrosi} \ldots \text{ad Siv.} \]

M.

S. Tablespoonful in cup of water hourly.

Spasmodic and painful disorders, as colic, are relieved more successfully by powerful anodynes and antispasmodics (opium and bella-donna).

In chronic or long continued fevers, the use of aconite should not be persisted in, but it should be given at the very outset of fevers and repeated frequently in small doses. \(\text{m} \text{xv.} \) for the horse, and \(\text{m} \text{ii.} \) for the dog, every fifteen minutes for two hours, and afterwards \(\text{m} \text{xxx.} \) for the horse and \(\text{m} \text{iii.} \) for the dog, hourly, being governed, however, by the condition of the pulse and temperature and the physiological effects. Aconite is a useful sedative in some cardiac disturbances. It quiets nervous palpitation, and that form resulting from hypertrophy of the heart.
Palpitation of Heart in Horses.

Fluidextracti aconiti .. 3ii.
Fluidextracti digitalis.
Fluidextracti belladonnae radicis......................... 51.
(Furnish 3ii bottle).

S. Small bottleful on tongue t. i. d.

It can be administered to advantage in the first stages of acute pericarditis and endocarditis.

Veratrum Viride. Veratrum Viride. (U. S. P.)

Synonym.—Veratri viridis rhizoma, B. P.; American hellebore, green hellebore root, Indian poke root, E.; grüner germer, G.

The dried rhizome and roots of Veratrum viride Aiton (Fam. Liliaceae).

Description.—Rhizome upright, obconical, usually cut longitudinally into 2 or 4 pieces, from 2 to 7 cm. in length and from 1.5 to 3 cm. in diameter, externally light brown to dark brown or brownish-black, frequently bearing at the summit numerous closely arranged, thin leaf-bases, otherwise rough and wrinkled. Inodorous but sternutatory; taste bitter and acrid. Powder grayish-brown to dark brown.

Constituents*.—1. Veratrine or cevadine (C_{29}H_{51}NO_5), a pure alkaloid. 2. Jervine (C_{28}H_{34}NO_5), a pure alkaloid. 3. Protoveratrine (C_{38}H_{31}NO_11), a powerful alkaloid resembling aconitine. 4. Pseudovervine. 5. Rubijervine. 6. A resin, a gastro-intestinal irritant.

Veratrum Dose.—H. & C., 5ss-i; (2-4); Sh. & Sw., gr.xx-xxx, (1.3-2); D., gr. 1/10-i, (.006-.06).

Preparations.

Fluidextractum Veratri Viridis. Fluidextract of Veratrum Viride. (U. S. P.)

Made by maceration and percolation with alcohol, and evaporation, so that 1 mil=1 Gm. of the crude drug.

Dose.—H. & C., 5ss-i, (2-4); Sh. & Sw., mxx-xxx, (1.3-2); D., m1/10-i, (.006-.06).

Tinctura Veratri Viridis. Tincture of Veratrum Viride. (U. S. & B. P.)

Made by maceration and percolation of veratrum viride, 100; and alcohol to make 1000. (U. S. P.)

Dose.—H. & C., 5ss-i, (15-30); Sh. & Sw., 5ii-iv, (8-15); D., mlv-xv, (3-1).

Veratrum Viride.

Action Internal.—The action of the drug is a resultant of the action of veratrine, jervine and protoveratrine—chiefly to that of veratrine.

Circulation.—The most noteworthy therapeutic value of veratrum viride depends upon its effect upon the circulation. It first lowers the force (jervine), and, if continued, the frequency (veratrine, protoveratrine and jervine) of the pulse, and also reduces vascular tension (jervine). Veratrum viride is considerably more depressant to the circulation than aconite, which does not directly lessen arterial pressure. Veratrum is, however, inferior to aconite for general purposes, as it does not possess the anodyne, diaphoretic, or diuretic properties peculiar to the latter drug.

*Great confusion exists concerning the alkaloids in veratrum because writers apply different names to the same alkaloids.
The temperature is reduced several degrees by large doses of veratrum.

Toxicology.—The symptoms exhibited in veratrum poisoning are: salivation, vomiting, or attempts at vomiting, purging, abdominal pain, muscular weakness, difficulty in progression, loss of power and general paralysis muscular tremors and spasms, and occasionally convulsions. The pulse is unaltered in rate at first, but later becomes infrequent and compressible and finally rapid, thread-like and running. The respiration is shallow, the temperature reduced, the skin is cold and clammy; there are semi-consciousness, loss of sight and death from asphyxia.

Treatment should be pursued with the stomach tube and cardiac and respiratory stimulants, as alcohol, strychnine and atropine; tannic acid as a chemical antidote; opium to subdue pain; and demulcents to relieve local irritation of the digestive tract. Warm water should be given the smaller animals to wash out the stomach and to assist vomition, and quietude should be enforced. In man, fatal poisoning is rare, since the drug is spontaneously vomited. The same would probably apply to dogs. Recovery has ensued in horses after ingestion of two ounces of veratrum root.

Administration.—It is advisable to give small doses of the tincture or fluid extract hourly. In the case of the smaller patients, the dose should be preceded by the administration of a correspondingly small dose of laudanum (m\(^{-}v-x\)) to prevent vomiting.

Uses Internal.—The alkaloids of veratrum are difficult to obtain in their purity, and are not much used in practice.

The drug is applicable as a circulatory sedative at the outset of sthenic diseases afflicting strong, plethoric animals. Veratrum viride bleeds an animal into its own vessels by causing vascular dilatation. The indications are similar to those applying to venesection, and are therefore limited. In some cases of acute diseases, included within the limits defined above, it may prove of service to cut short or even abort the attack. Aconite is usually a safer and better drug to use, however.

In this list may be placed sthenic pneumonia, cerebritis, laminitis, puerperal fever, and, when veratrum is combined with opium to obviate stimulation of peristaltic action, enteritis, peritonitis, and abdominal wounds and injuries. Veratrone is a proprietary preparation very convenient for hypodermatic use in these diseases (H., 3i; D., m\(^{-}v-x\)). Veratrum is said to relieve pain, lower temperature and lessen the duration of acute rheumatic fever.

VERATRUM ALBUM.

Synonym.—Veratri albi rhizoma, white hellebore root, E.

Habitat.—Europe (used on the continent).

Constituents.—1. Protoveratrine (C\(_2\)H\(_9\)N\(_2\)O\(_7\)), an alkaloid acting like veratrine on the heart. 2. Jervine. 3. Rubijervine. 4. Pseudojervine and other alkaloids. The Germans recommend it to be given as an emetic to swine, in milk, gr.v-xx, (J-1.3), and as an emetic to cattle, 5iv-vi, (16-24). Its use is, however, attended with some danger in these doses.
VERATRINA. Veratrine. (U. S. & B. P.)

A mixture of alkaloids obtained from the seed of Asagroca officinalis (Chamisso and Schlechtendal) Lindley (Fam. Liliaceæ). (U. S. P.) This substance contains the pure alkaloid veratrine or cevadine (C₂₆H₂₉NO₂), cevadilline, sabadin, sabadinine, and veratrídine. The action described below is that of pure veratrine.

Derivation.—Obtained from the seed by alcohol, which is recovered by distillation, and the residue is treated with water to precipitate resins; filtered, and veratrine is precipitated from the filtrate by ammonia. It is further purified by solution in water, decolorization and reprecipitation.

Properties.—White, or grayish-white, amorphous; odorless, but causing intense irritation and sneezing when even a minute quantity reaches the nasal mucus membrane; having an acrid taste, and leaving a sense of tingling and numbness on the tongue. Slightly hygroscopic. Very slightly soluble in cold or hot water; soluble in 2.2 parts of alcohol, and very soluble in boiling alcohol; also soluble in 3 parts of ether, and in 1 part of chloroform.

Dose.—H., gr. ss–ii, (.05–.12); C., gr. ii–v, (.12–.3); Sw., gr. ¼–½, (.015–.03), subcutaneously in alcohol, D., gr. 1/50–1/10, (.0012–.006).

The smaller doses to be given subcutaneously.

PREPARATION.

Unguentum Veratrini. (B. P.)

Action External.—Veratrine is a powerful irritant. If inhaled in minutest quantity it causes sneezing and a mucous, or bloody discharge. When injected under the skin, veratrine occasions suffering and restlessness. Rubbed into the skin or applied to a mucous membrane or raw surface, it produces redness and pain followed by local anesthesia.

Action Internal.—Here again veratrine is an intense irritant. After ingestion of large doses, there are salivation, violent vomiting, in animals capable of the act; often severe purging, pain, collapse, fall of temperature and other symptoms common to gastro-enteritis.

Nervous System and Muscles.—Veratrine is a poison to the medulla, spinal cord, motor and sensory nerves and muscles, first exalting and then depressing and paralyzing their functional activity. The cerebrum escapes its influence. Spasms and convulsions occur in veratrine poisoning, in the stage of motor excitement, while paralysis follows depression of the nerves and muscles. The action of the substance begins and ends sooner in the nerves than the muscles. The effect of veratrine on voluntary muscle is peculiar. A tracing of a muscle during contraction shows that the latent period, and that of ascent, is unaltered; but the amount of contraction is much augmented, as shown by the increased height of the curve; and the time of relaxation is greatly prolonged.

Circulation.—Veratrine affects the heart muscle much as it does the striped muscle, and the vagus nerve similarly to the spinal nerves. The cardiac muscle, vagus and vasomotor centres are primarily stimulated, while later the heart muscle, vagus endings and vasomotor centres are depressed and paralyzed. Three conditions have been noted in relation to the pulse, corresponding to different stages in the action of veratrine. 1. A small dose may induce a temporary rise of pulse rate, force and tension, by stimulation of the cardiac muscle and vasomotor centres. 2. Large doses are followed by slowing and weakening of the pulse. The vagus centre is stimulated and the heart muscle depressed. 3. Towards
the end of fatal poisoning the pulse becomes weak, thread-like, rapid and irregular from paralysis of the heart muscle, vagus endings and vasomotor centres. It sometimes happens, however, that the pulse remains weak and slow in this stage because the paralyzing influence of the substance on the heart muscle prevents quickening of the heart even after the removal of inhibitory control. The heart is dilated and irresponsible to galvanism, after death, as are also the voluntary muscles.

Respiration.—Lethal doses paralyze the respiratory centres and death occurs from respiratory arrest. The breathing may be quickened by small doses of veratrine, owing to transient stimulation of the respiratory centres and vagus nerve endings in the lungs.

Toxicology.—The symptoms of poisoning are referable to the action of veratrine on the digestive, nervous and muscular apparatus, heart, and respiratory organs. They include nausea, salivation, clammy sweating, excessive vomiting in dogs, cats and cattle, attempts at vomiting in the horse, abdominal pain, severe purging, muscular twitchings or convulsions (excited by external stimuli), loss of muscular power and paralysis. The pulse, at first weak and infrequent, becomes thready, rapid and irregular. The temperature is reduced and the respiration is weak and slow. Death occurs in convulsions or paralysis. One-sixteenth of a grain has caused alarming symptoms in man. The minimum fatal dose is about one grain for dogs. One grain subcutaneously, or five to six grains by the mouth, produce poisonous symptoms in horses.

Treatment.—External heat; respiratory and cardiac stimulants should be employed subcutaneously. Potassium carbonate and demulcent drinks are to be given internally.

Uses External.—Veratrine is of trivial value, since its therapeutic application is narrowly limited. It is occasionally useful in the official ointment, or in greater strength (gr.xl to 5i) for its local anesthetic action applied over rheumatic joints. It may be employed also as a simple rubefacient. An aqueous solution of veratrine sulphate, or an alcoholic dilution of the pure alkaloid, is recommended in shoulder lameness, myalgia, and chronic rheumatic affections of the horse, to be injected every alternate day, or oftener, into the muscular tissue over the seat of the trouble. The animal should be led about for fifteen or thirty minutes while the pain of the treatment lasts. The initial dose is gr. 2/3 (0.4 Gm.), to be increased to gr. 1 1/2 (0.1 Gm.).

Uses Internal.—Veratrine has been employed as a cardiac sedative and antipyretic in pneumonia, acute rheumatism, and in other sthenic disorders, but it is inferior for these purposes to aconite or veratrum viride, and its other effects are undesirable. The remedy is lauded by foreign authorities as an emetic and cathartic for cattle in impaction of the third stomach, and in conditions where it is desirable to quickly unload their digestive apparatus. For this purpose P. Cagny advises veratrine, gr. 2 1/2-3 (.15-.20), subcutaneously, to be followed if necessary by daily doses of grs. 5-7 1/2 (0.3-0.5 Gm.) in mucilaginous drinks by the mouth. The same writer finds the drug useful in "broken wind." Veratrine, given subcutaneously, is considered the best emetic for swine by
some practitioners. Veratrine stimulates intestinal secretion and peristalsis in the horse, but is inferior to eserine and pilocarpine in that animal as a quickly acting cathartic.

SECTION VII.—DRUGS ACTING ON THE RESPIRATORY ORGANS.

Ipecacuanha. Ipecac. (U. S. & B. P.)

Synonym.—Ipecacuanha, racine brésilienne, Fr.; brechwurzel, ruhrwurzel, G.

The dried root of Cephaelis Ipecacuanha (Brotero) A. Richard, known in commerce as Rio ipecac, or of C. acuminata Karsten, known in commerce as Cartagena ipecac (Fam. Rubiaceae), and yielding not less than 1.75 per cent. of the ether soluble alkaloids of ipecac.

Habitat.—South America from Brazil to Bolivia, and New Granada. Cultivated in India.

Description.—Rio Ipecac. In cylindrical pieces, curved and sharply flexous, occasionally branched, from 3 to 15 cm. in length and from 2.4 to 4 cm. in thickness, externally dark brown; odor very slight, the dust steretulatory; taste bitter and nauseous, somewhat acid. Cartagena Ipecac. Cylindrical or slenderly fusiform, more or less tortuous, from 3 to 12 cm. in length, and a thickness of 2 mm., externally grayish-brown. The powder from both varieties is light brown.

Constituents.—1. The alkaloidal emetine \((C_{4}H_{9}(CH_{3})NO)\), existing to the extent of 2 per cent., and representing in the main the action of the crude drug. It is a white, odorless, uncrystallizable powder, with a bitter, burning taste, and soluble in alcohol and chloroform; less so in ether, and very slightly in water, turning yellow on keeping. The impure commercial alkaloid occurs in brownish-red transparent and deliquescent scales, very soluble in water. (2) Cephaeline \((C_{9}H_{22}NO)\), resembling emetine in action. (3) Psychoctrine, which is inert. 4. An amorphous, bitter glucoside. 5. An astringent, ipecacuanthic acid. 6. A volatile oil, starch, gum, tannin, coloring matter, etc. Hemidesmus exists as an impurity, it is cracked, not annulated; also bitter almond powder, which exhales the odor of prussic acid when wet. Emetine (Emetinae hydrochloridum, U. S.) a white, or very slightly yellowish crystalline powder, without odor, freely soluble in water and alcohol, is rarely used in veterinary practice.

Dose of Powdered Root.—H., 5i-ii, (4-8); C., 5ii-iv, (8-15); Sh., 5ss-i, (2-4); D., gr.ss-ii, (.08-.12).

Emetic.—D. & Sw., gr.xv-xxx, (1-2).

PREPARATIONS.

Fluidextractum Ipecacuanae. Fluidextract of Ipecac. (U. S. P.)

Made by maceration and percolation with alcohol, diluted HCl and water, and evaporation so that 1 ml = 1 Gm. of the crude drug. Assayed to contain 1.8-2.2 per cent. of ether soluble alkaloids of ipecac.

Dose.—Same as powdered root.

Extractum Ipecacuanae Liquidum. (B. P.)

Dose.—One-half that of the U. S. P. fluidextract.

Syrupus Ipecacuanae. Syrup of Ipecac. (U. S. P.)

Fluid extract of ipecac, 70; acetic acid, 10; glycerin, 100; sugar, 700; water to make 1000.

Dose.—D. (expectorant), m.xv-3i, (1-4).

Pulvis Ipecacuanae et Opii. (U. S. & B. P.) (See opium.)

Tinctura Ipecacuanae et Opii. (See opium.)

Action External.—Ipecac, and still more emetine, are decided irritants when applied to mucous membranes, raw surfaces, or even to the unbroken skin; causing, variously, hyperemia, vesication, pustulation, and
ulceration, according to their strength and the mode of application. Emetine kills amebae in 1 to 100,000 solution and is a powerful antiseptic, being 5 times more powerful than phenol in 5% solution.

Action Internal.—**Digestive Tract.**—Ipecac is naturally a local irritant in the alimentary canal as well as externally. It increases the flow of saliva and gastric juice, besides dilating the blood vessels of the stomach. Small doses are stomachic, improving the digestion and tone of the gastric mucous membrane, and, in some cases, minute quantities are anti-emetic in allaying vomiting. Large doses, on the other hand, cause a little nausea and free vomiting. It is probable that emetine is not, as frequently stated, a specific emetic; that is, does not act directly on the vomiting center, although, when emetine is thrown into the blood, vomiting is produced, by means of its elimination through the stomach. This is substantiated by the following facts: (1) Emetine is recovered in the first vomitus after its subcutaneous injection. (2) Vomition does not occur so rapidly, and more emetine is required, when the alkaloid is injected in place of being ingested. (3) Furthermore, when the vagus is previously divided, vomiting does not follow hypodermic medication of emetine. The act does, however, follow the administration of apomorphine and tartar emetic under similar conditions. Therefore it is probable that in whatsoever way ipecac is exhibited, vomiting proceeds from direct irritation of the stomach or the vagus endings situated therein. Ipecac and emetine do not act so promptly as zinc sulphate or apomorphine (under the skin). The latter are accordingly preferable as evacuants in poisoning. Compared with tartar emetic, ipecac is less persistent and prostrating in its effect. It is probably the mildest emetic at our command. Ipecac and emetine increase secretion and cause hyperemia and purging, sometimes of a bloody character, in their passage through the bowels. Gastro-enteritis may follow the administration of large quantities to dogs. Experimental evidence has apparently shown that ipecac is an hepatic stimulant (cholagogue), increasing the secretion of bile. This action is doubtful.

Circulation.—Emetine has been given subcutaneously to stop internal hemorrhages. Its mode of action is uncertain and its use for this purpose is now uncommon. The drug is specially toxic if given intravenously. There is a slowing and weakening of the heart and fall in blood pressure from toxic amounts. Lethal doses paralyze the heart muscle.

Respiratory Organs.—The lungs are often found intensely hyperemic after death by ipecac poisoning. Not only this; portions are seen to be collapsed and consolidated. In therapeutic doses the pulmonary mucous membrane is stimulated during its elimination and is made more vascular; the secretion of bronchial mucus is increased and cough is reflexly excited. Ipecac is thus strictly a stimulating expectorant in so far as its action on the bronchial mucous membrane is concerned; but it is, perhaps unfortunately and misleadingly, classed by some (Brunton) as a depressing expectorant because of the side influence on the circulation.

Skin.—Ipecac is mildly diaphoretic in addition to and independent of this action common to nauseants in general.
Toxicology.—The following toxic phenomena are exhibited by animals: vomiting, loss of muscular power and paralysis, increased, followed by diminished reflex activity, failure of heart and respiration, and post mortem evidences of congestion and inflammation of the lungs and intestines. Three ounces of ipecac have killed a horse, and two grains of emetine have proved fatal to a dog, or 1/6 gr. daily for 3 days under the skin. Emetine has a cumulative effect. When given continuously by subcutaneous injection there are signs of gastro-intestinal irritation, nephritis and edema, hemoptysis, neuritis, paralysis, coma and heart failure after a certain amount is administered (27 grs., man).

Uses.—The indications for the therapeutic employment of ipecac may be described under the following heads:

1. Emetic and anti-emetic.
2. Expectorant.
3. Diaphoretic.
4. In dysentery and chronic diarrhea.

1. Powdered ipecac is a good agent for dogs, cats and pigs, given in luke-warm water, in repeated doses if necessary, to empty an overloaded stomach. Also in acute bronchitis and laryngitis of dogs and cats, when the patient is endangered by accumulation of secretion, ipecac, by the forcible expulsion attending vomiting, removes secretion from the upper respiratory tract and clears out the stomach of any secretion which may have been swallowed. Ipecac is efficacious in stopping vomiting in cases of acute catarrh of the stomach in dogs, and is given as the wine with tincture of aconite, one drop each in a dram of ice water at half hour intervals. The drug is also of service in reflex vomiting, and that due to an atonic or depressed condition of the stomach. Therapeutically, ipecac should only be of value in the latter disorder, but it nevertheless is often efficient in the vomiting of irritable dyspepsia, as noted above.

2. Ipecac is prescribed in the first stage of acute bronchitis, when the secretion is scanty, and again in bronchitis of long standing, to stimulate the bronchial mucous membrane. It may be given to dogs and cats in repeated expectorant doses of the wine or syrup, with other expectorants, diaphoretics and diuretics, as syrup of squill and spirit of nitrous ether, or as Dover’s powder, to all animals.

Acute bronchitis in dogs.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syrups ipecacuanæ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syrups scillæ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tinctures opii camphoratae</td>
<td></td>
</tr>
</tbody>
</table>

M.
Sig. Teaspoonful every 3 hours.

3. Ipecac is a feeble diaphoretic, and inferior to sweet spirit of nitre, aconite, alcohol or external heat, for general sudorific purposes. The combination of opium and ipecac, in Dover’s powder, is an appropriate mixture to relieve pain and cause diaphoresis in acute rheumatism, and may cut short attacks of acute inflammation of the respiratory tract.
4. Ipecac is probably the best single remedy for the treatment of amebic dysentery of man. It should be given in the form of powder, bolus, or pill every four hours, combined with opium to prevent nausea or vomiting. More recently emetine hydrochloride is given to man once daily under the skin. (gr. 1/2) for 10 day periods as more certain than ipecac.

SECTION VIII.—ANTIPYRETIC AND ANTISEPTIC ORGANIC AGENTS.

Class 1.—Cinchona and Its Alkaloids.

CINCHONA. Cinchona. (U. S. P.)

Synonym.—Cinchonae cortex, B. P.; cinchona flava, yellow cinchona bark, calisaya bark, cortex chinarum, e.; quinina, q.; chinarinde, g.

The dried bark of Cinchona Ledgeriana Moens, Cinchona calisaya Weddell, Cinchona officinalis Linné, and of hybrids of these and of other species of cinchona (Fam. Rubiaceae), yielding not less than 5 per cent. of cinchona alkaloids.

Habitat.—Indigenous in South America on the east slope of the Andes, and northwards into Colombia; southwards to the lower part of Bolivia, at altitudes varying from 5,000 to 10,000 ft. Cultivated in India, East Indies, Jamaica, and to some extent in South America.

Description.—In quills or curved pieces of variable length, bark from 2 to 4 mm. thick, or in small broken fragments or in transversely curved pieces from 3 to 7 mm. thick; externally gray, grayish-brown or reddish-brown; odor slight, somewhat aromatic; taste very bitter and astringent; powder, light brown.

 Constituents.—(a) Four chief alkaloids and three artificial products.

*Isomers

1. Quinine \((C_{21}H_{30}N_2O_2 + 3 \text{ H}_2\text{O})\). Solutions of its salts are fluorescent. Turns plane of polarization to left. Gives green color with ammonia and chlorine water. Precipitated from its salts as hydrate.

2. Quinidine \((C_{21}H_{27}N_2O_2)\). Solutions of its salts fluorescent. Differs from quinine in turning plane of polarization to right, and in being insoluble in ammonia except in excess.

(Quinine is an artificial amorphous alkaloid, probably not occurring naturally, and obtained from quinine by heat and excess of a mineral acid. Quinidine is a cheap brown amorphous substance obtained from the mother liquor after quinine sulphate has crystallized out, and contains a mixture of quinidine, cinchonine and cinchonidine.)

*Isomers

3. Cinchonine \((C_{19}H_{22}N_2O)\). Is not fluorescent. Turns plane of polarization to right. Does not assume a green color with ammonia or chlorine water.

4. Cinchonidine \((C_{19}H_{22}N_2O)\) is slightly fluorescent. Turns plane of polarization to left.

Cinchonine is an artificial alkaloid obtained from cinchonine by heat and an excess of a mineral acid.

Some other alkaloids of no particular importance are:

Quinamina \((C_{19}H_{24}N_2O_2)\).
Paricina \((C_{19}H_{18}N_2O)\).
Aricina, etc.

*Isomers are bodies composed of the same elements, in the same proportions, but possessing different chemical or physical properties.
(b) Less Important Constituents.—(5) Kinic, or quinic acid (C₇H₁₄O₅), occurs in colorless prisms. Related to benzoic acid and eliminated in the urine as hippuric acid. Found in coffee beans and other vegetables.

The alkaloids in cinchona are naturally united with kinic or kinovic acid, and salts of this combination are used in medicine; i.e., quinine kinate, which is soluble and may be employed subcutaneously.

(6) Kinovic, or quinovic acid (C₁₆H₂₄O₆), a white, amorphous substance allied to kinovin.

(7) Kinovin, or quinovin (C₁₆H₂₄O₆), a glucoside readily decomposed into glucose and kinovic acid.

(8) Cincho-tannic acid, or kino-tannic and kinovi-tannic acid (2-4 per cent.). The astringent principle of cinchona. Distinguished from tannic acid in yielding green color with ferric salts.

(9) Cinchona red, the coloring matter of cinchona bark. Nearly insoluble in water.

(10) A volatile oil existing in minute amount.

(11) Starch, gum, resin and salts common to other vegetable matters.

Incompatibility.—Cinchona is incompatible with lime water, ammonia, metallic salts or gelatin.

Dose.—H., 5ii-iv, (8-15); C., 5i-ii, (30-60); Sh. & Sw., 5i-iv, (4-15); D. & C., gr.x-3i, (.6-4).

PREPARATIONS.

Fluidextractum Cinchona. Fluidextract of Cinchona. (U. S. P.)

Made by maceration and percolation with glycerin, HCl, alcohol and water, and evaporation so that it shall contain 4.5 per cent. of total alkaloids of cinchona. (U. S. P.)

Dose.—Same as cinchona.

Extractum Cinchona Liquidum. (B. P.)

Contains 4-5 per cent. of alkaloids.

Dose.—Same as cinchona.

Infusum Cinchona Acidum. (B. P.)

Dose.—H., Oi, (500); D., 5ii-iv, (8-15).

Tinctura Cinchona. Tincture of Cinchona. (U. S. & B. P.)

Made by maceration and percolation of cinchona, 200, with glycerin, 75; and alcohol and water a sufficient quantity to make 1000, 0.9 Gm. alkaloids in 100 mls of tincture. (U. S. P.)

Dose.—H., 5i-ii, (30-60); D., 5ss-ii, (2-8).

Cinchona Rubra. Red Cinchona. (U. S. P.)

Cinchona rubra cortex, B. P. The dried bark of Cinchona succirubra Pavon (Fam. Rubiaceae), containing not less than 5 per cent. of the alkaloids of red cinchona.

Habitat.—Ecuador, west of Chimborazo.

Description.—In quills or curved pieces of variable length, bark from 2 to 4 mm. in thickness, or in small broken fragments or in transversely curved pieces from 3 to 7 mm. in thickness; externally gray, grayish-brown or reddish-brown; odor slight; taste very bitter and astringent. Powder is light brown.

 Constituents.—Same as cinchona.

Dose.—Same as cinchona.

PREPARATION.

Tinctura Cinchona Compositus. Compound Tincture of Cinchona. (U. S. & B. P.)

Made by maceration and percolation of red cinchona, 100; bitter orange peel, 80; serpentaria, 20; with glycerin, 75; and alcohol and water to make 1000. Contains 0.45 per cent. of alkaloids of cinchona. (U. S. P.)

Dose.—H., 5ii-iv, (60-120); D., 5ss-iv, (2-15).
*Quininae Sulphas. Quinine Sulphate. \((\text{C}_{20}\text{H}_{25}\text{O}_{3}\text{N}_{2})_2\text{H}_2\text{SO}_4+7\text{H}_2\text{O}.\) (U. S. & B. P.)

Synonym.—Chininum sulfuricum, P. G.; quiniae sulfas, or sulphate of quinia, E.; sulfate de quinine, Fr.; schwefelsaures chinin, G.

Derivation.—Prepared by boiling cinchona bark with hydrochloric acid and adding lime to the filtered decoction to precipitate alkaloids and coloring matter. The precipitate is washed and digested in boiling alcohol to dissolve quinine and cinchonine. The alcohol is distilled off and the residue dissolved in diluted sulphuric acid, boiled with animal charcoal, filtered, and quinine sulphate crystallizes, leaving cinchonine sulphate in solution.

Properties.—White, silky, light, flexible, glistening crystals, making a very light and easily compressible mass; or as hard, prismatic monoclinic needles; odorless, and having a persistent and very bitter taste. It effloresces rapidly when exposed to dry air, and then becomes lusterless; when exposed to light it acquires a brownish tint. Soluble at 25° C. (77° F.), in 725 parts of water, and in 107 parts of alcohol; also in 30 parts of glycerin; slightly soluble in chloroform and ether; and freely in dilute acids.

Incompatibles.—Alkalies and their carbonates, iodine, and tannic acid.

Dose.—H. (tonic), gr.xv-5i, (1-4); C, 5ss-iss, (2-6); Sh. & Sw., gr.v-x, (.3-.6); D. & Cats, gr.i-ii, (.06-.12). Antipyretic Dose—H. & C, 5ii-iv, (8-15); Sh., gr.xxx-xl, 2-2.6; Sw., gr.xv-xxv, (1-1.6); D. & Cats, gr.v-x, (3-.6).

Quininae Bisulphas. Quinine Bisulphate. \(\text{C}_{20}\text{H}_{24}\text{O}_2\text{N}_2\text{H}_2\text{SO}_4+7\text{H}_2\text{O}.\) (U. S. & B. P.)

Derivation.—Made by the action of sulphuric acid on quinine sulphate suspended in water; filtration and crystallization.

Properties.—Colorless, transparent or whitish, orthorhombic crystals or small needles; odorless, and having a very bitter taste; efflorescing on exposure to the air, and turns yellow on exposure to light; soluble in 9 parts of water and in 23 parts of alcohol, and in 15 parts of glycerin.

Dose.—Practically same as quinine sulphate, but theoretically it should be slightly larger. The salt is very soluble, but is commonly made extemporaneously by adding diluted sulphuric acid (Q. S.) to quinine sulphate in preparing solutions for medicinal use. The salt is serviceable for administration in pill; or for hypodermic injection, when it should be given in about one-third smaller dose than that of quinine sulphate by the mouth.

Quininae Hydrobromidum. Quinine Hydrobromide. \(\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_2\text{HBr}+\text{H}_2\text{O}.\) (U. S. P.)

Derivation.—Made by the action of barium bromide, in solution, on quinine sulphate suspended in water; filtration, evaporation, and crystallization.

Properties.—White, light, silky needles; odorless, and having a very bitter taste. The salt effloresces on exposure to air. Soluble in 40 parts of cold water, and in 0.9 part of alcohol; also soluble in 23 parts of ether, in 0.6 part of chloroform, and in 7 parts of glycerin.

Dose.—Same as quinine sulphate.

†Quininae Hydrochloridum. Quinine Hydrochloride. \(\text{C}_{20}\text{H}_{24}\text{O}_2\text{N}_2\text{HCl}+2\text{H}_2\text{O}.\) (U. S. & B. P.)

Derivation.—Made by the action of hydrochloric acid on quinine, and by crystallization.

Properties.—White, silky, glistening needles; odorless, and having a very bitter taste. The salt effloresces when exposed to warm air. Soluble in 18 parts

*Tinct. Quininae Ammoniata (B. P.), from the sulphate. **Dose.**—H., 3ss-i; D., 5ss-i.

†Tinctura Quininae (B. P.), from the hydrochloride. **Dose.**—H., 5ss-i; D., 5ss-i.
of water, and in 0.8 part of alcohol, 0.7 part of chloroform, and in 7 parts of glycerin.

Dose.—Same as quinine sulphate.†

Quininae Valeras. Quinine Valerate. \(C_{13}H_{25}N_3O_2C_2H_5O_2 + H_2O \) (B. P.) (Non-official.)

Derivation.—Made by decomposition of quinine sulphate with ammonia, followed by the immediate action of valerianic acid, and crystallization from a cold solution.

Properties.—White, or nearly white, pearly, lustrous, triclinic crystals, having a slight odor of valerianic acid, and a bitter taste. Permanent in the air. Soluble in 100 parts of cold water, and in 5 parts of alcohol; in 40 parts of boiling water, and in 1 part of alcohol.

Dose.—D., gr. i-ii, (.06-.12). Three times daily as tonic.

Quininae et Urea Hydrochloridum. Quinine and Urea Hydrochloride.

(U. S. P.)
\(C_2H_4O_2N_2HCl, CO(NH_2)_2HCl + 5 H_2O. \)

Synonym.—Quinine Binuriiatis carbnamas. Quinine and urea binuricate.

Prepared by dissolving quinine hydrochloride, 400, in dilute HCl, 300; mixing with 60 to 61 parts of urea \(CO(NH_2)_2 \); warming, filtering and allowing to crystallize. Occurs in colorless, translucent prisms, or as a white, granular powder, odorless and having a very bitter taste. Permanent in the air. Soluble in 0.9 part of water and in 2.4 parts of alcohol.

Chininum or Quinonidum. Chininoid or Quininoidine.

Brown, resinous mass, containing mixture of quinidine, cinchonine and cinchonidine. A cheap substitute for quinine sulphate.

Dose.—Three or four times that of quinine sulphate.

Quinidine Sulphas. Quinidine Sulphate. \((C_{12}H_{24}N_2O_2)_2, H_2SO_4 + 2 H_2O. \) (Non-Official.)

The neutral sulphate of an alkaloid obtained from the bark of several species of cinchona (nat. ord. Rubiaceæ).

Synonym.—Sulfate de quinidine, Fr.; schwefelsaures chiminid (cinchinin), G.

Derivation.—Recovered from quinidine, or from the mother liquors after the crystallization of quinine sulphate, by the same method as for quinine.

Properties.—White, silky needles, odorless, and having a very bitter taste; permanent in the air. Soluble in 100 parts of cold water, and in 8 parts of alcohol; in 7 parts of boiling water, and very soluble in boiling alcohol; also in 14 parts of chloroform and in acidulated water; almost insoluble in ether.

Dose.—One-third larger than quinine sulphate.

Cinchoninae Sulphas. Cinchonine Sulphate. \((C_{12}H_{24}O_4)_2, H_2SO_4 + 2 \) (U. S. P.)

Derivation.—Obtained from the mother liquors after the crystallization of the sulphates of quinine, quinidine and cinchonidine, by precipitation with caustic soda, washing with alcohol to free it from other alkaloids, solution in sulphuric acid, and by purification with animal charcoal, and crystallization.

Properties.—White, lustrous, prismatic crystals, odorless and having a very bitter taste. Permanent in the air. Soluble in 60 parts of water, and in 12.5 parts of alcohol. Also soluble in 47 parts of chloroform, but almost insoluble in ether.

Dose.—One-third larger than that of quinine sulphate.

Cinchonidiinae Sulphas. Cinchonidine Sulphate. \((C_{15}H_{22}N_2O_4)_2, H_2SO_4 + 3 H_2O. \) (U. S. P.)

Derivation.—Procured from the mother liquors, after the crystallization of

†Quininae Salicylas, Quinine Salicylate (U. S. P.). Soluble in 77 parts of water. Occurs in colorless needles. Dose as for sulphate.

*Elixir Ferri, Quininae et Strychninae Phosphatum (U. S. P.), and Syrupus Ferri Phosphatis cum Quinina et Strychnina (B. P.), (dose—D., 5I), are good tonic preparations for dogs.
quine sulphate, by further concentration. Purified by crystallization from alcohol, and finally from hot water.

Properties.—White, glistening needles or prisms: silky, acicular, odorless and having a very bitter taste; permanent in the air. Soluble in 63 parts of water, and in 90 parts of alcohol; also soluble in 620 parts of chloroform, and almost insoluble in ether.

Dose.—One-third larger than that of quinine sulphate.

Cinchona and Its Alkaloids as Represented by Quinine.

Action External.—The action of quinine on all forms of undifferentiated protoplasm is to stimulate in small doses, or in much dilution, and to depress and paralyze in large doses, or in strong solutions. It has the same action on unorganized living matter (ferments) in many cases but does not affect some. It is still more destructive to protozoa, especially to the organisms of malaria. Quinine is a powerful antiseptic and microbicidal. A solution (1 to 250) of the alkaloid or its salts is poisonous to the microbes of fermentation and putrefaction. A one per cent. solution quickly destroys bacteria and vibrios, but spores may live in it for some days. Quinine and its salts cause irritation of the denuded skin, or mucous membranes, but exert no effect upon the unbroken skin.

Action Internal.—*Digestive Tract.*—Quinine, in therapeutic doses, acts as a simple bitter (stomachic), and therefore promotes appetite and gastric digestion. It stimulates the taste buds of the tongue and thus appetizes and, reflexly, the “appetite” gastric juice which Pawlow found necessary in starting digestion; together with the flow of saliva and the vascularity and peristalsis of the stomach. Experimentally, quinine slightly lessens the activity of the ferment of the gastric and pancreatic juices (pepsin, trypsin) in dilution, while destroying them in larger amounts. Large doses, particularly if the stomach be irritable, may cause vomiting. Quinine becomes dissolved in the gastric juice and is converted into the chloride. A portion unabsorbed finds its way into the bowels and is there precipitated by the alkaline juices and bile, whose acids form insoluble salts with quinine, unless the bile is in great excess.

Blood.—Quinine is absorbed into the blood, and would naturally be precipitated in this alkaline fluid; but this is not the case, and it has been shown that quinine is probably held in solution by the loosely combined carbonic dioxide gas in the blood. Quinine possesses several well-defined and important actions in relation to the blood.

1. **White Blood Corpuscles.**—Quinine in great dilution lessens the ameboid movements of the white corpuscles in blood removed from the body. When a frog receives large doses of quinine and its mesentery is irritated, the white corpuscles do not collect in the arterioles or migrate through their walls (diapedesis). Again, when inflammation has already begun in the mesentery, quinine stops the transmigration of leukocytes, and yet does not stop these in the tissues from wandering away. Moreover, large doses markedly lessen the number of white corpuscles in the blood. Thus quinine has a pronounced toxic action on amebae, and also on ameboid parasites, as of malaria, rabies, and intestinal forms. While medicinal doses of quinine given by the mouth unquestionably produce leukopenia, yet it is generally considered highly improbable that the
effect of quinine in inhibiting the movement of leukocytes observed in the frog, when large doses are introduced into the blood, occurs after the therapeutic use of the drug in mammals. But it has recently been shown that a solution of quinine in blood, equal to that when a small dose (gr. iii., man) is ingested, increases markedly phagocytosis in the case of all the common pathogenic organisms. Very large doses diminish phagocytosis. It is hard to explain this action when we consider leukocytosis is hindered by quinine, but it may show why benefit should be expected from the drug in septic conditions.

2. Red Blood Corpuscles.—Therapeutic doses increase the number of red corpuscles. The latter diminish in size in febrile conditions, but, under the action of quinine (and other antipyretic agencies), regain their normal condition. This follows the effect of quinine in lowering temperature, and is not due to any specific power of quinine exerted on the corpuscles themselves.

Heart and Blood Vessels.—Quinine in ordinary doses does not affect the heart or vessels appreciably. Large doses at first stimulate the muscle of the heart and blood vessels and cause the pulse to be accelerated and vascular tension to be raised. In poisoning this effect is temporary and is followed by depression of the muscle of the vessel walls and heart and the cardiac pulsations become slow and weak and the blood tension falls. Death occurs immediately from failure of respiration. Although the heart is much weakened it commonly continues to beat for some time after breathing ceases. The action on the heart is like that on all forms of living tissues—primary stimulation followed by depression and paralysis.

Nervous System.—Here again the general action consists in primary stimulation followed by depression and paralysis of the the cerebrospinal system. The breathing is first accelerated and then weakened and death occurs from paralysis of the respiratory center. Fatal poisoning is very rare after ingestion of quinine. Ounce doses have been swallowed by man without serious result. Occasionally convulsions have occurred but perhaps due to an admixture of the other alkaloids, as cinchonidine and cinchonine are convulsive agents in toxic doses. Toxic doses of quinine injected into the carotid artery cause meningitis by direct irritation. In man, ringing in the ears, fulness in the head, and slight deafness commonly follow a large medicinal dose (cinchonism). Blindness also very rarely occurs in man after large doses. Vomiting, diarrhea, albuminuria and skin eruptions sometimes occur in poisoning by the drug due to local irritation. There are contraction of the retinal vessels and degenerative changes in the retina and spiral ganglia of the cochlea, which account for the loss of sight and hearing. There is some clinical evidence that quinine in medicinal doses is a cerebral stimulant, but there is no experimental proof of the fact.

Spinal Cord and Nerves.—Quinine, in experiments on the frog, first stimulates and then lessens reflex activity. This condition disappears on section of the medulla. Toxic doses, however, cause permanent loss of reflex excitability. The same alkaloid first excites and then paralyzes the peripheral sensory nerve endings. These effects on the nervous system
are not observed in mammals. Muscular contractility is stimulated by small and paralyzed by poisonous doses of quinine. After subcutaneous injection of quinine there is slow loss of sensation and local anesthesia lasting for hours or days. The hydrochloride of quinine and urea is commonly used for this purpose.

Uterus.—In experiments with the intravenous or subcutaneous injection of quinine into animals normal uterine contractions are augmented or rhythmical contractions are originated by the drug. The production of labor pains or abortion has been observed in woman following the use of large doses for the cure of malaria. The alkaloid stimulates uterine contractions in inertia of parturition but there is considerable testimony affirming that it increases at the same time the tendency to flowing.

Kidneys, Metabolism and Elimination.—Quinine lessens the elimination of both urea and uric acid. It is therefore evident that there is some alteration or inhibition of metabolism whereby nitrogenous decomposition is decreased and nitrogen is stored in the body. There is no diminished oxidation of carbohydrates in the tissues, which is the chief source of animal heat, for the excretion of CO_2 and absorption of oxygen by the lungs is unaltered by quinine. This accords with the known fact that the oxidizing ferment of the tissues is not influenced by the drug (Jacquet). About three-fourths of the quinine absorbed is destroyed in the tissues. The remaining fourth escapes unchanged in the urine in man but much altered in dogs. While its excretion in the urine begins soon after its ingestion, and lasts for some days, the greater amount escapes within twenty-four hours. None is found in the other excretions.

Antipyretic Action.—Quinine does not alter the normal temperature of a healthy animal, but does reduce temperature in fever. The amount of reduction depends upon the cause of the fever. An explanation of the antipyretic power of the alkaloid may include:

1. The antiseptic property of quinine. This is most marked in the case of the plasmodium malariae, which is destroyed by the alkaloid, and the malarial fever is therefore overcome.

2. By retarding nitrogenous decomposition or metabolism and thus lessening the production of heat in the tissues. Quinine does not lower temperature by action on heat-regulating centres as it occurs after division of the spinal cord. It is less effective as an antipyretic than coal tar derivatives.

3. By dilating the vessels of the skin and therefore inducing loss of heat. In poisoning there are deafness, blindness, slow weak heart and breathing, gastric disturbances, diarrhea, and perhaps albuminuria, hematuria or hemoglobinuria.

Administration.—Quinine sulphate is usually given to horses in aqueous solution with sufficient diluted sulphuric acid to dissolve the salt. It may also be administered to these animals in ball, gelatine capsule, enema or subcutaneously. Quinine is exhibited to dogs in pills, solution or suppositories. The alkaloid is not commonly injected under the skin, because local irritation and abscess may follow; but this does not frequently happen in the horse. The bisulphate, hydrobromide and hydro-
chloride are most suitable for hypodermic use. The first salt is more soluble, but the latter two are less irritating.

At a temperature of 15⁰ C. (113.⁰ F.)

- Quinine bisulphate is soluble in 8.8 parts of water.
- Quinine hydrobromide is soluble in 4.96 parts of water.
- Quinine hydrochloride is soluble in 24.4 parts of water.

This temperature may be used for subcutaneous injection, but the salts should be thoroughly dissolved and one grain of tartaric acid should be added to each five grains of quinine bisulphate, in order that precipitation may not occur in the tissues. The dose by the subcutaneous method is one-third less than by the mouth.

The sulphates of quinidine, cinchonine and cinchonidin are similar in action to quinine, and their relative antipyretic effect is said to be: quinine, 100; quinidine, 90; cinchonidin, 70; cinchonine, 40. The cinchona compounds are indicated for tonic and stomachic purposes.

Uses External.—Quinine and urea hydrochloride has recently come into extensive use as a local anesthetic. In 1 per cent. solution it forms a satisfactory substitute for cocaine and its allies and it has three advantages over cocaine. It is non-toxic, it may be boiled in solution, and its anesthetic effect is often prolonged for hours or days, lessening pain and spasm after operation and aiding dressing of wounds. Anesthesia comes on within 5 to 30 minutes after injection into the tissues. In 25 per cent. solution it is used to anesthetize mucous membrane, but is not so satisfactory as cocaine for this purpose. It has been used in a great variety of operations, including those within the belly. The line of incision on the belly wall is anesthetized and after the belly is opened the parietal peritoneum must be injected. Not much pain is caused by handling the viscera unless the mesenteric attachments are pulled upon.

Uses Internal.—It is impossible to draw definite deductions as to the therapeutic indications for quinine founded on physiological experiments, since these are only suggestive and not conclusive. For the sake of convenience, we may classify the uses of quinine under the following heads:

1. **Tonic Action.**—Quinine sharpens the appetite but retards absorption, irritates the stomach and inhibits pepsin action in ordinary doses. It is chiefly a tonic by increasing the number of red corpuscles and stimulating the nervous system generally. It is in those cases of anorexia and atonic dyspepsia secondary to exhaustion, overwork, anemia, or following acute diseases, that the drug is indicated. Here, combination with iron is often of service, and the tincture of the chloride is a good preparation because it contains sufficient free muriatic acid to dissolve any of the salts of quinine. The compound tincture of cinchona is a prime, bitter tonic for dogs; or quinine may be given in a pill with reduced iron and arsenic as a tonic. Chorea in the human patient has been treated successfully with quinine, but this remedy has failed in dogs. Nevertheless, the alkaloid is an excellent tonic in canine distemper with its accompanying anemia, but it should be combined with iron and arsenic. Quinine is a good tonic for purpura in horses.

2. **Antiseptic and Antipyretic Effect.**—Quinine possesses much less antipyretic power than phenacetin, antipyrin and acetanilid. It is there-
fore not used for this purpose nearly so much as formerly. It acts more favorably with a falling than a rising temperature, and should be given two or three hours before the probable time of maximum temperature. Quinine is employed in many acute diseases, such as influenza, bronchitis and pneumonia of horses. In full doses, at the outset of colds or inflammatory diseases of the respiratory tract, quinine may prove abortifacient. Later in these diseases the drug may be given as an antipyretic (without much benefit probably), but in the convalescent stages quinine, in small doses, becomes of great worth as a tonic. Some experiments involving the injection of putrid material into the blood of dogs, appeared to indicate that quinine had a restraining influence on the resulting septic state, and, in some cases, saved life, but its use as an internal antiseptic rests on little but tradition.

Puerperal fever and erysipelas, inflammation yield somewhat to quinine, and the drug should be tried in these infections. The alkaloid does not lower the temperature or prove destructive to the micrococci of pyemia. A vast number of cases of rheumatic fever have been treated with quinine in human practice, but the results are inferior to those obtained by salicylates. In subacute and chronic muscular rheumatism quinine is sometimes useful. It has been injected into the affected muscles in this disorder, in horses, with favorable results.

The alkaloids of cinchona may be used as antipyretics in all acute diseases with the exception of meningitis, cerbritis, gastritis, nephritis and cystitis, where they produce too much irritation. They are also contra-indicated in epilepsy and middle-ear disease.

3. Specific Properties.—One mil of a 1 per cent. solution of bimurate of quinine and urea to the pound, live weight, has been injected intra-abdominally in cattle as a treatment for tick fever.

Quinine stands preëminent in the treatment of malaria, as it is the only drug which can be relied upon to kill malarial organisms. While periodicity in the febrile attacks is characteristic of malaria, an absolute diagnosis can be made only by the discovery of Laveran's plasmodium in the red blood corpuscles. Malaria but rarely, if ever, affects the lower animals in this country, although exceedingly common among human beings. Cases are said to occur not infrequently among horses and cattle in India. A single full antipyretic dose of quinine, if given from twelve to six hours before an expected malarial attack, will usually prevent it. A single large dose should be given once daily for several days thereafter. When the disease is severe, treatment may be pursued by the hypodermic method. A purge of aloes and calomel should be exhibited prior to the administration of quinine in the treatment of malaria.

Class 2.—Salicylic Acid, Salicina, Salol, Oil of Gaultheria and Methyl Salicylate.

ACIDUM SALICYLICUM. Salicylic Acid. C.H.O₃. (U. S. & B. P.)

Synonym.—Acid salicylique, Fr.; salicylsäure, G.

An organic acid, existing naturally in combination in various plants, but chiefly prepared synthetically from carbolic acid.

Derivation.—Made by passing carbonic dioxide through sodium carbonate at a
temperature of 428° F. (220° C.). $2 \text{NaC}_7\text{H}_5\text{O}_3 \text{ (sodium carbolate)} + \text{CO}_2 = \text{Na}_2\text{C}_7\text{H}_5\text{O}_5$ (sodium salicylate) + $\text{C}_2\text{H}_4\text{O}_2$ (phenol). Sodium salicylate is treated with hydrochloric acid, when salicylic acid is precipitated. $\text{NaC}_7\text{H}_5\text{O}_3 + 2 \text{HCl} = \text{C}_2\text{H}_4\text{O}_2 + 2 \text{NaCl}$.

Properties.—Fine, prismatic needles, or as a bulky, white, crystalline powder; odorless, having a sweetish, afterward acid taste, and permanent in the air. Synthetic salicylic acid is white and odorless; when prepared from methyl salicylate the acid may have a slightly yellow or pink tint and a slight, gaultheria-like odor. Soluble in about 460 parts of water, and in 2.7 parts of alcohol. Also soluble in 3 parts of ether and in 4.2 parts of chloroform.

Incompatible.—Spirit of nitrous ether.

Impurities.—In artificial salicylic acid, metacresotinic and orthocresotonic acids.

Dose.—H. & C., 3iii-ii, (8-30); Sh., 5i-iv, (4-15); Sw., 5ss-i, (2-4); D., gr.v-xxx, (.3-2).

PREPARATION.

Unguentum Acidis Salicylici (2 per cent.), B. P.

Salicinum. Salicin. $\text{C}_3\text{H}_4\text{O}_6$. (U. S. & B. P.)

A neutral principle (glucoside) obtained from several species of Salix and Populus (Fam. Salicaceæ).

Habitat.—Europe, but cultivated in North America.

Derivation.—Obtained from a decoction of willow bark. Salicin crystallizes on evaporation, after removal of tannin by agitation with lead oxide. It is purified by repeated solution and crystallization.

Properties.—Colorless, silky, shining crystalline needles, or rhombic prisms, or a crystalline powder; odorless, and having a very bitter taste. Permanent in the air. Soluble in 29.5 parts of water, and in 88.5 parts of alcohol; insoluble in ether or chloroform.

Dose.—H. & C., 3iii-ii, (8-30); Sh., 5i-iv, (4-15); Sw., 5ss-i, (2-4); D., gr.v-xxx, (.3-2).

Sodi Salicylas. Sodium Salicylate. $\text{NaC}_7\text{H}_5\text{O}_3$. (U. S. & B. P.)

Synonym.—Silicyle de soude, Fr.; natriumsalicylat, G.

Derivation.—Salicylate de sodium on sodium carbonate. $2 \text{HC}_7\text{H}_5\text{O}_3 + \text{Na}_2\text{CO}_3 = 2 \text{NaC}_7\text{H}_5\text{O}_3 + \text{H}_2\text{O} + \text{CO}_2$. The solution is filtered, and heated to expel carbon dioxide.

Properties.—A white, microcrystalline powder or scales, or as an amorphous powder, colorless or having not more than a faint pink tinge; odorless, or having a faint characteristic odor, and a sweet, saline taste. Permanent in cool air. Soluble in 0.8 part of water, and in 5.5 parts of alcohol; very soluble in boiling water or alcohol; also soluble in glycerin.

Dose.—Same as salicin.

Phenylis Salicylas. Phenyl Salicylate, $\text{C}_{12}\text{H}_9\text{O}_8$. (U. S. P.)

Synonym.—Salol, B. P.; salicylic ether of phenol.

Derivation.—Made by heating salicylic and carbolic acids with phosphorous pentachloride.

Properties.—A white, crystalline powder, having an aromatic odor, and a characteristic taste. Permanent in the air. Almost insoluble in water; soluble in 6 parts of alcohol. Very soluble in ether, chloroform, benzene, and in fixed or volatile oils.

Dose.—H., 5iii-iv, (12-24); D., gr.v-x, (0.3-0.6).

Salicylic Acid, Salicin, Sodium Salicylate and Phenyl Salicylate or Salol.

Action External.—Salicylic acid, sodium salicylate, salicin and salol

Strontii salycylas is now official. Strontium salicylate is less irritating to the stomach. Dose same as for the sodium salt.
are powerful antiseptics resembling carbolic acid in action but less toxic and irritant. A solution of salicylic acid (1-60) is equivalent to a solution of carbolic acid (1-22) in destroying some bacteria, but is not generally as useful, being less penetrating in its action on the tissues. In solution salicylic acid softens and removes the horny layer of the skin without causing any soreness. Salicylic acid, sodium salicylate and salicin, in their pure state, are irritating to the unbroken skin or raw surfaces. Salol is not.

Action Internal.—Salicylic acid is an irritant in the digestive tract and in large doses causes nausea and vomiting in dogs. It slightly increases the flow of bile. Salicylic acid is converted into salicylates by the alkaline intestinal juices, and is absorbed in this form, chiefly as sodium salicylate. For this reason, and because the latter salt is less irritating than salicylic acid, sodium salicylate is preferred to the acid when a constitutional action is desired. Salicin splits up in the bowels into salicylic acid, salicylous acid (HC₈H₅O₃), salicyluric acid (HC₈H₆NO₄), and glucose. Salol is decomposed by the pancreatic juice into salicylic acid (64 per cent.) and carbolic acid (36 per cent.). After large doses the urine takes on the characteristic smoky color produced in poisoning by phenol. Salol is an intestinal antiseptic. Salicylates retard enzyme action.

Circulation.—Moderate doses of sodium salicylate, or salicylic acid slightly increase blood pressure by stimulation of the heart muscle and vaso-constrictor centre, but large doses depress the heart force, blood pressure and nervous system. The artificial acid is said to be more depressant than natural salicylic acid obtained from plants, because of orthocresotic and metacresotic acids existing as impurities in the former. Natural salicylates cost 5 to 10 times as much as the artificial, and Eggleston, from an exhaustive recent study, states that there is no material difference in the action of the two.

Nervous System.—The only known action of salicylic acid on the central nervous system is that on the medullary, respiratory and vaso-motor centres which are first stimulated, then depressed, and finally paralyzed by lethal doses.

Therapeutic quantities often cause, in man (salicylism), ringing in the ears and headache. Besides, some deafness, dimness of vision and excessive perspiration are not uncommon after large doses.

Respiration.—The respiratory movements are primarily quickened by the stimulation of the peripheral vagi and respiratory centres produced by sodium salicylate and salicylic acid; but after large doses the respiratory centres are depressed and paralyzed and death takes place by asphyxia.

Temperature.—Medicinal doses do not influence the normal temperature of healthy animals, but do often lower bodily heat in fever, and frequently induce sweating. The largest therapeutic doses must be given to secure an antipyretic action. Antipyresis occurs from heat loss due to dilation of cutaneous blood vessels.

Kidneys and Elimination.—Salicylic acid, salicin and sodium salicy-
late circulate in the blood as sodium salicylate and are eliminated in the urine as salicyluric and salicylic acids. This happens in this wise: Some of the salicylic acid of sodium salicylate combines with glycocoll in the body and forms salicyluric acid. \(HC_2H_3O_3+C_2H_5NO_2 \) (glycocoll)\(\rightarrow \) \(HC_9H_7NO_4 \) (salicyluric acid)\(\rightarrow \) \(H_2O \); while some of the sodium salt is decomposed by phosphoric acid in an acid urine into salicylic acid. Like quinine, the excretion of salicylic acid begins soon, in one hour, and is all excreted within 48 hours. Large doses given continuously accumulate in the body, and chiefly in the synovial fluid in the various joint cavities which accounts for their action in rheumatism. The quantity of urea and uric acid in the urine is increased very considerably by salicylic acid through protein destruction in the body, and usually the amount of urine itself. It is made aseptic by the escaping salicylic acid, or in the case of salol, by both carbolic and salicylic acids. Sometimes salicylates irritate the kidneys in large doses and blood and albumin appear in the urine. The urine of animals taking salicylic acid may be rendered green by indican and pyrocatechin, formed through the action of pancreatic juice, and takes on a purple color with ferric chloride. Salicylic acid is also eliminated in the milk, sweat and bile.

Toxicology.—In man, continued large doses give rise to delirium, vomiting, depression of the circulation, epistaxis, hematuria, and retinal hemorrhages. The herbivora are not easily affected by large doses of salicylic acid or salicylates, but dogs exhibit nausea and vomiting; accelerated respiration, irregular pulse, loss of muscular strength, staggering gait, stupor, and, if death occurs, it is preceded by slow breathing, dilated pupils, dyspnea, and convulsions due to asphyxia. The minimum fatal dose for a small dog is about one dram of sodium salicylate, subcutaneously.

Administration.—Sodium salicylate contains 48 grains of the acid to the dram. Sodium salicylate is used in preference to the acid because it is soluble and unirritating. It is given in solution, or to dogs in pills or tablets. Salicylic acid may be exhibited in solution by warming it with glycerin (gr.iv-3i); or with syrup (1-5), and aqua ammoniae in sufficient quantity to dissolve it, thus forming ammonium salicylate. It may also be administered in pill or ball. Salol is given in pill, powder or mixture with water. The larger doses of salicylic acid and salicylates should not be repeated, and are used for their antipyretic action. A maximum daily dose of one ounce of salicylic acid or sodium salicylate, for horses, or one dram of either for large dogs, should rarely be exceeded.

Uses External.—Salicylic acid is employed in various forms as an antiseptic. Aqueous solutions (1-300) may be applied to wounds. Stronger solutions are prepared with alcohol, borax, sodium bicarbonate, and ammonium acetate solution. Salicylic acid may be applied as a dusting powder with zinc oxide (1-8), or in ointment (1-20 or 30), for its stimulant and antiseptic effect on wounds. It is used in the treatment of burns with cottonseed oil (1-8). Salicylic acid is useful in powder or ointment in acute moist eczema (1-50), and in the following formula:
Salicylic acid is of value in skin diseases with induration, and for removing horny growths as warts and corns. For the latter it is mixed with collodion (5ii in 5i) and applied twice daily for a week or so when the growth comes away without any irritation.

Salicylic acid, salicin, and salicylates are not comparable with the coal tar products as general antipyretics, and are useless in hyperpyrexia. Sodium salicylate is sometimes prescribed in gastric fermentation of horses when the salicylic acid, set free by the hydrochloric acid of the gastric juice, acts as an antiseptic. Also in colds and acute pharyngitis, and in chorea and pleurisy, all of which may be of true rheumatic (streptococcic) origin. Salol is a good intestinal antiseptic in diarrhea and intestinal indigestion, particularly when combined with bismuth subnitrate in powder or aqueous mixture for dogs. Salol is undissolved in the stomach, is less irritating than either salicylic acid or sodium salicylate, and is prescribed to lessen pain and fever. It may be advantageously given to dogs, for painful rheumatism, as follows:

R
Phenylis salicylatis.
Acetphenetidini ... 5i.
Codeinae sulphatis... 5iss.
M. et divide in capsulas No. xxx.
S. Two capsules t. i. d.

It is probably inferior to sodium salicylate, but can be conveniently administered in powder as just noted. Salol is also a local anesthetic...
and antiseptic in the urinary tract (carbolic acid from decomposition),
and is useful in cystitis and urethritis, to alleviate pain, to prevent fre-
quent micturition, and to render the urine aseptic. It may be combined
for this purpose with hexamethylenamine. Salicin acts more slowly than
salicylic acid or sodium salicylate, and is not in general use. Salicylates
are used in indigestion with slight icterus in acting as cholagogues.

Aspirin. Acetylsalicylicum. Acetylsalicylic Acid. C₉H₈O₄.

Aspirin is made by heating fifty parts of salicylic acid with seventy-five parts
of acetic anhydride at a temperature of 302° F., and by purification and crystal-
lization. It occurs in small colorless, crystalline needles, odorless and having an
acidulous taste. It is soluble in 100 parts of water and freely soluble in alcohol
and ether.

With alkalies it is decomposed into salicylic acid and salicylates with the
liberation of acetic acid. It passes through the stomach unchanged and is slowly
dissolved in the alkaline juices of the intestines, with less systemic symptoms
(tinnitus in man) than follows the use of salicylic acid. It is merely a substitute
for the latter and is supposed to be less irritating to the stomach but this is not
always the case. Fashion has at present endowed it with much wider scope than
is given salicylates, and profession and public use it largely, to the exclusion of
the former favorites (quinine and phenacetin), for colds, sore throat, influenza,
headaches, and neuralgic pain. It is often combined with other antipyretics and
analgesics, as acetphenetidin, but is too expensive for large animals. It is in-com-
patible with alkalies, their carbonates or bicarbonates.

Dose.—H., 5ii-iv, (8-15); D., gr.v-xx, (0.3-1.3). Given in capsules or tablets
to dogs; with syrup to horses.

Oleum Gaultheriae. Oil of Gaultheria.

Synonym.—Oil of checkerbitter, oil of wintergreen, oil of boxberry, E.; essence
de gaulthérice, Fr.; wintergrünlöl, G.

A volatile oil distilled from the leaves of Gaultheria procumbens Linné (Fam.
Ericaceae), consisting almost entirely of methyl salicylate (CH₃C₇H₅O₂), and
identical with volatile oil of betula or sweet birch and oil of teaberry.

Habitat.—North America; west as far as Minnesota, and south to Georgia.

Properties.—A colorless or yellow, or occasionally reddish liquid, having a
characteristic, strongly aromatic odor, and a sweetish, warm and aromatic taste.
Spec. gr. 1.172 to 1.182 at 77° F. Solubility same as methyl salicylate. Very
expensive.

Dose.—H., 5ii-3i, (8-80); D., miv-xv, (3-1).

Methyl Salicylate. CH₃C₇H₅O₂. (U. S. P.)

Derivation.—Prepared by distillation of salicylic acid, or salicylates, with
methyl alcohol and sulphuric acid (artificial or synthetic oil of wintergreen), or
is obtained by distillation from Gaultheria procumbens (natural oil of winter-
green), or from Betula lenta (oil of birch).

Properties.—A colorless, yellowish or reddish liquid, having the characteristic
odor and taste of gaultheria, with the essential composition of which it is iden-
tical. It is wholly identical with oil of betula (birch). Spec. gr. 1.180-1.185;
when from sweet birch or gaultheria, 1.172 to 1.182. Sparingly soluble in water.
Soluble in all proportions in alcohol, glacial acetic acid, or carbon disulphide.

Dose.—H., 5ii-3i, (8-80); D., miv-xv, (3-1).

Action and Uses of Oil of Gaultheria, Oil of Betula and Methyl Salicylate.

Oil of wintergreen contains about 90 per cent. of methyl salicylate. Eleven parts of methyl salicylate (98 per cent. CH₃C₇H₅O₂) are equivalent to nearly ten parts of salicylic acid. The oil and methyl salicylate
VOLATILE OILS

are free from the impurities of artificial salicylic acid, while methyl salicylate is of more certain composition than the oil. Both behave similarly to salicylic acid therapeutically, although the oil is more of a local irritant, and they are used for the same purposes as salicylic acid. Either may be given in emulsion, or to dogs in capsules, and in combination with salicylic acid or salicylates.

Methyl salicylate is serviceable in the following liniment for rheumatism:

R
Tinc. opii.
Methyl salicylatis.
Chloroformi ...āā ṭī.
Lin. saponis ...ad. ṭvīi.

M.
S. External use.

The external application of methyl salicylate to acutely inflamed rheumatic joints is one of the most efficient forms of treatment, and, since some is absorbed, will take the place of the internal administration of salicylates to a slight extent. It is usually best to combine this treatment with internal medication, however. Plain gauze, or other absorbent material, is saturated with methyl salicylate, applied to the affected joint, and then covered with oil silk, or rubber protective and bandage.

SECTION IX.—VOLATILE OILS, OR DRUGS CONTAINING THEM.

General Action of Volatile Oils.

Synonym.—Essential, ethereal, aromatic or distilled oils.
Externally, volatile oils cause reddening of the skin (rubefacients), sometimes blistering (vesicants), and often local anesthesia, notably oil of cloves and peppermint. They are also parasiticide, antiseptic and disinfectant, penetrating into the protoplasm of bacteria. Internally, these agents stimulate the flow of gastric, salivary and intestinal secretions and increase the vascularity and movements of the stomach and bowels, and are antiseptic, stomachic and carminative. They therefore temporarily improve digestion, overcome flatulence and colicky pain by expelling gas from the stomach and intestines, prevent griping produced by cathartics, and disguise and offset disagreeable effects and tastes of medicines. In the digestive tract, volatile oils excite reflexly the nervous system and heart, and augment the pulse rate and vascular tension. In large doses, volatile oils are gastro-intestinal irritants. They often cause polynuclear leukocytosis when ingested, but not when given intravenously. The action is not specific but may be produced by agents irritating the mucous membrane of the digestive tract. Volatile oils may be absorbed from the skin, bronchial mucous membrane, and stomach. They are eliminated by the skin, bronchial mucous membrane and kidneys, and act as antiseptics and parasiticides in the kidneys and lungs.

In the process of excretion the parts are stimulated; vascularity,
secretion, and contractility of the unstriated muscle of the bronchial tubes are increased, and volatile oils thus assist expectoration and coughing. In irritating the kidneys and mucous membrane of the genito-urinary tract, the volatile oils are stimulant and diuretic; while in poisonous doses they produce acute nephritis, strangury, hematuria and abortion. Toxic doses, injected into the circulation, lower the force of the heart and the blood pressure, and occasion a sort of intoxication, and sometimes convulsions. To summarize: volatile oils possess the following actions in a greater or less degree: parasiticide, antiseptic, disinfectant, rubefacient, vesicant, local anesthetic, sialagogue, stomachic, carminative, anti-spasmodic, stimulant, expectorant, emmenagogue, abortifacient, and diuretic actions.

Class 1.—Used Mainly for Their Action on the Skin.

Terebinthina. Turpentine. (B. P.)

A concrete oleoresin obtained from *Pinus palustris* Miller, and from other species of *Pinus* (nat. ord. Coniferae).

Habitat.—Southeastern United States; from Virginia to the Gulf of Mexico.

Description.—In yellowish, opaque, tough masses, brittle in the cold: crumblly, crystalline in the interior, of a terebinthinate odor and taste.

Oleum Terebinthinae. Oil of Turpentine. (U. S. & B. P.)

A volatile oil distilled with water from the concrete oleoresin obtained from *Pinus palustris* Miller or from other species of *Pinus* (Fam. Pinaceæ).

Synonym.—Spirit of turpentine. E.; essence de térebínthine, Fr.; terpentinöl, G.

Properties.—A colorless liquid, having a characteristic odor and taste, both of which become stronger and less pleasant by age or exposure to the air. Spec. gr. 0.860 to 0.870 at 25° C. Soluble in three times its volume of alcohol; also soluble in an equal volume of glacial acetic acid.

Solvent for resins (varnish), fats, wax, gutta percha, india rubber, sulphur, phosphorus, iodine, and many alkaloids. Old oil of turpentine and French oil of turpentine (*Pinus maratima*) are oxidizing agents.

Constituents.—Turpentine contains 20 to 25 per cent. of oil of turpentine. Oil of turpentine is composed of several isomeric hydrocarbons, called terpenes, and having the formula $C_{n}H_{2n}$. The chief ones in the oil are pinene, phellandrene, limonene, and dipentene.

The oil of juniper, savin, cubeb, caraway, cloves, thyme, etc., contain various terpenes. They differ from each other in their boiling points and direction in which they rotate the plane of polarization. The terpenes are oxidized into camphors.

Dose.—Carminative—H. & C., ʒi-ii, (30-60); Sh. & Sw., ʒi-iv, (4-15); D., m₃x-xxx, (6-2).

Anthelmintic—H. & C., ʒi-iv, (60-120); D., ʒss-iv, (2-15).

Diuretic—H. & C., ʒi-ii, (8-24).

PREPARATIONS.

Linimentum Terebinthinae. Turpentine Liniment. (U. S. & B. P.)

Resin cerate, 650; oil of turpentine, 350; melt the resin cerate and add the oil of turpentine. (U. S. P.)

Oleum Terebinthinae Rectificatum. Rectified Oil of Turpentine. (U. S. P.)

Derivation.—Made by shaking oil of turpentine with an equal volume of solution of sodium hydroxide, distillation, and shaking with anhydrous calcium chloride.

Properties.—A thin, colorless, liquid, having the same properties as oil of turpentine.

A liquid consisting of dipentene and other hydrocarbons, obtained by the action of concentrated sulphuric acid on oil of turpentine.

Properties.—A colorless, thin liquid, having a rather agreeable, thyme-like odor, and an aromatic, somewhat terebinhinate taste. Spec. gr. 0.860 to 0.865 at 25° C. Only slightly soluble in water, but soluble in 3 times its volume of alcohol, and in glacial acetic, or carbon disulphide.

Dose.—H. & C., 5ii-vi, (8-24); miv-xv, (3-1).

Terpin hydras. Terpin Hydrate. C₉₂H₁₆(OH)₂+H₂O. (U. S. P.)

The hydrate of the dihydric alcohol, terpin.

Derivation.—Rectified oil of turpentine, alcohol and nitric acid are mixed together in shallow, porcelain dishes, and after three or four days terpin hydrate crystallizes out. The crystals are collected, drained, dried on absorbent paper, and purified by recrystallization in alcohol.

Properties.—Colorless, lustrous, rhombic prisms, nearly odorless and having a slightly aromatic and somewhat bitter taste. Efflorescent in dry air. Soluble in 200 parts of water and in 13 parts of alcohol.

Dose.—H., 5ss-ii, (2-8); D., gr.v-xx, (3-1.3).

Oil of Turpentine.

Action External.—Oil of turpentine is an irritant to the skin, causing itching, pain and redness, or even vesication, followed by local anesthesia. It produces intense irritability and restlessness when applied externally to some horses. The oil is antiseptic, disinfectant and parasiticide, being more penetrating to the skin than mustard or cantharides.

Action Internal.—Alimentary Canal.—The oil induces a sense of warmth in the stomach (man), and increases gastric secretion, motion and vascularity, but is too disagreeable to be used as a stomachic. In acting similarly in the bowels, particularly in stimulating the muscular coat, oil of turpentine is a useful carminative by exciting peristalsis and expelling gas in tympanites. Its antiseptic properties also antagonize intestinal fermentation.

Large doses occasion purging and are anthelmintic. Toxic doses create gastro-enteritis and sometimes intestinal ulceration. The irritation of the nerve endings in the digestive tract caused by turpentine, leads to reflex stimulation of the nervous system and heart.

Circulation.—Turpentine is readily absorbed into the blood. Experimental evidence is at variance with regard to the action of the oil on the circulation. Small doses apparently increase the force and frequency of the heart-beat, and slightly raise blood pressure. The vessels are somewhat contracted and the drug is employed to arrest hemorrhage in the digestive tract and in remote organs. It is inferior to ergot as an homeostatic. Large doses of turpentine lower the cardiac force and frequency, and cause vascular dilatation and fall of blood pressure.

Respiration.—Oil of turpentine enhances the strength and rapidity of the respiratory movements, in small doses, but large quantities depress the respiration. The oil is easily absorbed by inhalation and is also eliminated in the breath. Inhalation of the oil stimulates the bronchial mucous membrane, acts as an antiseptic, and excites muscular contraction of the bronchial tubes and cough.

Authorities differ as to the influence of turpentine on bronchial secr-
tion. Rossbach found that the inhalation of air saturated with turpentine diminished secretion, while the topical application of a watery solution increased secretion. The oil is essentially a local stimulating expectorant.

Nervous System.—Medicinal doses occasion mental exhilaration in man. Large doses cause dulness, languor, and unsteady gait in animals; while distinctly toxic doses produce coma, sensory paralysis, loss of reflex activity, and, at times, convulsions.

Kidneys and Genito-Urinary Tract.—The kidneys are very prone to irritation during its elimination. Small doses induce frequent micturition. Large quantities lead to albuminuria, pain in the lumbar region, hematuria, and constant painful passage of high-colored urine, owing to irritation of the urinary mucous membrane and muscular spasm of the urethra (strangury). Menorrhagia and dysmenorrhea occur in females under the influence of the oil. Acute nephritis and complete suppression of urine follow great toxic doses. The urine has sometimes the odor of violets.

Elimination.—Turpentine is eliminated in the urine, breath, and, to some extent, in the bile and intestinal mucus; slightly by the skin.

TOxicology.—Turpentine poisoning is not an uncommon occurrence from the administration of large doses (undiluted) by empirics. Post-mortem appearances reveal gastro-enteritis, sometimes congestion and inflammation of the lungs, and fatty degeneration of the liver, kidney and muscles, following prolonged use of the oil.

The action of terebene and terpin hydrate is very similar to oil of turpentine.

Administration.—Oil of turpentine is given with eight or more times its volume of cottonseed or linseed oil, gruel, or milk; and in emulsion with acacia or white of egg. An emulsion is made by shaking a single dose with powdered acacia, and adding water or oil. Terebene is administered in a similar manner. Terpin hydrate may be exhibited in pill, ball or alcoholic solution.

Uses of Oil of Turpentine, Terebene and Terpin Hydrate

External.—Oil of turpentine is employed as a stimulant and counterirritant with ammonia and soap liniment (white liniment), or as the official liniment in rheumatism, myalgia, sprains, shoulder lameness, swollen joints, gangrene, frost bites, burns and ulcers.

White liniment.

\[V\]

\[Olei terebinthinae..........................5vi.
\[Aquæ ammoniæ fortioris.\]
\[Pulveris saponis............................ executions.\]
\[Ammonii chloridi.......................... i.\]
\[Aquæ ..Oil.\]

M.

Mix ammonia, soap and ammonium chloride in pint of water; shake; add turpentine and enough water to make 2 pints.

Sig. Use externally.

Oil of turpentine is a very efficient disinfectant with which to sterilize the skin or accidental wounds when more appropriate agents are not
at hand. It is serviceable in the same form and for the same actions applied to "sitfasts" and obstinate ulceration about the heels in horses, and in footrot of sheep. As a parasiticide, the oil, diluted two or three times with sweet oil, is painted on the skin to kill ringworm and lice.

Oil of turpentine is a valuable counter-irritant in relieving pain and inflammation of deep-seated parts. It is particularly useful in tympanitis, flatulent and spasmodic colic and peritonitis. In the first two named disorders, external application is combined with the internal and rectal exhibition of the drug. Oil of turpentine is less frequently employed over the chest in pleurisy and bronchitis. The turpentine stupe is the favorite method of applying the oil in abdominal troubles. A blanket is thoroughly sprinkled with turpentine, folded, and rolled into a cylindrical form which will fit into an ordinary pail. Boiling water is then poured on the blanket until it is saturated. The blanket is quickly wrung out, placed over and around the horse’s trunk, covered with rubber protective and dry blankets, and allowed to remain in place fifteen to thirty minutes.

Uses Internal.—Digestive Tract.—Oil of turpentine is of greatest utility in colic and in expelling gas in tympany given internally and per rectum.

\[R \]

Spiritus menthae piperitae.
Spiritus ammoniæ aromatici.
Olei terebinthinae \(\frac{3}{4} \)ii.
Olei lini \(\frac{3}{4} \)ii.

M.

Sig. Give at once in one dose for horse or cow with flatulence.

Enemata can also be employed for their stimulant action on the nervous system and circulation, in collapse. One or two ounces of oil of turpentine are dissolved in two or four ounces of cottonseed oil, when used as an enema for horses. Turpentine is an anthelmintic for round and tape worms.

Round or tapeworm in horses.

\[R \]

Olei terebinthinae \(\frac{3}{4} \)ii.
Olei resinæ aspidii \(\frac{3}{4} \)i.
Olei linii \(\frac{3}{4} \)ii.

M.

Sig. Give in one dose to horses after starving 24 hours.

\[R \]

Olei terebinthinae.
Olei chenopodii \(\frac{3}{4} \)i.
Chloroformi \(\frac{3}{4} \)i.
Olei ricini \(\frac{5}{4} \)xiv.

M.

Sig. 5s to ii for adult dog (for round worms) in equal amount of castor oil (Hoare).

Hall and Foster found turpentine ineffective against ascarids and hookworm in dogs, and against roundworms in hogs, causing nephritis in the latter. In 2 mil doses, with an equal amount of olive oil, it proved a
good remedy for roundworms in poultry (2 lbs.-9 lbs. live weight). Old oil of turpentine is often advised as an antidote for phosphorus because it contains ozone and forms a harmless, camphor-like body—turpentine phosphoric acid. Its use has, however, been found worthless. Turpentine is occasionally given in indigestion, chronic diarrhea, and dysentery of horses and cattle, as a local stimulant and antiseptic.

Respiratory Organs.—Oil of turpentine is an efficient stimulating and antiseptic expectorant in subacute and chronic bronchitis; and deodorant in gangrene of the lungs. It is administered internally, and by inhalation in the proportion of one teaspoonful to the quart of boiling water. Terebene is used as a substitute for oil of turpentine, as a stimulating expectorant, and is likewise prescribed as an antiseptic and carminative in flatulence, and as a genito-urinary stimulant. Terpin hydrate increases bronchial secretion and is employed in both acute and chronic bronchitis.

Bronchitis in dogs.

R

Codeinae sulphatis... gr. vi.

Elixir. terpini hydratis...................................... ad 3 ii.

M.

Sig. Teaspoonful every 3 hours for cough.

Oil of turpentine has been found beneficial in verminous bronchitis of calves and lambs (caused by Strongylus micrurus and filaria), injected into the trachea midway in the neck, according to the following prescription:

R

Ol. Terebinthinae ... 5 i-ii.

Acid, Carbol.

Glycerini

Chloroformi .. ſťă 5 ss.

M.

S. Inject in one dose.

Chloroform is more successful, however (see p. 225).

“Gapes” in fowl, due to Syngamus trachealis, is cured by the same mixture diluted with 5 parts of oil and applied to the throat internally with a feather.

Verminous bronchitis in calves may also be cured by pouring into each nostril, once daily, 2 drams of turpentine with the head upturned. Also give internally, and to lambs with this disease, 1 dram in milk or gruel once daily.

Circulation.—Oil of turpentine is of some worth as a cardiac stimulant and hemostatic. It is said to have been exhibited in parturient fever and apoplexy of cattle with success. Bleeding from the nose, lungs, digestive tract, uterus, kidneys, and bladder, and hemorrhages occurring in purpura hemorrhagica, are sometimes stopped by the internal use of turpentine.

Genito-Urinary Tract.—Oil of turpentine is indicated as a stimulant in amenorrhea, chronic pyelitis and cystitis. The drug is contra-indicated in acute inflammation of the kidneys and alimentary canal.
PIX BURGUNDICA. Burgundy Pitch. (B. P.)
The prepared, resinous exudation of Abies excelsa Poiret (nat. ord. Coniferae).

Synonym.—Poix blanche, poix de Bourgogne, Fr.; Burgunder harz (pech), G.

Habitat.—Southern Europe, mountainous regions.

Properties.—Hard, yet taking gradually the form of the vessel in which it is kept; brittle, with a shining, conchoidal fracture; opaque or translucent; reddish-brown or yellowish-brown; odor agreeably terebinthinate; taste aromatic, sweetish, and not bitter. It is almost entirely soluble in glacial acetic acid, or in boiling alcohol, and partly soluble in cold alcohol.

Constituents.—1, resin; 2, a volatile oil (C₃₀H₄₆).

Dose.—H. & C., 3i-iii, (30-90); Sh. & Sw., 5i-ii, (4-8); D., gr.xx-xl, (1.3-2.6).

PREPARATION.

Emplastrum Picis. Pitch Plaster. (B. P.)

Terebinthina Canadensis. Canada Turpentine. (B. P.)

A liquid oleoresin obtained from Abies balsamea (Linné), Miller (nat. ord. Coniferae).

Synonym.—Canada balsam, balsam of fir, balsamum Canadense, E.; baume de Canada, Fr.; Canadischer terpentin, G.

Habitat.—Canada and N. United States; west to Minnesota, south on mountains to Virginia.

Properties.—A yellowish or faintly greenish, transparent, viscid liquid, of an agreeable terebinthinate odor, and a bitterish, slightly acrid taste. When exposed to the air it gradually dries, forming a transparent varnish. It is completely soluble in alcohol, chloroform or benzol.

Constituents.—1, volatile oil, 20-30 per cent.; 2, resins; 3, and chiefly a and b camadinolino acid.

Dose.—H. & C., 3i-iii, (30-90); Sh. & Sw., 5i-ii, (4-8); D., gr.xx-xl, (1.3-2.6).

Action and Uses of Burgundy Pitch and Canada Turpentine.

Burgundy pitch is slightly stimulating to the skin and is used as a mild counter-irritant (in plaster) in rheumatism, strains, swelling of joints, and upon the chest. Burgundy pitch, Canada turpentine, crude turpentine, Venice turpentine, Bordeaux turpentine and frankincense have much the same action and uses as oil of turpentine internally. They are administered in the same manner and in nearly identical doses, but are less commonly employed than the latter.

Resina. Rosin. (U. S. & B. P.)
The residue left after distilling the volatile oil from the concrete oleoresin obtained from Pinus palustris Miller and from other species of Pinus (Pinaceae).

Synonym.—Colophony, resin, E.; colophonium, P. G.; colophone, Fr.; kolo-phonium, geigenharz, G.

Properties.—Usually in sharp, angular, translucent, amber-colored fragments, frequently covered with a yellow dust, brittle at the ordinary temperature; fracture shiny and shallow-conchoidal; odor and taste slightly terebinthinate. Spec. gr. 1.07-1.09. Soluble in alcohol, ether, and fixed or volatile oils; also in solutions of the fixed alkali hydroxides.

Constituents.—Chiefly abietic acid anhydride (C₄₆H₅₄O₈), 80-90 per cent.

PREPARATIONS.

Ceratum Resinae. Resin Cerate. (U. S. P.)

Synonym.—Basilicon ointment.

Rosin, 350; yellow wax, 150; lard, 500.

Emplastrum Elasticum. Rubber adhesive plaster.

Rubber, 20; petrolatum, 29; lead plaster, 960. (U. S. P. 1905.)

Emplastrum Resinae. Resin Plaster. (U. S. & B. P.)

Unguentum Resinae. (B. P.)
Action and Uses of Rosin.

Rosin is a local stimulant and antiseptic externally. The cerate is an excellent preparation for burns, wounds, ulcers, and abraded surfaces. The fumes arising from burning rosin (on a hot shovel) are said to be of value when inhaled in chronic or subacute bronchitis.

Pect Liquida. Tar. (U. S. & B. P.)

A product obtained by the destructive distillation of the wood of Pinus palustris Miller, or of other species of Pinus (Fam. Coniferae).

*Synonym.—*Resina empyreumatica liquida—goudron, goudron végétal, Fr.; ther, G.

*Habitat.—*United States.

*Properties.—*Semi-fluid, viscid, blackish-brown; non-crystalline, translucent in thin layers, becoming granular and opaque with age; odor empyreumatic, terebinthinate; taste sharp, empyreumatic.

Tar is slightly soluble in water; miscible with alcohol, ether, fixed or volatile oils, and solutions of potassium or sodium hydrate.

*Constituents.—*Mainly—1, oil of turpentine; 2, methyl alcohol; 3, creosote; 4, guaiacol; 5, phenol; 6, pyrocatechins; 7, toluene; 8, xylene (also cumene, methene, chrysene, retene); 9, acetic acid; 10, acetone; 11, resins.

*Dose.—*H. & C., 5ss–i, (15–50); Sh. & Sw., 5i–ii, (4–8); D., m xv–5i, (1–4).

PREPARATIONS.

Unguentum Picis Liquidae. Tar Ointment. (U. S. & B. P.)

Tar, 500; yellow wax, 150; lard, 350.

Pect Carbonis Preparata. Prepared Coal Tar. (B. P.)

Liquor Picis Carbonis. Solution of Coal Tar. (B. P.)

OLEUM Picis Liquide Rectificatum. Rectified Oil of Tar. (U. S. P.)

A rectified, volatile oil distilled from tar.

*Properties.—*A thick liquid having a dark reddish-brown color, and a strong empyreumatic odor and taste. Spec. gr. 0.960 to 0.990. Soluble in alcohol.

Pect Nigra. Pitch. (Non-official.)

A solid, shining, black, bituminous substance. Soluble in ether, oils, and aqueous alkaline solutions. It contains an altered resin, and a crystalline principle, retine (C₁₃H₁₇).

OLEUM Cadinum. Oil of Cade. (U. S. & B. P.)

An empyreumatic oil obtained by the dry distillation of wood of Juniperus oxycedrus Linné (Fam. Pinaceae).

*Synonym.—*Oleum juniperi empyreumaticum, E.; huile de cade, Fr.; kadeöil, G.

*Habitat.—*North Africa, Spain, France, and Portugal, on the borders of the Mediterranean, in waste places and stony hill-sides.

*Properties.—*A dark brown, clear, thick liquid; having a tarry empyreumatic odor and a warm, faintly aromatic and bitter taste. Spec. gr. 0.980 to 1.055. It is almost insoluble in water, but imparts to it an acid reaction. Partially soluble in alcohol; completely soluble in ether, chloroform, oil of turpentine, or carbon disulphide.

*Constituents.—*Phenols and cadinene (latter unimportant).

*Dose.—*Same as that of tar.

Action and Uses of Tar, Oil of Cade and Pitch.

Externally, tar produces hyperemia, and, when rubbed continually into the skin, sometimes papules and pustules. It is a stimulant, rubefacient, antiseptic and parasiticid exteramly. Poisoning may follow the extensive application of large quantities of tar over a denuded sur-
face, or if it be licked off the skin. Tar is mainly employed in veterinary medicine on the skin, and is a valuable remedy to relieve itching and as a local stimulant in chronic eczema (“grease”), and sometimes in moist eczema and erythema, psoriasis, pityriasis, pruritus, and lichen. It also destroys the parasites of mange and ringworm. It is applied with fat, vaseline, soap or alcohol, in the proportion of 1-2 to 10. The official ointment (1-2) is generally appropriate in the above-mentioned skin diseases, but may require dilution. The following preparation is serviceable on patches of scaly eczema:

\[R\]
Picis liquidæ.
Saponis mollis.
Alcoholis ..\text{"\textit{\textdegree}\text{ii.}}

\[M\]
\[S\] External use.

Pure tar painted over the surface with a brush, is often most efficient in obstinate cases of eruptive disorders. A lotion of oil of tar, sulphurated potassa, or Peruvian balsam, is more cleanly and suitable for house dogs with eczema. (See diet for eczema in dogs, section on foods and feeding, p. 479.)

Tar is of the greatest utility in stimulating the growth of horn, and is the principal ingredient of hoof ointments for horses. It may be mixed with an equal part of lard for this purpose, or the following mixture is well spoken of:

\[R\]
Picis liquidæ.
Ceræ flavæ.
Mellis ..\text{"\textit{\textdegree}\text{iv.}}
Glycerini ..\text{"\textit{\textdegree}\text{iii.}}
Adipis ..\text{"\textit{\textdegree}\text{xxiv.}}
Melt and mix the lard and wax together; add the other ingredients and stir while cooling.

\[S\] External use.

Oakum, soaked with tar, is frequently packed under leather, beneath the shoes on horses’ feet, to soften and stimulate the horn and to cure thrush and canker. Tar is also a beneficial application for foot rot of sheep. Pine tar is useful in keeping the gadfly away from sheep in summer. Two holes are bored in a log, the larger one surrounding the deeper one. In the larger place pine tar, in the smaller and deeper put salt. When getting salt the animal automatically smears his nose with tar. Tar is usually kept on hand for farming purposes, and is therefore, a popular antiseptic and protective in the treatment of wounds and broken horns in cattle. Oil of tar may be applied, dissolved in alcohol (1-8), as a lotion, and is an agreeable substitute for tar in chronic eczema or psoriasis of dogs. It is used in the pure state as a parasiticide for mange, scab, ringworm or favus. Oil of cade represents oil of tar and tar in their actions and uses, but its odor is pleasanter. It is prescribed externally in chronic eczema and pruritis, in equal parts with wax, or as follows:
Oil of cade can also be used in any proportion or manner in which tar is applicable. Pitch likewise possesses the same action as tar, and is sometimes employed for making hoof ointments and plasters.

Internally.—Tar—on account of its constituents, phenol and creosote—in large quantities causes toxic effects, with symptoms resembling carbonic acid poisoning: e.g., abdominal pain, vertigo, signs of gastro-intestinal irritation, and the passage of dark-colored urine. It is not exceedingly poisonous, however, as recovery has been reported in man after the ingestion of an amount varying from one to two pints. Tar is eliminated by the kidneys, with the production of irritation and diuresis; also by the mucous membrane, and affects more especially than lining the bronchial tubes, where it acts as a local stimulant and antiseptic. For this reason the drug is an excellent expectorant in subacute or chronic bronchitis when given internally or by inhalation. The latter process may be conducted by pouring tar on a heated shovel, or, better, by dissolving tar in boiling sodium carbonate solution and steaming the patient with the vapor. Tar is occasionally exhibited in chronic gastro-intestinal catarrh and obstinate diarrhea, with good results.

Tar is of value internally in influencing those skin disorders which are benefited by its external application. Inhalations of tar are sometimes serviceable in pharyngitis and laryngitis, as well as in bronchitis.

Balsamum Peruvianum. Balsam of Peru. (U. S. & B. P.)

A balsam obtained from Toluifera Pereiræ (Royle) Baillon (Fam. Leguminosæ).

Synonym.—Balsamum peruvianum nigrum, balsam indicum, baume de Péro, baume des Indes, Fr.; Peru balsam, G.

Habitat.—Central America.

Properties.—A viscid liquid of a dark brown color; free from stringiness or stickiness; transparent and reddish-brown in thin layers; of an agreeable vanilla-like odor and a bitter acrid taste, with a persistent after-taste. When swallowed it leaves a burning sensation in the throat. It does not harden on exposure to the air. Spec. gr. 1.130 to 1.160. Soluble in alcohol, chloroform, or glacial acetic acid. Completely soluble in 5 parts of alcohol.

Constituents.—1, a volatile oil, yielding cinnamalbin, C₆H₇(CH₃)O₂, about 60 per cent.; 2, cinnamic acid, C₆H₇O₂; 3, a resin (32 per cent.), yielding benzoic acid, HC₂H₂O₂, on dry distillation; 4, styrol, C₆H₈; 5, stilbene, C₆H₅; 6, a volatile oil, benzylic benzoate, C₆H₇(C₂H₃)O₂; 7, benzylic alcohol, C₆H₅O; 8, styrracin, C₆H₇(C₂H₃)O₂.

Dose.—H. & C., 3i-ii, (30-60); Sh. & Sw., 5i-ii, (4-8); D., m₁x-xxx, (.6-2).

Balsamum Tolutanum. Balsam of Tolu. (U. S. & B. P.)

A balsam obtained from Toluifera Balsaminum Linné (Fam. Leguminosæ).

Synonym.—Baume de Tolu, baume de Cathagène, Fr.; Tolu balsam, G.

Habitat.—New Granada and Venezuela.

Properties.—A yellowish-brown, or brown, plastic solid, becoming brittle when old, dried or exposed to the cold; transparent in thin layers; has a pleasant aromatic odor, resembling that of vanilla, and a mild aromatic taste. Soluble in alcohol, ether, chloroform and solutions of fixed alkalies; almost insoluble in water.
Constituents.—1, a volatile oil, toluene, C₈H₁₄, 1 per cent.; 2, a volatile oil, benzylic benzoate, C₆H₄ (C₅H₅)O₂; 3 benzoic acid, H₂C₆H₄O₂; 4, cinnamic acid, C₆H₅COOH; 5, benzylc cinnamate, C₆H₅(C₅H₅)O₂; 6, resins.

Dose.—Same as balsam of Peru.

PREPARATION.

Syrups Tolutanus. Syrup of Tolu. (U. S. & B. P.)

Tincture of tolu, 50; magnesium carbonate, 10; sugar, 820; water to make 1000. (U. S. P.)

Dose.—D., 5i-iv, (4-15).

Action and Uses of Balsams of Peru and Tolu.

Externally, the balsams are stimulant, antiseptic and parasiticide. Balsam of Peru is a useful remedy in alcoholic solution (1-8) for chronic eczema of dogs. It may also be serviceable in ointment (1-8) for sore teats in cows, or as an application to kill lice and the parasites of (sarcoptic) mange and ringworm.

For mange or ringworm.

R

Balsami peruviani..5i.
Unguenti sulphuris..5i.

M.

S. Apply externally 3 times daily.

It is, undiluted, a most excellent stimulant and antiseptic dressing upon wounds and ulcers. In fact there is no better agent for dressing ordinary wounds. Occasionally renal inflammation follows its very extensive external use.

Internally, the balsams are stomachic and carminative, and are eliminated by the skin, mucous membranes and urinary organs, stimulating these parts. They are therefore occasionally prescribed in chronic bronchitis, pyelitis and cystitis. The syrup of tolu is an exceedingly mild preparation, but forms an agreeable vehicle for cough mixtures in canine practice. The balsams may be administered in emulsion rubbed up with either glycerin, mucilage, or white of egg and water.

BENZOINUM. Benzoin. (U. S. & B. P.)

Synonym.—Resina benzoe, asa dubéis, gum benjamin, E.; benjoin, Fr.; benzoe, G.

A balsamic resin obtained from Styrax Benzoin Duyauder, and some other species of Styrax (Fam. Styraceae) growing in the East Indies and known in commerce as Sumatra benzoin and Siam benzoin.

Habitat.—Siam, Sumatra, Java and Borneo.

Properties.—Sumatra Benzoin.—In blocks or lumps of varying size, made up of tears, compacted together with a reddish-brown, reddish-gray, or grayish-brown resinous mass; tears externally yellowish or rusty brown, milky-white on fresh fracture; hard and brittle at ordinary temperatures but softened by heat and becoming gritty on chewing; odor aromatic, taste aromatic and slightly acrid. Soluble in alcohol to extent of 75 per cent. Siam Benzoin.—In pebble-like tears of variable size, yellowish-brown to rusty brown externally; odor agreeable, balsamic vanilla-like; taste slightly acrid. Soluble in alcohol to extent of 90 per cent. Alcoholic solutions of benzoin become milky by the addition of water.

Constituents.—1, benzoic acid, 12 to 20 per cent.; 2, cinnamic acid, sometimes; 3, several resins; 4, a volatile oil.

PREPARATIONS.

Made by melting lard, 1000, with Siam benzoin, 10; and straining. (U. S. P.)
Tinctura Benzoinii. Tincture of Benzoin. (U. S. P.)
Made by maceration of benzoin, 200, in alcohol; filtration, and addition of alcohol to make 1000.
Dose.—H. & C., 3i, (30); D., 5ss-i, (2-4).
Tinctura Benzoinii Composita. Compound Tincture of Benzoin. (U. S. & B. P.)
Synonym.—Friar's balsam.
Benzoin, 100; purified aloes, 20; storax, 80; balsam of tolu, 40; alcohol to make 1000. Made by maceration in alcohol and filtration. (U. S. P.)
Synonym.—Acide benzoique, fleurs de benjoin, Fr.; benzoësüre, benzoëblumen, G.
Derivation.— Obtained from benzoin by sublimation, or artificially prepared.
Properties.—In lustrous scales or friable needles. The synthetic acid is white, odorless, or with a slight odor of benzaldehyde; the natural acid is white, or yellowish, acquires a darker color on exposure to light, and has a slight odor of benzoin. Benzoic acid has a pungent taste, is somewhat volatile at moderately warm temperatures and freely volatile with steam. Soluble in 275 parts of water, and in 2.3 parts of alcohol. Also soluble in 3 parts of ether. 4.5 parts of chloroform, and readily soluble in carbon disulphide, benzene, fixed and volatile oils, but sparingly soluble in petroleum benzin.
Incompatibles.—Alkalis, ammonium carbonate.
Dose.—H. & C., sii-iv, (8-15); D., gr.v-xv, (3-1).
Ammoni Benzoas. Ammonium Benzoate. NH₄C₇H₆O₂. (U. S. & B. P.)
Made by the action of benzoic acid and ammonia water. In white crystals or crystalline powder. Soluble in 10 parts of water; in 35.5 parts of alcohol.
Dose.—Same as benzoic acid.
Made by the action of a hot solution of sodium carbonate on benzoic acid. Occurs in a white amorphous or crystalline powder. Soluble in 1.8 parts of water; in 61 parts of alcohol.
Dose.—Same as benzoic acid.

Action of Benzoin, Benzoic Acid and Benzoates.

These substances may be represented by benzoic acid.

Action External.—Benzoic acid is an irritant applied externally, also when its vapor is inhaled. It is an efficient antiseptic; a solution (1-1000) will inhibit the growth of many forms of bacteria.

Action Internal.—Medicinal doses of benzoic acid exert only an antiseptic action in the alimentary canal. Large doses occasion increased bronchial and cutaneous secretion, with accelerated pulse. Enormous doses cause gastro-intestinal irritation, slowing of the pulse and respiration, convulsions, general paralysis and asphyxia. Benzoic acid is absorbed into the blood, acts as an antipyretic in fever, and is converted (probably in the kidneys) into hippuric acid and eliminated in the urine as such. It thus renders an alkaline urine acid, and stimulates and exercises an antiseptic influence upon the urinary mucous membrane. The change into hippuric acid is due to combination with a nitrogenous body—glycoecoll—but the source of glycoecoll is uncertain.

Benzoic acid C₇H₆O₂+glycoecoll C₂H₅NO₂=hippuric acid C₉H₉NO₃ +H₂O.
Benzoic acid is somewhat diuretic, but does not alter the composition of the urine in any constant manner, although metabolism is said to be increased. It is eliminated by the bronchial mucous membrane, augmenting secretion, and acting as an antiseptic in the bronchial tubes. When the
vapor of any of the substances under consideration is inhaled in proper dilution, a similar expectorant action is attained. Benzoic acid is likewise excreted by the skin and salivary glands, exciting their functional activity.

Uses External.—The compound tincture of benzoic is a valuable stimulant and antiseptic application for wounds, sores and ulcers. It is often applied to the part on gauze or lint, followed by bandaging. There is no better agent for treating cuts and abrasions that do not require bandaging when painted on the part with a brush several times daily.

Uses Internal.—Benzoic acid is sometimes given in powder, pill, or ball, as an intestinal antiseptic, and as a remedy for rheumatism. It is inferior to salicylic acid in the latter disorder. The benzoates are said to be equally efficient as antiseptics and have been highly recommended in diarrhea and dysentery.

Benzoin, in the form of the tincture, and the benzoates, are serviceable in laryngitis, tracheitis, and bronchitis, to promote secretion and antisepsis. An inhalation of the tincture (5ii-Oi hot water) is also very serviceable in these diseases for the same purposes.

The benzoates are of value in pyelitis and cystitis, particularly in carnivora with a normal acid urine, to acidify and disinfect the decomposing urine and stimulate the tract. They should be given with hexamethylenamine in these disorders as this drug acts most favorably in an acid urine.

Sinapis Alba. White Mustard. (U. S. P.)

Synonym.—Sinapis albae semina, B. P.; semen erucæ, P. G.; yellow mustard seed, E.; moutarde blanche, Fr.; weisser senf, G.

The seed of Sinapis alba (Linné), (Fam. Cruciferae).

Habitat.—Southern Europe and Asia; cultivated in temperate climates.

Description.—Sub-globular, from 1.5 to 2.5 mm. in diameter; testa yellowish, nearly smooth; embryo yellowish, oily with 2 cotyledons; inodorous, taste mildly pungent, acrid. The powder is light yellowish or pale brownish-yellow, developing a slight odor when moistened.

 Constituents.—1, a glucoside, sinalbin (C_{20}H_{41}N_{3}S_{2}O_{10}), and a ferment, myrosin, 10-15 per cent. The latter converts the former, in the presence of water, into the active principle of the drug, acryl sulphocyanide (C_{5}H_{2}ONCS), a very acrid, volatile body, sinapine sulphate (C_{9}H_{32}NO_{3}H_{2}SO_{4}), and glucose; 2, a bland, fixed oil, 25 per cent.; 3, gum, 20 per cent.

 Dose.—H., 5ss, (15); C., 5ss-i, (15-30); Sh. & Sw., 5i-ii, (4-8); D., gr.x-xv, (.6-1).

Sinapis Nigra. Black Mustard. (U. S. P.)

Synonym.—Sinapis nigrae semina, B. P.; semen sinapis, P. G.; moutarde noire (Grise), Fr.; schwarzer senf, G.

The seed of Brassica nigra (Linné) Koch (Fam. Cruciferae).

Habitat.—Southern Europe and Asia; cultivated in temperate climates.

Description.—Ellipsoidal or irregularly sphenoidal, from 1 to 1.6 mm. in diameter; testa deep reddish-brown, sometimes yellowish-brown with a grayish tinge, minutely pitted or reticulate; embryo greenish-yellow or dark yellow, oily with two large cotyledons; odor, when dry, slight, on moistening very irritating; taste strong, pungent and acrid. The powder is light brown or greenish-brown, on moistening very irritating; taste strongly pungent and acrid.

 Constituents.—1, a glucoside, sinigrin (or potassium myronate), and a ferment, myrosin. In the presence of water the latter converts the former into the acrid, volatile, official oil of mustard (allyl sulphocyanide, C_{4}H_{3}CNS), acid potas-
sium sulphate, and glucose; 2. a fixed, bland oil, similar to that in white mustard; 3. gum.

Dose.—Same as white mustard.

Commercial form of mustard is a mixture of black and white mustard, and constitutes sinapis (B. P.).

Preparation.

Oleum Sinapis Volatile. Volatile Oil of Mustard. (U. S. & B. P.)

Synonym.—Allyl sulpho cyanide (C. H. CNS), allyl-SC-thiocyanate, dextra sinapis aetherum, E.: essence de musterd, Fr.: aetherische senföl, G.

Derivation.—A volatile oil produced synthetically or obtained from black mustard by necruration with water and subsequent distillation.

Properties. A colorless or pale yellow, fluid and strongly refractive liquid, having a very pungent and irritating odor and acid taste. Freely soluble in alcohol, ether, or carbon disulphide, the solutions being neutral to litmus paper. Spec. gr. 1.013 to 1.026.

Preparation.—Linimentum Sinapis (B. P.): volatile oil of mustard, camphor and castor oil.

Action External.—Mustard quickly dilates the vessels of the skin and causes hyperemia. If its application is frequently repeated, there is so much vascular irritation that transudation of serum occurs under the epidermis, and blisters or even pustules are formed. Mustard induces a sensation of burning in man, but is not so irritating as oil of turpentine to horses, and the primary irritation is followed by partial anesthesia. It is one of the most useful counter-irritants, and by this action contracts vessels in the underlying parts, and relieves pain and congestion.

In rapidly stimulating the skin, mustard reflexly excites the nervous system, respiratory functions and heart. Mustard is therefore a rubefacient, vesicant, and counter-irritant externally.

Action Internal.—Mustard stimulates gastric vascularly, secretion and motion, and promotes the appetite in small doses. Large doses occasion vomiting in animals capable of the act. Intestinal peristasis and secretion are probably likewise augmented by mustard. It is thus a stomachic, carminative and emetic internally, but is rarely administered save as an emetic because of its pungency and the difficulty attending its exhibition. Mustard is absorbed to some extent, but we are ignorant concerning its ultimate fate or remote action. It is said to be a diuretic.

Uses External.—Mustard is an extremely valuable counter-irritant for relieving pain or congestion in almost any internal part. It is more commonly employed in the acute respiratory disorders of the domestic animals, as in laryngitis, bronchitis, congestion of the lungs, pleurisy, pneumonia, to stop incessant cough, and after exposure to severe cold; and the flour of mustard, with an equal amount of wheat flour, is used in a very thin paste made with warm water and applied with friction to the skin. Boiling water should not be mixed with mustard, nor vinegar, nor alcohol, as they interfere with its action. The volatile oil of mustard is a cleanly and convenient substitute for the crude drug. A small quantity, diluted with olive oil, or cottonseed oil (1-15), may be rubbed into either side of the chest in bronchitis, pleurisy, and other chest disorders, as a counter-irritant.

After the application of mustard, the part may be bandaged, or hot blankets may be placed over the body and the treatment reinforced by the use of mustard on the limbs and bandaging. If mustard is employed
continuously to keep up constant counter-irritation, the drug should be washed off in 20 or 30 minutes, and the process repeated once in 2 hours. It is unwise to induce much vesication over an extensive surface with mustard, as the result is painful and resolution is slow. Mustard is also serviceable in painful abdominal diseases, as colic, tympanites, enteritis and peritonitis, but oil of turpentine appears here to be more efficient.

A sinapism (mustard application) over the loins is useful in acute nephritis, and will not lead to irritation of the kidneys from absorption which may ensue after cantharidal blistering. Cantharides has, however, a more active, permanent and revulsant effect in most local inflammatory conditions, and is more potent in acute laryngitis. The action of mustard is rapid and fleeting, unless applied continually in considerable strength. For this reason it is indicated to impress the nervous system instantaneously, in opium, alcohol and other narcotic poisoning; in respiratory failure, in collapse and extreme depression in the course of acute diseases (pneumonia and parturient apoplexy), applied all over the body, or over the cardiac region in syncope. Mustard is of utility in muscular or articular rheumatism, and is employed on swollen glands (strangles), inflamed joints and tendons; but is usually less efficacious than a good cantharidal blister in these three latter conditions.

Uses Internal.—Mustard is an efficient emetic for dogs, in tablespoonful doses, given in a cup of tepid water. It is usually at hand, and not only empties the stomach in poisoning, but reflexly stimulates the heart and respiration. If administered for its carminative or stomachic effect, mustard must be given in pill or ball.

Thiosinamine. Thiosinamine. C₅H₅N₃S. (Non-official.)

Thiosinamine (allyl thiourea) is made by heating together volatile oil of mustard and an alcoholic solution of ammonia, collecting the crystalline product of condensation, and recrystallization from alcohol. It occurs in colorless crystals, having a slight, alliaceous odor, and is moderately soluble in water in which it is decomposed. It is also soluble in about 3 parts of alcohol and readily soluble in ether.

Fibrolysin (non-official) (NH₂₃ CS, NHCH₂CH₂ CH₃) + C₅H₅(NH) (COONa) has now largely superseded thiosinamine because it is freely soluble in water, produces less irritation and is more readily absorbed than thiosinamine. Fibrolysin is a sterilized solution of a double salt of thiosinamine and sodium sulphate containing 15 per cent. of the double salt. It is a clear, colorless, aqueous solution of faint odor and acrid taste. It decomposes in the air but not in sealed, brown glass vials in which it is marketed. Each ampul contains 11.5 mls, or sufficient for one injection for a horse.

Actions and Uses.—Thiosinamine and fibrolysin have a peculiar action on pathological exudates when given by the mouth, under the skin, or into the blood. They cause a local reaction, where old inflammatory exudation exists, with softening and absorption of inflammatory exudates beginning within a few hours after their subcutaneous use. There may be considerable pain and dark congestion about the site of injection and the amount of urine is sometimes greatly increased. While they are said not to interfere with the general health, in man they sometimes produce nausea and vomiting.

Fibrolysin is the better of the two for the reasons stated. It has
been employed to cause resolution in indurated and thickened tendons, in
anthylosis of joints, and elephantiasis of horses and cattle; also in swollen
and indurated glands, in large scars, lupus, and keloid growths, and
corneal opacites. The value of the drug is still undetermined since reports
have been more or less at variance.

Fibrolysin solution is probably best given intramuscularly into the
gluteals, but may also be injected intravenously or subcutaneously once
daily, or once every second or third day.

Scarlet Red is a synthetic, non-toxic dye very valuable in 4 per cent.
ointment (with lard) in stimulating the growth of epithelium over slug-
guish wounds and ulcers, as in burns, gangrene, decubitus, and granulating
surfaces that formerly required skin grafting. It is not antiseptic.

EUCALYPTUS. Eucalyptus. (U. S. P.)

Synonym.—Feuilles d‘eucalyptus, Fr.; eukalyptus-blätter, G.
The dried leaves of Eucalyptus globulus Labillardière (Fam. Myrtaceæ),
collected from the older parts of the tree.

Description.—Laminae, lanceolate cut scythe-shaped; from 8 to 30 cm. long; 2
to 5 cm. broad; rounded below, tapering above; entire, leathery, grayish-green,
glandular, feather-veined between the midrib and marginal veins; odor slightly
aromatic; taste aromatic, bitter and cooling.

Constituents.—1, a volatile oil (see below); 2, a crystallizable resin; 3, a
crystallizable, fatty acid; 4, ceryl alcohol.

Dose.—H. & C., ʒii-իii, (60-90); D., 5ss-իi, (2-8).

PREPARATIONS.

Fluidextractum Eucalypti. Fluidextract of Eucalyptus. (U. S. P.)

Made by maceration, percolation with diluted alcohol, and evaporation, so that
1 ml = 1 Gm. of the crude drug.

Dose.—Same as for eucalyptus.

Unguentum Eucalypti. (B. P.)

OLEUM EUCALYPTI. Oil of Eucalyptus. (U. S. & B. P.)

A volatile oil distilled from the fresh leaves of the eucalyptus, rectified by
steam distillation, and yielding when assayed, not less than 70 per cent. by vol-
ume of eucalyptol (cineol).

Properties.—A colorless or pale yellow liquid, having a characteristic, aro-
matic, somewhat camphoraceous odor, and a pungent, spicy, and cooling taste.
Spec. gr. 0.905 to 0.925. Soluble in all proportions in alcohol, carbon disulphide,
or glacial acetic acid.

Constituents.—1, a volatile oil, eucalyptol or cineol (C₁₅H₂₀O); 2, eucalyptene
(C₁₅H₁₈); 3, cymene (C₁₀H₁₆).

Incompatibles.—Alkalies, mineral acids, and metallic salts.

Dose.—H., ʒii-իii, (4-8); D., 5s-իi, (.12-6).

EUCALYPTOL. Eucalyptol. C₁₅H₂₀O. (U. S. P.)

An organic oxide (cineol) obtained from the volatile oil of Eucalyptus globu-
lus Labillardière (Fam. Myrtaceæ) and from other sources.

Derivation.—Crude eucalyptol distills over from eucalyptus leaves at a tem-
perature varying from 388° to 392° F., and is purified by redistillation from
potassium hydrate or calcium chloride.

Properties.—A colorless liquid, having a characteristic, aromatic and distinct-
ly camphoraceous odor, and a pungent, spicy and cooling taste. Spec. gr. 0.921
to 0.928. Soluble in all proportions, in alcohol.

Dose.—Same as oil of eucalyptus.

Action of Eucalyptus, Oil of Eucalyptus and Eucalyptol.

External.—The oil is a powerful antiseptic and disinfectant, and is
even said to be three times more efficient in this respect than carbolic
acid. It is but slightly irritating to the skin, unless its vapors are confined by bandaging, when it may cause vesicles and pustules. Some local anesthesia follows primary skin irritation.

Internal.—Digestive Tract.—Oil of eucalyptus excites gastric and salivary secretion, and acts, both locally and during elimination, as a stimulant to the mucous membrane of the alimentary canal. Large doses occasion diarrhea, and the fecal discharges are impregnated with the odor of the oil. It is a stomachic, carminative, antiseptic and anodyne in the digestive tract.

Circulation.—Oil of eucalyptus arrests the ameboid movements of the white blood corpuscles, and diapedesis, in inflammatory areas; inhibits the growth of the plasmodia malariae; is an antipyretic and antiperiodic, and generally comports itself like quinine; but is nevertheless distinctly inferior to it. Small doses reflexly stimulate the heart and cause an increase in blood pressure; while toxic doses depress the heart’s action and lower vascular tension.

Respiration.—Small doses accelerate the respiratory movements. Large doses make the respiration slower and weaker, and death ensues through respiratory failure.

Nervous System.—Poisonous quantities depress the brain, medulla and spinal cord. Reflex activity is lost. Animals stagger, suffer great loss of muscular power and sensation in their limbs, and fall; the breathing is slow and irregular, the pulse weak, and there are occasional convulsions. The breathing stops before the cardiac pulsations.

Elimination.—Oil of eucalyptus is excreted by the skin, kidneys, and mucous membrane of the bronchial tubes and bowels, and therefore stimulates and disinfects these parts during its elimination. Hence the drug is a diaphoretic, diuretic, and genito-urinary stimulant, stimulating expectorant, and carminative.

Administration.—The oil, or eucalyptol, is administered in emulsion with gum; dissolved in alcohol; or in capsules.

Uses of Eucalyptus, Oil of Eucalyptus and Eucalyptol.

External.—Eucalyptol is probably more generally useful than either eucalyptus or the oil. It is employed as an antiseptic with vaseline (1-8), on sores, wounds, and ulcers, and in lubricating instruments for use in the cavities of the body. It partially disguises the odor of iodoform, and is frequently combined with the latter in ointment. Eucalyptol is serviceable as a stimulating, antiseptic and deodorant inhalation in catarrhal diseases of the respiratory tract with putrid discharges, and in pulmonary gangrene. The ordinary doses (by the mouth) are placed in hot water for this purpose. Eucalyptol, with sweet oil (1-5), forms an efficient stimulating and anodyne liniment.

Internal.—In chronic bronchitis, eucalyptol is often valuable in stimulating and disinfecting the bronchial mucous membrane during its elimination. It is also efficacious in chronic pyelitis and cystitis, for the same reason. The oil has been given with asserted success in various bacterial diseases, as septicemia, canine distemper, influenza, etc., for its
antiseptic action. In human medicine, eucalyptus and its derivatives are mainly of worth as substitutes for quinine in malaria, when the latter drug is inadmissible. Eucalyptol may be given as a stomachic and carminative in digestive disorders with foul-smelling fecal evacuations.

Myrrha. Myrrh. (U. S. & B. P.)

Synonym.—Myrrhe, F., G.

A gum-resin obtained from one or more species of Commiphora (Fam. Burseraceae).

Habitat.—Eastern Africa and Southwestern Arabia, along the borders of the Red Sea.

Description.—In roundish or irregular tears or masses; brownish-yellow or reddish-brown, and covered with brownish-yellow dust; fracture waxy, somewhat splintery; translucent on the edges, sometimes marked with nearly white lines; odor balsamic; taste aromatic, bitter and acrid. When triturated with water, myrrh yields a brownish-yellow emulsion; it is soluble in alcohol.

Constituents.—1, an active resinous principle, myrrhin (C_{19}H_{10}O_{5}), 23 per cent.; 2, myrrhol (C_{17}H_{10}O_{5}), a volatile oil 2-4 per cent.; 3, arabin, a gum, 50 to 60 per cent.; 4, a bitter substance.

Dose.—H. & C., 5ii-iv, (8-15); Sh. & Sw., 5ss-i, (2-4); D., gr. v-xxx, (3-2).

Preparations.

Tinctura Myrrha. Tincture of Myrrh. (U. S. & B. P.)

Made by maceration of myrrh, 200, with alcohol, and filtration to make 1000. (U. S. P.)

Dose.—H. & C., 5ii-ii, (30-60); Sh. & Sw., 5ii-vi, (12-24); D., 5ss-i, (2-4).

Tinctura Aloes et Myrrha. Tincture of Aloes and Myrrh. (U. S. P. 1905)

Made by maceration and percolation of myrrh, 100; purified aloes, 100; glycyrrhiza, 100; with alcohol and water to make 1000. (U. S. P.)

Dose.—H. & C., 5ii-iv, (60-120); Sh. & Sw., 5ss-i, (15-30); D., 5i-ii, (4-8).

Pillulae Aloes. (U. S. P.)

Dose.—D., 2 pills (2 grains each).

Action and Uses.—Myrrh, externally, is a mild stimulant and antiseptic by virtue of its resin and volatile oil. It is a stomachic and carminative internally, exciting the appetite and increasing the secretion, motion and blood supply of the stomach and bowels. Myrrh is eliminated by the mucous membranes of the bronchial and genito-urinary tracts, and stimulates and disinfests these parts during its excretion. The drug is occasionally prescribed as a stimulating expectorant in chronic bronchitis; as a stimulant and antiseptic in chronic cystitis; also as a uterine stimulant and emmenagogue in amenorrhea, and in chronic leukorrhea.

Myrrh is thought to prove beneficial in anemia, when combined with iron. It assists the action of purgatives, and myrrh may be exhibited as a laxative in the form of the tincture of aloes and myrrh. The tincture forms a serviceable mouth-wash in aqueous emulsion (1-16), and is sometimes employed as a stimulant and antiseptic on wounds, sores and ulcers, diluted with 4 to 8 parts of water. Myrrh is administered in tincture, ball or pill.

Class 2.—Used Mainly for Their Stomachic and Carminative Action

Upon the Digestive Tract.

Capsicum. Capsicum. (U. S. P.)

Synonym.—Capsici fructus, B. P.; cayenne pepper, African or pod pepper, E.; capcique, piment des jardins, pigment rouge, poivre de cayenne, Fr.; Spanish pfeffer, G. Called commonly “red pepper,” when dried and powdered.
The dried, ripe fruit of Capsicum bracteatum Linné (Fam. Solanaceæ), deprived of its calyx and other foreign matter.

Habitat.—Tropical America; cultivated also in other tropical countries.

Description.—Oblong-conical, from 8 to 20 mm. in length and from 2 to 15 mm. in diameter; brownish-red or orange, shining, membranous and translucent. Containing 6 to 17 reniform, yellowish seeds. Odor characteristic, sternutatory; taste intensely pungent. The powder is yellowish-brown.

Constituents.—1, capsicin (C₁₉H₂₈NO₅), a crystallizable, acid body; 2, capsicin, a volatile alkaloid; 3, a fixed oil; 4, fatty matter; 5, resin.

Dose.—H., gr.xx-5i, (1.3-4); C., 5i-ii, (4-8); D., gr.i-viii, (0.06-5).

Preparations.

Fluidextractum Capsici. Fluidextract of Capsicum. (U. S. P. 1905.)
Made by maceration and percolation with alcohol, and evaporation, so that 1 mil=1 Gm. of the crude drug.

Dose.—H., m.xxx-5i, (1.3-4); C., 5i-ii, (4-8); D., m.i-viii, (0.06-5).

Tinctura Capsici. Tincture of Capsicum. (U. S. & B. P. i.)
Made by maceration and percolation of capsicum, 100, with alcohol and water to make 1000. (U. S. P.)

Dose.—H., 5i-iv, (8-15); C., 5s-i, (15-30); D., m.v-5i, (3-4).

Oleoresina Capsici. Oleoresin of Capsicum. (U. S. P.)
Made by percolation with ether, distillation, and evaporation of the residue.

Dose.—H., m.x-xxx, (6-2); C., 5s-i, (2-4); D., m.½-i, (0.015-0.06).

Unguentum Capsici. (B. P.)

Administration.—Capsicum and the oleoresin are given in pill or pill. The fluidextract should be freely diluted with water.

Action and Uses.—Capsicum generally resembles the volatile oils in its action. Externally, it is rubefacient and counter-irritant, producing about the same degree of irritation as mustard, but causing considerably more pain, while its fumes are unbearable. Capsicum is used mainly as a stomachic and a carminative in augmenting the appetite, gastric vascularity, secretion and motion, and intestinal peristalsis. Capsicum is employed on the skin in local paralysis—as of the lip—in horses, with mustard in paste; or as the fluidextract painted on plaster splints to prevent dogs from gnawing them off.

Internally, capsicum is of greater value than black or white pepper, and is indicated in atonic indigestion and flatulent colic in horses (see ammonium carbonate and hydrastis). It may be combined advantageously with bitters, as nux vomica. Capsicum is a favorite stimulant and tonic remedy—to the digestion—with bird fanciers. It is also said to increase the laying of eggs when given to hens.

Zingiber. Ginger. (U. S. & B. P.)

Synonym.—Ingwer, G.; gingembre, Fr.

The dried rhizome of Zingiber officinale Roscoe (Fam. Zingiberaceæ).

Habitat.—East and West Indies and India; cultivated in tropical climates.

Description.—The rhizomes vary in appearance according to the variety. The Jamaica, African, Calcutta, Calicut, Cochin, and Japanese gingers are official. Odor agreeably aromatic; taste aromatic and pungent. Powdered ginger is light yellow, or light brown to dark brown.

Constituents.—1, a volatile oil (½ to 2 per cent.); 2, a resin; 3, gingerol, said to supply pungent taste, while the oil gives flavor.

Dose.—H., 5i-5i, (8-30); C., 5i-iv, (30-120); Sh. & Sw., 5i-ii, (4-8); D., gr.v-xv, (3-1).
PREPARATION.

Fluidextractum Zingiberis. Fluidextract of Ginger. (U. S. P.)
Made by maceration and percolation with alcohol, and evaporation, so that
1 ml.=1 Gm. of the crude drug.
Dose.—Same as that of ginger.

Oleoresina Zingiberis. (U. S. P.)
Dose.—H., gr.xxx-5iss, (2-6); D., gr.i-v, (.06-.3).

Action and Uses.—Ginger is chiefly administered in powder as a
stomachic and carminative in atonic indigestion of horses and ruminants.
It is frequently combined with sodium bicarbonate and bitters. Ginger
also aids the action of purgatives and prevents gripping. The powder or
fluidextract should be added to magnesium sulphate when it is given in
full purgative doses to cattle or sheep. (See magnesium and sodium sul-
phate.)

MENTHA PIPERITA. Peppermint. (U. S. P.)

Synonym.—Folia (herba) menthe piperitae, P. G.; menthe poivrée, Fr.;
pfefferminze blätter, G.
The dried leaves and flowering tops of Mentha piperita Linné (Fam.
Labiatae).

Habitat.—Indigenous in North America, Europe and Asia.
Description.—Leaves more or less crumpled and frequently detached from the
stems; ovate-oblong to oblong-lanceolate, light green to purplish-brown, 1 to 9
cm. in length. Odor aromatic, characteristic; taste aromatic, pungent, followed
by a cooling sensation in the mouth.

Constituents.—1, a volatile oil (1 per cent.); 2, menthol.

Oleum Menthe Piperitae. Oil of Peppermint. (U. S. & B. P.)
Synonym.—Essence de menthe poivrée, Fr.; pfefferminzöl, G.
Properties.—A volatile oil distilled from the flowering plant of mentha
piperita, rectified by steam distillation, and yielding not less than 5 per cent.
of esters, calculated as menthol acetate, and not less than 50 per cent. of total
menthol (free and as ester). A colorless liquid, having a strong odor of pep-
mint, and a pungent taste, followed by a sensation of cold when air is drawn
into the mouth. Spec. gr. 0.896 to 0.908.

It forms a clear solution with an equal volume of alcohol, but becomes tur-
bid when somewhat further diluted.

Constituents.—1, menthol (50-65 per cent.); 2, menthene, C₁₆H₁₈S, a liquid ter-
pene obtained by distillation.
Dose.—H. & C., mᵪxv-xxx, (1-2); D., mᵪ-i-v, (.06-.3).

PREPARATIONS.

Spiritus Menthae Piperitae. Spirit of Peppermint. (U. S. & B. P.)
Synonym.—Essence de menthe poivrée, Fr.; Englisch pfefferminzessenz, G.;
spiritus menthe piperitae anglicus, P. G.
Oil of peppermint, 100; peppermint, 10; alcohol to make 1000. Made by
maceration and filtration. (U. S. P.)
Dose.—H. & C., sii-i-v, (8-15); D., mᵪxv-xxx, (1-2).

Aqua Menthae Piperitae. Peppermint Water. (U. S. & B. P.)
Oil of peppermint, 2; purified talc, 15; water to make 1000. Made by tritu-
ration and filtration. (U. S. P.)
Dose.—Used as vehicle in canine practice.

MENTHOL. Menthol. C₁₆H₂₀OH. (U. S. & B. P.)
Synonym.—Mint or peppermint-camphor.
A secondary alcohol obtained from the oil of peppermint or other mint oils.

Derivation.—Made from the oil of peppermint by fractional distillation; freez-
ing of the higher boiling point product, and crystallization.

Properties.—Colorless, acicular or prismatic crystals, having a strong odor
and taste of peppermint; when tasted it produces a sensation of warmth, fol-
lowed by a sensation of cold when air is drawn in the mouth. Slightly soluble
in water; freely soluble in alcohol, ether, chloroform, carbon disulphide or glacial
acetic acid. When it is triturated with about an equal weight of camphor, thymol,
or chloral hydrate, the mixture becomes liquid. Menthol may be dissolved by
heat in oleic acid, fats or liquid vaseline or volatile oils.

Dose.—H., *gr.vii-xxv, (.5-1); D., *gr.ss-ii, (.08-12).

Action and Uses of Peppermint and Menthol

Peppermint and oil of peppermint owe their medicinal virtues chiefly
to the menthol they contain. They resemble the other volatile oils in
most respects, but are more anesthetic and antiseptic than some. Menthol
is used mostly externally, and is extremely valuable in relieving
itching and neuralgic pain. It may be employed with alcohol or chloro-
form in solution (3ss to 5i) in urticaria or pruritus. An ointment is also
serviceable, or a solution by heat in oleic acid (1 to 24). For burns, the
following will be found beneficial: Sweet oil and lime water, each one
ounce; menthol, one dram. The cooling sensation produced by menthol is
due to a specific effect upon the nerves of temperature. The anesthetic
and antiseptic action of menthol has been taken advantage of in the
treatment of boils and superficial abscesses. A 10 to 50 per cent. solution
in ether is said to abort these lesions when painted frequently on the
inflamed parts. A menthol and camphor solution is one of the best
preparations to use in a medicine dropper for acute or chronic nasal
catarrh of dogs.

R

Mentholis .. 5i.
Chloroformi .. 5ii.

M.

Sig. For urticaria or pruritus. Apply externally.

R

Mentholis.
Camphorae ... 50 gr.xxx.
Petrolati liquidi 5ii.

M.

Sig. Instil x drops in each nostril 3 times daily with
medicine dropper for nasal catarrh in dogs.

Internally, the essence of peppermint or oil is of worth in cases of
mild colic and flatulence on account of its anesthetic, carminative and
antiseptic action. Menthol may be given to dogs to relieve vomiting.
Peppermint water assuages thirst in fever, and this preparation is also
used as a pleasant vehicle in the administration of disagreeable drugs
to dogs. The oil is prescribed in pill or ball to prevent the griping of
cathartics.

Administration.—The essence is the preparation in most common
use and is given in water. The oil is dissolved in spirit, or exhibited to
dogs on sugar. Menthol may be administered in alcohol and syrup, equal
parts; or in pill or capsule to dogs.

Mentha viridis (spearmint) is official together with oleum menthae
viridis (oil of spearmint), spiritus menthae viridis (spirit of spearmint),
and aqua menthae viridis. The actions, uses and doses are the same as
those of peppermint and its preparations, but the latter are more popular
and pleasant.
VEGETABLE DRUGS

Anisum. Anise. (U. S. P.)

Synonym.—Anisi fructus, B. P.; anisvert, Fr.; anis, G.

The dried, ripe fruit of *Pimpinella Anisum* Linné (Fam. Umbelliferae).

Habitat.—Southeastern Europe, Egypt, Western Asia; also cultivated.

Description.—Cremocarp ovoid or pyriform, laterally compressed, from 3 to 6 mm. in length and from 2 to 3 mm. in breadth; externally grayish, greenish-gray, seldom grayish-brown. Odor and taste agreeable and aromatic. The powder is yellowish-brown.

No mouse-like odor should be developed when solution of potassium hydroxide is poured upon anise (absence of *Conium maculatum*).

Constituents.—Oil of anise.

Dose.—H. & C., 5i-ii, (30-60); Sh. & Sw., 5ii-iii, (8-12); D., gr.x-xxx, (.6-2).

Oleum Anisii. Oil of Anise. (U. S. & B. P.)

A volatile oil distilled from anise or from the fruit of star anise (Illicium verum).

Properties.—A colorless or pale yellow, strongly refractive liquid, having the characteristic odor and taste of anise. Spec. gr. about 0.978 to 0.988. Soluble in 3 volumes of 90 per cent. alcohol.

Dose.—H., m\(^{xx-xxx}\), (1.3-2); D., m\(^{i-v}\), (.06-.3).

PREPARATIONS.

Aqua Anisi. Anise Water. (U. S. & B. P.)

Oil of anise, 2; purified talc, 15; water to make 1000. (U. S. P.) Used as vehicle.

Spiritus Anisi. Spirit of Anise. (U. S. & B. P.)

Oil of anise, 100; alcohol, 900. (U. S. P.)

Dose.—D., 5i-ii, (4-8).

Actions and Uses of Anise.

Oil of anise resembles in action the other volatile oils. It is employed with olive oil or alcohol (1-10) to kill fleas or lice on dogs, rubbed over the skin; and one drop of the pure oil may be placed on the feathers of fowl to cause destruction of lice. The oil is sometimes prescribed to disguise the taste or odor of drugs (see potassa sulphurata), and is ordered in cough mixtures for its expectorant properties.

Anise fruit is given to horses and ruminants on their food—frequently with sodium bicarbonate and ginger—to relieve mild forms of indigestion and flatulence through its stomachic and carminative action.

Cardamomum Semen. Cardamom Seed. (U. S. P.)

Synonym.—Cardamomi semina, B. P.; fructus (vel semen) cardamomi (minoris), P. G.; cardamomum, Fr.; cardamomen, kleine kardamomen, G.

The dried seeds of *Elettaria Cardamomum* (White et Maton), (Fam. Zingiberaceae).

Habitat.—Malabar.

Description.—Mostly agglutinated in groups of from 2 to 7, the individual seeds, oblong-ovoid, in outline, 3- or irregularly 4-sided, convex on the dorsal surface, strongly longitudinally grooved on one side, from 3 to 4 mm. in length; odor aromatic; taste aromatic, pungent. The powder is greenish-brown. The seeds are active; the pericarp has no medicinal virtue.

Constituents.—1, a volatile oil, which contains a terpene (C\(_{16}\)H\(_{26}\)) known as terpinene; 2, a fixed oil, 10-11 per cent.

Dose.—Same as that of anise.

A tinctura and tinctura cardamomi composita are official. They serve as coloring (red) and flavoring agents, and may be employed as vehicles in doses of one to two drams, in canine practice. The dose of the fluidextract is the same as that of the drug.

Coriandrum. Coriander. (U. S. P.)

Synonym.—Coriandri fructus, B. P.; coriander fruit, E.; coriandre, Fr.; koriander, G.; fructus coriandri, F. G.

The dried, ripe fruit of *Coriandrum sativum* Linné (Fam. Umbelliferae).
Habitat.—Southern Europe or Central Asia.
Description.—Mericarps usually coherent; cremocarp nearly globular, from 3 to 5 mm. in diameter; externally light brown or rose colored; the powder is light brown. Odor and taste agreeably aromatic.

Constituents.—1, the volatile oil, oleum coriandri, a colorless, or pale yellow liquid, having the characteristic odor and taste of coriander.

Dose of coriander and its oil, same as for anise and its oil.

Feniculum. Fennel. (U. S. P.)

Synonym.—Feniculi fructus, B. P.; semen foeniculi, fennel fruit or seeds, E.; fennuill, Fr.; fenchel, G.
The dried, ripe fruit of cultivated varieties of Foeniculum Vulgare, Miller (Fam. Umbelliferae).

Habitat.—Southern Europe and Levant.

Description.—Mericarps usually separate, each being broadly elliptical, more or less curved, from 4 to 10 mm. in length and from 1 to 3.5 mm. in breadth: dorsal surface convex, yellowish-green to grayish-brown. Odor and taste aromatic and characteristic.

Constituents.—A volatile oil of almost similar action and composition to oil of anise, oleum fennicul. A colorless, or pale yellowish liquid, having the characteristic aromatic odor of fennel, and a sweetish, mild and spicy taste. Soluble in alcohol.

Dose of fennel and its oil, same as that for anise and its oil.

Fenugreek. (Non-official.)
The seeds of Trigonella foenum graecum, cultivated in France and Germany. They are oblong, cylindrical, somewhat compressed, obliquely truncated at each end; 1 to 2 lines long; of a brownish-yellow color, and have a strong, peculiar odor, and oily, bitterish taste. Fenugreek contains both a volatile and fixed oil.

Dose.—Same as for anise.

Actions and Uses of Cardamom, Coriander, Fennel and Fenugreek.

These drugs resemble anise in actions, uses, and doses. They enter into the composition of many popular tonic or "condition" powders and drinks, and, by their stomachic and carminative properties, aid digestion. Ginger is perhaps in more frequent demand than other agents of this class, by the profession.

Class 3.—Used Mainly for Their Antispasmodic Action in Stimulating the Nervous System.

Valeriana. Valerian. (U. S. P.)

Synonym.—Valerianae rhizoma, B. P.; valériane, Fr.; baldrian, G.
The dried rhizome and roots of Valeriana officinalis Linné (Fam. Valerianaceae).

Description.—Rhizome upright, from 2 to 4 cm. in length and from 1 to 2 cm. in diameter, usually cut longitudinally into 2 to 4 pieces; externally yellowish-brown or dark brown. Odor pronounced of valeric acid, becoming stronger upon ageing; taste sweetish, camphoraceous and somewhat bitter. The powder is light brown to grayish-brown.

Constituents.—1, a volatile oil (½ to 2 per cent.), consisting of pinene, a terpene, and borneol, C₉H₁₄O; 2, valeric acid (C₄H₇O₂), a colorless, oily acid, with burning taste and odor of valerian. Soluble in alcohol and ether, and in 30 parts of water. Valeric acid, C₄H₇O₂, is also made artificially by a complicated process from the distillation of chromic acid and amyl alcohol; 3, tannic acid; 4, resin; 5, malic, formic and acetic acids.

Dose.—H. & C., 3i-ii, (30-60); D., gr.x-5i, (0.6-4).

Preparations.

Fluidextractum Valerianae. Fluidextract of Valerian. (U. S. P. 1905.)
Made by maceration and percolation with water, and evaporation, so that 1
mil=1 Gm. of the crude drug.

Dose.—H. & C., \(\frac{3}{4} \)l.-ii (30-60); D., \(\frac{1}{2} \)x-iii, (6-4).

A tinctura valerianæ (1-5), and a tinctura valerianæ ammoniata (1-5) pre-
pared with aromatic spirit of ammonia, are also official. The dose of either is
\(\frac{3}{8} \)-ii, (2-8), for dogs.

Tinctura Valerianœ Ammoniata. (B. P.)

Dose.—D., \(\frac{3}{8} \)-i, (2-4).

Ammonii Valeras. Ammonium Valerate. \(\text{NH}_4\text{C}_2\text{H}_5\text{O}_2 \). (U. S. P.)

Synonym.—Ammonium valerianate.

Made by the action of ammonia gas upon valerianic acid, and crystallization.

Properties.—Colorless, or white, quadrangular plates, emitting the odor of
valeric acid, of a sharp and sweetish taste, and deliquescent in moist air.

Very soluble in water and in alcohol; also soluble in ether.

Dose.—D., gr.ii-v, (.12-.3).

Ferris Valeras. Ferric Valerate. (Non-official.)

Made by precipitating a solution of ferric sulphate with a solution of sodium
valerianate, and washing and drying the precipitate.

Properties.—A dark, brick-red, amorphous powder of somewhat varying
chemical composition; having the odor of valerianic acid and a mildly styptic
taste; permanent in dry air. Insoluble in cold water, but readily soluble in
alcohol.

Dose.—D., gr.i-iii, (.06-.18).

Zinc Valeras. Zinc Valerate. \(\text{Zn} \left(\text{C}_2\text{H}_5\text{O}_2\right)\text{H}_2\text{O} \). (U. S. & B. P.)

Synonym.—Zinc valerianate.

Made by crystallization from a mixture of hot solutions of zinc sulphate and
sodium valerate.

Properties.—White, pearly scales, or as a white powder, having the odor of
valeric acid, and a sweetish, astringent and metallic taste. On exposure to the
air it slowly loses valeric acid and becomes partially insoluble in water. Soluble
in 70 parts of water, and in 22 parts of alcohol.

Incompatibility.—Incompatible with acids, metallic salts and soluble carbo-
nates; also vegetable astringents.

Dose.—D., gr.i-iii, (.06-.18).

Administration.—Valerian should be given in the form of the fluidextract to
horses, and this preparation or the tinctures may be exhibited to dogs in dilution.
Valeric acid is not used in medicine except to make valerianates. Of the salts,
the zinc valerate is the most popular, and is administered in pills in canine
practice.

Action and Uses of Valerian and Valerates.

The physiological action of valeric acid and the valerates is an un-
known quantity, but clinical evidence supports their value. The volatile
oil in valerian has much the same properties as other volatile oils in stim-
ulating secretion, motion, vascularity and appetite, in relation to the
digestive organs; and, in its elimination, the oil excites the mucous mem-
branes of the bronchial tubes and genito-urinary tract. The oil also
stimulates the circulation reflexly. Toxic doses of the oil paralyze the
brain and cord and depress the circulation; while lethal quantities of
ammonium valerate are said to first excite the spinal motor tract and
cause convulsions, and to finally occasion spinal depression and paralysis.
Valerian and the valerates are called antispasmodics in stimulating and
strengthening an enfeebled nervous system and thus combating disorders
which are created by an increased susceptibility to impulses originating
within the brain, or outside of the body. Valerian is both recommended
and used in the treatment of polyuria and diabetes insipidus of the horse;
in chorea of dogs resulting from distemper, and occasionally in hysteria,
epilepsy, convalescence from acute diseases, and nervous restlessness. Although the drug is of secondary importance, it finds a much larger field of usefulness in human medicine.

Zinc valerate is more commonly employed in canine practice for chorea. Ferric valerate is supposed to combine the tonic and antispasmodic action of the two constituents in one preparation. The oil of valerian is a useful remedy (in emulsion) as a carminative in flatulence. It may be given to horses in doses of 5s-i; and to dogs in quantities of m.ii-v.

ASAFOETIDA. Asafetida. (U. S. P.)

Synonym.—Asafetida, B. P.; as fétide, asa fetida, Fr.; stinkasant, teufeldreck, G.

A gum-resin obtained by incising the rhizomes and roots of Asafoetida Linné and Ferula fetida Regel (Fam. Umbelliferæ) and some other species of Ferula indigenous to Persia and adjacent countries.

Habitat.—Persia, Afghanistan and Turkestan.

Properties.—In a soft mass, sometimes almost semi-liquid, or in irregular, more or less pliable masses composed of agglutinated tears of variable size imbedded in a yellowish-brown or dark brown matrix, or in loose ovoid tears, from 1 to 4 cm. in diameter. On moistening with water the tears become milky white; odor persistent, allaceous; taste bitter, allaceous and acid. When triturated with 3 parts of water it readily yields a milk-white emulsion.

 Constituents.—1, a volatile oil (5 per cent.), containing as its most important ingredient, allyl sulphide, which gives asafetida its disagreeable odor; 2, gum, about 25 per cent.; 3, bassorin resin, 65 per cent., containing ferulaic acid (C₁₆H₂₀O₄).

Dose.—H. & C., 5ss-i, (15-30); Sh. & Sw., 5i-ii, (4-8); D., gr.iii-xii, (.18-.8).

Administration.—Asafetida is given in ball to the larger animals or in an extemporaneous emulsion which is readily made—owing to the gum in the drug—by triturating with water. Asafetida is administered to dogs in pill. The drug may also be injected in aqueous mixture per rectum.

Preparations.—Pilulae asafoetidae (gr.iii each); dose—D., 1-4. Tinctura asafoetidae (1-5); dose—H., 3i-iv, (60-120); D., 5ss-i, (2-4). Emulsion (mistura) asafoetidae, milk of asafetida (1-25); dose—D., 5ss-i, (15-30).

Action and Uses.—Asafetida is of value by reason of its volatile oil, and therefore possesses much the same action as other agents of this class. In experiments on man asafetida caused "stomachache," activity of the bowels, increased pulse rate and respiratory movements, headache, dizziness, and sexual desire.

Asafetida is chiefly used as a carminative, stimulating expectorant, and nerve stimulant or antispasmodic. Liquid preparations may cause nausea and vomiting in dogs owing to the nauseous taste. Being used as a condiment in the East it is described by old writers as "cibus deorum, sterces diaboli" (food of the gods, stink of the devil). The drug is of most service in flatulent colic of horses, when it is combined with ammonium carbonate in ball, or is given in this form simultaneously with linseed oil and oil of turpentine.

Flatulent colic in horses.

R

Pulveris asafoetidae	5l
Pulveris capsici	5l
Ammonii carbonatis	5i
Pulveris nucis vomicae	5l

M. et fiat bolus No. 1.

S. Give at once.
In atonic constipation of horses, asafetida is prescribed with aloe in ball. Asafetida is occasionally employed as a stimulating expectorant in chronic bronchitis, and in the later stages of bronchial catarrh, but it is probably inferior to ammoniacum for this purpose. As an antispasmodic agent, asafetida is useful in functional spasmodic affections, including hysteria, chorea and convulsions. The emulsion may be given in enema to dogs, in the two latter disorders.

Finally, tincture of asafetida is added to alcoholic liquors in veterinary practice to prevent their "misappropriation" by stable attendants, and, applied externally, it may stop feather pulling in birds and bandage chewing in dogs.

Class 4.—Used Mainly for Their Stimulant and Diuretic Actions on the Kidneys and Genito-Urinary Tract.

Buchu. Buchu. (U. S. P.)

Synonym.—Buchu folia, B. P.; feuilles de bucco, Fr.; bucku-blätter, bucco-blätter, G.

The dried leaves of Barosma betulina (Thunberg) Bartling et Wendling, known in commerce as short buchu; or of Barosma serratifolia (Curtis) Wildenow, known in commerce as long buchu (Fam. Rutaceae).

Habitat.—South Africa.

Description.—Short Buchu. Rhomboidally oval or obovate; from 9 to 25 mm. in length and from 4 to 13 mm. in breadth; color varying from vivid green to yellowish-green; odor and taste characteristic, aromatic and mint-like. Long Buchu: Linear-lanceolate, from 2.5 to 4 cm. in length and from 4 to 6 mm. in breadth; color, odor, and taste like short buchu.

Constituents.—1, a volatile oil, having an odor somewhat like peppermint, 1 1/2 per cent.; 2, a stearopten (buchu camphor or diosphenol, C₆H₁₂O₂), possessing an odor like peppermint and in solution in a liquid hydrocarbon, but crystallizing on exposure to the air; 3, barosmin, a glucoside, soluble in alcohol (sparsely), in ether, volatile oils, diluted acids and alkalies; 4, gum; 5, rutin, a bitter substance.

Dose.—11. & C., 3i-ii, (30-60); D., gr.xv-xxx, (1-2).

Preparations.

Fluidextractum Buchu. Fluidextract of Buchu. (U. S. P.)

Made by maceration, percolation and evaporation. so that 1 ml= 1 Gm. of buchu.

Dose.—H. & C., 3i-ii, (30-60); D., mₓv-xxx, (1-2).

An infusion (1-20) by steeping leaves in boiling water for half an hour in a closed vessel, is sometimes preferred, and will be taken voluntarily by the larger animals in linseed tea.

Tinctura Buchu. Tincture of Buchu. (B. P.)

Dose.—Same as that of the fluidextract.

Action and Uses

The volatile oil and bitter principle act upon the digestive organs as an aromatic bitter, promoting appetite and digestion in small doses, while large doses cause nausea and vomiting in dogs. The volatile oil is absorbed and eliminated by the mucous membranes, particularly of the bronchial tubes and genito-urinary tract. It thus stimulates and disinfects the mucous membranes, slightly increases the secretion of urine, and imparts its peculiar odor to the latter.

The drug is of some value in the treatment of chronic or subacute
OIL OF JUNIPER

pyelitis, cystitis and urethritis. It is stimulating, but only slightly irritating. Buchu has been recommended in chronic nephritis, and is useful in irritation of the urinary bladder, with frequent micturition, combined with spirit of nitrous ether. Buchu is occasionally prescribed in the later stages of bronchitis or in the chronic form of this disease, and is employed in its native country as a remedy for chronic diarrhea and dysentery.

Oleum Juniperi. Oil of Juniper. (U. S. & B. P.)

Synonym.—Oleum fructus (vel bacce) juniperi, oil of juniper berries, E.; essence de genièvre, Fr.; wachholderbeeröl. G.

A volatile oil distilled from the fruit of Juniperus communis Linné (Fam. Pinaceae).

Habitat.—Canada and United States; Rocky Mountains, south to New Mexico.

Properties.—A colorless, or faintly green or yellow liquid, having the characteristic odor and taste of juniper fruit. Spec. gr. 0.854 to 0.879. Soluble in 4 volumes of alcohol.

Composition.—The chief constituents of oil of juniper are the terpenes—pinene and cadimene.

Dose.—H. & C., 5i-ii, (4-8); D., mii-x, (.12-.6).

PREPARATIONS.

Oil of Juniper, 50; alcohol, 950. (U. S. P.)

Dose.—H. & C., 3i-ii, (30-60); D., 5ss-i, (2-4).

Oil of juniper, 8; oil of caraway, 1; oil of fennel, 1; alcohol, 1400; water to make 2000.

Dose.—H. & C., 3ii-iv, (60-120); D., 5i-iv, (4-15).

Action and Uses

Oil of juniper resembles oil of turpentine physiologically as well as chemically. It is a stomachic and carminative, particularly when combined with alcohol and other aromatic oils (sp't. juniper. co.), but is used in medicine chiefly for its stimulant and diuretic action upon the kidneys and genito-urinary tract during its elimination. Oil of juniper is capable of irritating the kidneys in large doses, and causing congestion, strangury, and even suppression of urine. It is less likely, however, to disturb digestion than oil of turpentine, and does not so readily occasion hematuria and albuminuria. Oil of juniper is indicated in chronic pyelitis and cystitis; also in dropsy of cardiac, renal, or hepatic origin. It is efficient in assisting absorption of effusions into serous cavities, through its diuretic properties. The compound spirit of juniper approximates gin in composition, although it is not the official name for that liquor. This preparation is useful in the convalescent period of acute bronchitis and influenza, stimulating the bronchial mucous membrane by virtue of the volatile oil, and acting as a circulatory stimulant and diuretic. The oil of juniper is an efficient renal stimulant in passive congestion of the kidneys, and following the active stage of acute nephritis.

Juniper berries are sometimes given to the larger animals on their food (3i-ii), or are exhibited in infusion.
So-called Solid Volatile Oils or Stearoptens

Camphora. Camphor. \(C_{10}H_{10}O \). (U. S. & B. P.)

Synonym.—Gum camphor, laurel camphor, E.; camphre, Fr.; kampfer, G.

A ketone obtained from Cinnamomum Camphora (Linné) Nees et Ebermaier (Fam. Lauraceae), and purified by sublimation.

Habitat.—China, Japan, Cochin China and Sunda Islands.

Properties.—White, translucent masses or granules of a tough consistence and having a penetrating, characteristic odor, and a pungent aromatic taste. It is readily pulverizable in the presence of a little alcohol, ether or chloroform. Spec. gr. 0.990. Slightly soluble in water, but freely soluble in alcohol, ether, chloroform, carbon disulphide, benzoin, and in fixed and volatile oils, and milk. When camphor is triturated, in about molecular proportions, with menthol, thymol, phenol, or chloral hydrate, liquefaction ensues. On exposure to the air it evaporates, and when moderately heated, it sublines without leaving a residue.

Composition.—A camphor is a solid crystalline substance separated from any volatile oil on long standing or at low temperature. Camphor is chemically an oxidation product of a terpene (pinene or cymene),—the principal constituent of all volatile oils. A terpene is a hydrocarbon containing 10 atoms of carbon, and the terpene \(C_{10}H_{10} \) from which camphor is derived is isomeric with that of oil of turpentine and many other volatile oils.

Dose.—H., 5i-iii, (4-12); C., 5ii-iv, (8-15); Sh. & Sw., gr.xv-5i, (1-4); D., gr.iii-xx, (.18-1.3).

Preparations.

Aqua Camphorae. Camphor Water. (U. S. & B. P.)

Triturate camphor, 8, with alcohol, 8, and purified tincture, 15; then with water to make 1000. Filter. (U. S. P.)

Dose.—Ad lib.

Spiritus Camphorae. Spirit of Camphor. (U. S. & B. P.)

Dissolve camphor, 100, in alcohol, 800; filter, and add alcohol to make 1000. (U. S.)

Dose.—H. & C., 5i-ii, (30-60); D., 5ss-i, (2-4).

Linimentum Camphorae. Camphor Liniment. (U. S. & B. P.)

Synonym.—Camphorated oil.

Camphor, 200; cottonseed oil, 800. (U. S. P.)

Dose.—H. & C., 5ss-i, (15-30); D., mix-xx, (0.6-1).

Tinctura Camphorae Composita. (B. P.) (Paregoric.)

Contains 1 part of morphine in 2000=gr.\(\frac{1}{4} \) opium in 5i paregoric.

Dose.—D., 5ss-i.

Camphora Monobromata. Monobromated Camphor. \(C_{10}H_{10}OBr \). (U. S. P.)

*Derivation._—Made by heating camphor and bromine together at a temperature of 172° F. (77.7° C.) and solution in benzoin. \(C_{10}H_{10}O+2Br= C_{10}H_{10}OBr+HBr \). Recrystallized from hot alcohol.

*Properties._—Colorless, prismatic needles or scales, or as a powder, having a mild, camphoraceous odor and taste; permanent in the air. Almost insoluble in water; freely soluble in alcohol, ether, and chloroform, hot benzoin and fixed and volatile oils; slightly soluble in glycerin.

Dose.—D., gr.ii-x, (.12-.6).

*Action External._—Camphor resembles the volatile oils chemically and physiologically. It is a slight antiseptic externally, and parasiticide. The vapor of camphor kills moths, fleas, bugs, etc. Camphor is a mild irritant, producing a rubefacieng action followed by partial anesthesia. It is eliminated in part by the skin and occasions some diaphoresis.

*Action Internal._—Alimentary Canal._—Camphor stimulates the stomach, increasing the secretion, motion and vascularity of the organ. In the bowels camphor is supposed to overcome pain, spasm, and check secretion in diarrhea, but has little effect in normal conditions and in therapeutic doses.
Circulation.—The frog's heart is stimulated by camphor, and the pulse is slowed and increased in force by moderate doses. The drug acts in part directly on the heart muscle and in part reflexly from irritation of the stomach. While animal experiments do not show that camphor has any material effect on the heart in ordinary doses yet clinical experience has proved that it does stimulate the circulation in conditions of general depression of the circulation from acute illness, in poisoning and after surgical operations. Moreover, when ingested, camphor stimulates the heart reflexly by irritation of the stomach, as in the case of alcohol.

Animal experiments do show that it sometimes first stimulates and then depresses the vasomotor centres in large doses, producing a corresponding effect on blood pressure. Poisonous quantities of camphor depress the heart and the pulse becomes feeble and rapid. Leukocytosis is favored by camphor.

Respiration.—Camphor does not influence the respiration materially in therapeutic doses. Occasionally the respiration is made slower and deeper. Camphor, like volatile oils, stimulates the bronchial mucous membranes in its elimination by the lungs, and increases the blood supply and secretion of these parts. The characteristic odor is imparted to the breath after the ingestion of camphor. The drug is believed to relieve spasm and cough in bronchitis.

Nervous System.—Camphor is often classed as an antispasmodic. It stimulates the nerve centres in the brain, medulla, and spinal cord, and thus overcomes spasm due to nervous weakness and incoördination. Poisonous doses depress and paralyze the higher nervous centres.

Kidneys and Sexual Organs.—Camphor is oxidized in the body into camphorol \((\text{C}_10\text{H}_16\text{O}_2)\) and eliminated in the breath and sweat, but mainly in the urine, as camphoglycuronic acid. The drug influences the sexual organs, in some cases, but in most instances does not affect them. Full medicinal doses sometimes stimulate the sexual functions (aphrodisiac action). Very large doses are said to depress sexual desire (anaphrodisiac action), but these quantities may irritate the genito-urinary tract and produce erotic excitement.

Temperature.—Camphor is a slight antipyretic.

Toxicology.—Two to four ounces of camphor given to horses or cattle induce delirium and convulsions (cerebral stimulation) with rapid pulse and breathing, but usually recovery ensues. Two to four drams cause, in dogs, vomiting, unsteady movements, asphyxia, coma (cerebral depression), and death from respiratory failure.

Administration.—Camphor is exhibited internally in the form of the spirit in pill or ball; and in solution in oil or milk.

Uses External.—Camphor is applied in powder as a stimulant and antiseptic on indolent sores; mixed with chalk or zinc oxide, as a dusting powder, in chafing or erythema, for its anesthetic properties. It is employed in liniments (Lin. Saponis, Lin. Camphoræ), in strains, bruises, rheumatism and myalgia, as a rubefacient and local anodyne.

Uses Internal.—Camphor is a valuable agent in stimulating the vital nerve centres in depression, collapse and shock and also, in less degree, the circulation.
In poisoning by alcohol, opium, belladonna, etc., and post-operative shock and collapse it has the highest reputation with leading surgeons and clinicians. It should be given subcutaneously dissolved in almond, olive or cottonseed oil in the proportion of the linimentum camphoræ (U. S. P.), that is 1 to 4. The oil should be first sterilized by boiling.

B

Camphoræ ... 3i.
Oleolivæ... 5iv.

M.

Sig. Inject as one dose subcutaneously (Horses).
Inject mxx for dogs. Repeat hourly.

The effect of these injections is to produce some induration and not more than 1½ drams should be injected at one point.

Camphor is of benefit in exhausting acute diseases (influenza, pneumonia and canine distemper), for the same reason, and because it possesses diaphoretic and antipyretic properties. It may be combined with alcohol, spirit of nitrous ether, and ammonia compounds, in these affections.

Respiratory disorders are improved by camphor, since it is an expectorant, diaphoretic, stimulant and antiseptic. It is prescribed in spasmodic cough, bronchitis and pharyngitis. For the latter, in electuary with belladonna.

Camphor is a valuable drug in diarrhea, particularly in the serous variety, and in that form following exposure to cold. It is not useful in inflammatory conditions, but eases secretion and pain. Camphor is prescribed alone in diarrhea, or with brandy and laudanum.

Sun cholera mixture is a favorite in diarrhea.

B

Spiritus camphoræ.
Tincturae opii.
Tincturae rhei.
Tincturae capsici.

Spiritus menthae piperitae.......................... åå ⅛ss.

M.

Sig. Two tablespoonfuls for H. & C. mxx to 5i
for dogs, in plenty of water.

Camphor is sometimes given as an antispasmodic in hysteria and “thumps” (spasm of diaphragm) of horses; and in nervous palpitation of the heart, and chorea (monobromated camphor) of dogs.

Spirit of camphor and nitrous ether are efficient in relieving irritation of the genito-urinary tract. Camphor has proved of service in purpura hemorrhagica of horses given thrice daily in pills (gr. 75).

Thymol. Thymol. C_{10}H_{14}O. (U. S. & B. P.)

Synonym.—Thymic acid, E.; acide thymique, Fr.; thymiansaure, G.

A phenol occurring in the volatile oils of Thymus Vulgaris Linné (Fam. labiatae) and in some other volatile oils.

Habitat.—Thymus vulgaris, Southern Europe, cultivated.

Derivation.—Thymol is made from the terpenes of the volatile oils mentioned above, by fractional distillation and saponifying the result with caustic soda to remove more terpenes, and by cooling. The resulting soap, or soda-thymol compound is decomposed with hydrochloric acid, and thymol is crystallized from an alcoholic solution.
Properties.—Large, colorless, translucent, rhombic prisms, having an aromatic, thyme-like odor, and a pungent, aromatic taste, with a very slight caustic effect upon the lips. As a solid it is heavier than water, but when liquefied by fusion it is lighter than water. It melts at 48° to 51° C, remaining liquid at considerably lower temperatures. When triturated with about equal quantities of camphor, menthol, or chloral, it liquefies.

Soluble in about 1010 parts of water, and in about 1 part of alcohol, 1.5 parts of ether or 0.7 part of chloroform; also readily soluble in carbon disulphide, glacial acetic acid, and in fixed or volatile oils.

Dose.—HI., 5ss-li, (2-8); Sh. (single dose), 5ss-iiss, (2-10); D., gr.i-xv, (.06-1).

Anthelmintic, gr.ii per 2.2 lb. live-weight (0.13 per Kg.).

Action and Uses.—Thymol resembles carbolic acid chemically and physiologically. It is less poisonous and irritant, more costly, and possesses greater antiseptic powers. It is much less valuable, however, medicinally, on account of its expense, and odor which strongly attracts flies.

Poisoning is not produced readily, as absorption from the digestive tract is slow; but after considerable doses by the mouth, or when injected into the blood, toxic symptoms occur. One dram given intravenously to a dog caused prostration, coma and respiratory failure. Recovery ensued after the use of artificial respiration. Often no lesions are discoverable after death. At other times there is hyperemia of the lungs and kidneys caused by elimination of the drug. The urine is colored greenish or yellowish-brown by transmitted light.

Thymol is used externally for general antiseptic purposes, for application to ulcers, and as an injection in cystitis in aqueous saturated solution. It is employed in ointment with vaseline (1-15) to destroy ringworm and to relieve itching in pruritus, eczema, lichen, psoriasis, etc. It may be applied as follows for the same purposes:

\[
\begin{align*}
R & \\
& \text{Thymol} \quad \text{gr.xv}.
& \text{Alcohol} \quad \text{5iiss}.
& \text{Glycerin} \quad \text{5v}.
& \text{Aq. ad} \quad \text{Oi}.
M & \\
\end{align*}
\]

An efficient antiseptic mouth wash consists of borax, gr. 40; thymol, gr. 20; water, 5 iv. It is indicated in stomatitis. Thymol internally is a powerful anthelmintic and parasiticide. It is employed as an intestinal antiseptic; as a remedy for tape and round worm (uncinariais in dogs), in goitre, and as a urinary antiseptic in cystitis. It is given in diluted alcoholic solutions; better in oil or capsules. As a vermifuge full doses (D., gr.x-xxx) should be preceded and followed by a purge, but not oil which acts as a solvent. Thymol has been regarded as a specific for hookworm of dogs, as it is in fact for man. Starve the patient for 24 hours and give the drug in 2 doses, and follow in 2 hours with 3 compound cathartic pills, or calomel. For a dog with hookworm:

\[
\begin{align*}
R & \\
& \text{Thymolis.}
& \text{Sodii bicharbonatis} \quad \text{aaa 5ss}.
M. et divide in capsulas No. vi.
Sig. Give 3 capsules, and 3 more in 2 hours, and follow in 2 hours by cathartic.
\end{align*}
\]
Hall and Foster found thymol much less efficient than chloroform (\(\text{mllii per 2.2 lb. live-weight}\)) in castor oil (\(\text{g to ii}\)) for ridding dogs of hookworm. Thymol in capsule (\(\text{g.3 per Kg. gr.ii per 2.2 lb. weight}\)) was more successful against whipworms and still more successful against ascarids.

SECTION X.—VEGETABLE BITTERS.

Gentiana. Gentian. (U. S. P.)

Synonym.—Gentianæ radix, B. P.; radix gentianæ rubrae (vel luteæ vel majoris), gentian root, E.; radix gentianæ, P. G.; racine de gentiane (de gentiane jaune), Fr.; enzianwurzel, bitterwurzel, rother (gelber) enzian, G.

The dried rhizome and roots of Gentiana lutea Linné (*Fam. Gentianæ*).

Habitat.—The yellow gentian is indigenous in the Alps and mountains of southern and central Europe.

Description.—In nearly cylindrical pieces sometimes branching, of variable length and from 5 to 35 mm. thick; externally yellowish-brown, the rhizome annulate, the roots longitudinally wrinkled; the powder is light brown or yellowish-brown; odor strong, characteristic; taste slightly sweetish, then strongly and persistently bitter.

Constituents.—The chief one is (1) gentiopicroin (may be split into gentigenin and glucose), a bitter crystalline glucoside, soluble in alcohol and water. There is also (2) gentisic acid (\(\text{C}_9\text{H}_6\text{O}_5\)), combined with gentiopicroin and gum, and (3) a trace of volatile oil; (4) gentianose, a sugar. Contains no tannin.

Incompatibles.—Iron in solution forms a black compound with the coloring matter in gentian. Silver nitrate and lead salts are incompatible with gentian.

Dose.—H., 3s–s; (15–30); C., 5i–ii, (30–60); Sh. & Sw., 5i–ii, (4–8); D., gr.v–xxx, (3–2).

Preparations.

Extractum Gentianæ. Extract of Gentian. (U. S. & B. P.)

Made by maceration and percolation with water, and evaporation to a pilular consistence.

Dose.—About one-third that of gentian.

Fluidextractum Gentianæ. Fluidextract of Gentian. (U. S. P.)

Made by maceration and percolation with diluted alcohol, and evaporation, so that 1 mil=1 Gm. of the crude drug.

Dose.—Same as gentian.

Tinctura Gentianæ Composita. Compound Tincture of Gentian. (U. S. & B. P.)

Gentian, 100; bitter orange peel, 40; cardamon, 10; made by maceration and percolation with alcohol and water, to 1000. (U. S. P.)

Dose.—H. & C., 5i–iv, (30–120); D., 5i–iv, (4–15).

Administration.—Gentian is usually given to horses, cattle and sheep in powder, or to the former in the form of the compound tincture. The extract is suitable for dogs when exhibited in pills. Gentian is often employed as an excipient in the preparation of balls.

Action.—The simple bitters, as gentian, are chiefly used to improve the appetite. They locally stimulate the taste buds of the tongue but not when given in pill or capsule. They are stomachics indirectly by exciting the first secretion of gastric juice, or "appetite juice" of PawlOW, who found that appetite, or the sight or smell of food, reflexly started the secretion of gastric juice in dogs. Bitters should be given just before (10 to 20 minutes) eating. They may lessen normal appetite or cause nausea in irritable stomach. Bitters reflexly cause dilation of the blood vessels in the stomach, and increase salivary as well as gastric secretions. Furthermore, the bitters excite gastric and intestinal peri-
Quassia

397

stalsis to a slight extent. The bitters only act as tonics by their local effect in facilitating the digestion and assimilation, and by increasing the appetite. Externally the bitters are mildly antiseptic; while internally they are inimical to intestinal parasites.

Uses.—Gentian is serviceable in simple loss of appetite. It is especially indicated in feeble gastric digestion caused by acute disease, overwork, insufficient and poor food, and in that form associated with general debility and anemia. In the latter state, characterized by a pasty tongue, anorexia, rough coat and pallid mucous membranes, which may often be co-existent with the presence of intestinal worms, powdered gentian is most efficient when given to horses on the food three times daily with dried ferrous sulphate.

Tonic powder for horses or cattle.

\[\text{Ferri sulphatis } \text{exsiccati} \] \(\text{1 \text{bi.}} \)
\[\text{Pulveris gentianae} \] \(\text{3iv.} \)

\[\text{M.} \]

\[\text{S.} \] Heapings tablespoonful on feed t. i. d.

Again, loss of appetite, general weakness, and feeble digestion occurring in horses during convalescence from acute diseases, as influenza and pneumonia, are favorably met by a combination of compound tincture of gentian and whisky (1 ounce each), or by diluted hydrochloric acid and the compound tincture.

\[\text{Acidi hydrochlorici diluti} \] \(\text{12} \)
\[\text{Tincturæ gentianæ compositeæ} \] \(\text{1} \)

\[\text{M.} \]

\[\text{S.} \] Two tablespoonfuls in water t. i. d. before feeding.

The drug is useful in atomic indigestion, or mild chronic gastric or intestinal catarrh of young animals, when conjoined with sodium bicarbonate, which acts as a peristaltic stimulant \((\text{CO}_2)\), and solvent of mucus.

The simple bitters, including gentian, are contra-indicated in any acute inflammation of the digestive tract, since they are mild irritants. Gentian is a valuable bitter for cattle and sheep, but quinine is more commonly given to dogs.

Quassia. Quassia. (U. S. P.)

Synonym.—Quassæ lignum, B. P.; quassia wood, bitter wood, bitter ash, E.; quassie, bois amer, Fr.; quassienholz, G.

Habitat.—Jamaica and West Indies.

Description.—The wood of Picrasma excelsa (Swartz) Planchon, known in commerce as Jamaica quassia, or of Quassia amara Linné (Fam. Simarubaceæ), known in commerce as Surinam quassia.

Jamaica Quassia.—Usually in chips, rasplings or shavings, occasionally in small cubes or billets; yellowish-white or bright yellow, with a few light gray pieces coarsely grained; fracture tough, fibrous; odor slight; taste bitter.

Surinam Quassia.—The crude drug closely resembles the Jamaica variety; calcium oxalate crystals in microscopic sections few or entirely absent, thus distinguishing the variety from Jamaica quassia.

 Constituents.—Chiefly, quassiin \((\text{C}_{12}\text{H}_{12}\text{O}_3)\), a bitter, neutral principle occur-
ring in crystalline rectangular plates. There is also a volatile oil, but no tannin.
Dose.—Quassiin, D., gr.1/8-1/3, (.008-.02).

PREPARATIONS.

Extractum Quassiv. Extract of Quassia. (U. S. & B. P.)
Made by percolation with water, boiling and evaporation to pilledar consistency.
Dose.—H., 3i-ii, (4-8); D., gr.sss-iii, (.03-18).

Tinctura Quassiv. Tincture of Quassia. (U. S. & B. P.)
Made by maceration and percolation of quassia, 200, with alcohol and water to make 1000. (U. S. P.)
Dose.—Twice that of fluidextract.

Liquor Quassiv Concentratus. (B. P.)
Dose.—Same as for fluidextract.

Administration.—Quassia may be given to horses in the official preparations,—preferably the fluidextract,—or in infusion (1 to 80, in cold water for half an hour, B. P.). The dose of the infusion is 3iv for horses, 3ii-iv for dogs.

Actions.—Quassia is the most active and bitter stomachic we possess. Large doses irritate the digestive tract. The drug is poisonous to the lower forms of animal life. One grain will kill a frog with the production of convulsions and respiratory and heart failure. A sweetened infusion is often employed to destroy flies. Considerable doses of quassia increase the secretion of urine, and stimulate peristaltic action and contraction of the urinary bladder. It is an antiseptic and prevents fermentation in the digestive canal. Quassia acts generally in the same manner as gentian, by sharpening the appetite, and increasing salivary and gastric secretions, together with vascularity and peristalsis of the stomach. The volatile oil assists the stomachic action.

Uses.—Quassia, like gentian, is very serviceable in promoting appetite and digestion in atonic dyspepsia. It has this advantage, however, that it may be combined with liquid preparations of iron without incompatibility. Quassia is the most efficient vermicide in our possession for the destruction of Oxyurus curvula, horse; and O. vermicularis, dog, in the lower bowel. An infusion is employed for this purpose, made by soaking quassia chips in cold water (3ii to Oi) for half an hour. The rectum should be first thoroughly washed out with soap and water, and one-half pint of this infusion is given in enema to dogs; two quarts to horses.

Calumba. Calumba. (U. S. P.)

Synonym.—Calumbæ radix, B. P.; columbo, E.; colombo, Fr.; kolombowurzel, G.
The dried root of Jateorhiza palmata (Lamarck) Miers (Fam. Menispermaceæ).

Habitat.—Mozambique, East Africa. Cultivated in the East Indies.

Description.—In circular or oval disks attaining a diameter of 9 cm. and seldom exceeding 2 mm. in thickness, or in longitudinal or oblique slices attaining a length of 30 cm., a breadth of 35 mm., and a thickness of 16 mm.; externally brown and roughly wrinkled. Powder is greenish-brown to grayish-yellow. Odor slight; taste slightly aromatic, very bitter.

Constituents.—1, calumbin (C₃₂H₄₀O₃), a neutral bitter, crystalline substance; 2, an alkaloid, berberine (C₂₁H₂₀NO₂), found in berberis, hydrastis, etc.; 3, calumbic acid (C₁₈H₂₀O₄); 4, starch, 33 per cent.

Dose.—H. & C., 5ss-i, (30-60); Sh. & Sw., 3i-ii, (4-8); D., gr.v-xxx, (.3-2).
PREPARATION.

Tinctura Calumbæ. Tincture of Calumba. (U. S. & B. P.)

Made by maceration and percolation of calumba, 200, in alcohol, and water to make 1000. (U. S. P.)

Dose.—H. & C., 5ii-iv, (60-120); D., 5i-iv, (4-15). Dose of tincture (B. P.) half that of U. S. P. tincture.

Administration.—Calumba is given in powder on the food, or in the official preparations to the larger animals. The infusion (1-16, B. P.) may be used in the same doses as that of cascarilla. The tincture, and extract (gr.ii-x, B. P.) are the best preparations for dogs.

Actions and Uses.—Calumba is a mild but pure bitter. Berberine, calumbin and calumbic acid are all bitter, but none of them possess any powerful physiological action. Calumba is indicated in the same cases as gentian, but, being free from tannin, may be combined with iron preparations without producing an unsightly, inky mixture. It is less irritating than other bitters, and may be prescribed in more irritable conditions of the stomach. Calumba is frequently used during convalescence from the acute diseases and diarrhea.

Tonic for dogs in convalescence from acute diseases.

B.

Tincturae ferri chloridi..5ss.

Tincturae calumbæ ..ad 3iv.

M.

S. Teaspoonful t. i. d. in water.

TARAXACUM. Taraxacum. (U. S. P.)

Synonym.—Taraxici radix, B. P.; dandelion, E.; pissenlit, dent de lion, Fr.; löwenzahn, G.

The dried rhizome and roots of Taraxacum officinale Weber (Fam. Compositae).

Habitat.—Naturalized in the United States and growing commonly in waste places. Indigenous in Europe.

Description.—Cylindrical or somewhat flattened, gradually tapering, usually in broken pieces, from 6 to 15 cm. in length and from 5 to 15 mm. in thickness; externally brown or blackish-brown, longitudinally wrinkled; odor slight or inodorous; taste bitter; powder light brown.

** Constituents.**—1, taraxacin, a bitter, soluble, crystalline substance; 2, inulin; 3, taraxacerin (C₁₆H₂₄O); 4, resin, causing the milky juice; 5, asparagin, of no medicinal value.

Dose.—H., 5i-ii, (30-60); Sh. & Sw., 5ii-iv, (8-15); D., 5i-ii, (4-8).

PREPARATIONS.

Extractum Taraxaci. Extract of Taraxacum. (U. S. & B. P.)

Made by percolation of powdered taraxacum, 1000; with alcohol and water, 1000; and evaporation to pilular consistence.

Dose.—H. & C., 5i-iv, (4-15); D., gr.v-xx, (3-13).

Fluidextractum Taraxaci. Fluidextract of Taraxacum. (U. S. P.)

Made by maceration and percolation with diluted alcohol, and evaporation, so that 1 mil=1 Gm. of taraxacum.

Dose.—Same as taraxacum.

Extractum Taraxici Liquidum. (B. P.)

Dose.—Same as taraxacum.

Administration.—The fresh juice squeezed from the root (succus, B. P.) may be given to horses; or the official preparations may be used.

Action and Uses.—Taraxacum is a simple stomachic and bitter and
may be employed in place of gentian or calumba. It has been generally taught that taraxacum is an hepatic stimulant and increases the secretion of bile. This has been proved fallacious. The extract is often used as an excipient in preparing masses.

Hydrastis. Hydrastis. (U. S. P.)

*Synonym.—*Hydrastis rhizoma, B. P.; golden seal, yellow root, yellow puccoon, orange root, Indian dye, Indian tumeric, E.; racine orange, Fr.; Canadische gelbwurzel, G.

The dried rhizome and roots of Hydrastis canadensis Linne (Fam. Ranunculaceae), yielding not less than 2.5 per cent. of the ether-soluble alkaloids of hydrastis.

Habitat.—North America in woods, west to Missouri and Arkansas.

Description.—Rhizome horizontal or oblique, subcylindrical and usually more or less flexuous, from 1 to 5 cm. in length and from 2 to 7 mm. in diameter; occasionally with stem bases; externally yellowish or grayish-brown. The powder is yellowish brown; odor distinct; taste bitter.

** Constituents.**—1, berberine ($C_{21}H_{18}NO_7$), 3 to 4 per cent., an alkaloid occurring in yellow crystals and found in many plants of the families Berberaceae, Ranunculaceae, and Menispermaceae; 2, hydrastine ($C_{21}H_{18}NO_7$), a colorless, crystalline alkaloid, soluble in alcohol and ether; 3, canadine ($C_{21}H_{18}NO_7$), occurring in white, acicular crystals.

Dose.—H. & C., 5ii-5i, (8-30); Sh. & Sw., 5i-ii, (4-8); D., gr.v-5i, (3-4).

PREPARATIONS.

* Fluidextractum Hydrastis. Fluidextract of Hydrastis, (U. S. P.) Made by maceration and percolation with alcohol, glycerin and water, and evaporation. Assayed and enough menstruum added so that it will contain 2 per cent. of the ether-soluble alkaloids of hydrastis.

Dose.—H. & C., 5ii-5i, (8-30); Sh. & Sw., 5i-ii, (4-8); D., mlv-5i, (3-4).

* Extractum Hydrastis Liquidum. (B. P.)

Dose.—H. & C., 5i-iii, (4-12); D., mlv-xv, (3-1).

* Tinctura Hydrastis. Tincture of Hydrastis. (U. S. & B. P.)

Made by maceration and percolation of hydrastis, 200; with diluted alcohol, to 1000.

Dose.—H., 5i-ii, (30-60); D., 5ss-ii, (2-8).

* Glyceritum Hydrastis. Glycerite of Hydrastis. (U. S. P.)

Made by maceration, and percolation, of hydrastis, 1000, with alcohol, and evaporate. Add water to the residue, set aside 24 hours and filter; add enough water to the filtrate to make 100 mls contain 2.5 Gms. of ether-soluble alkaloids, then add glycerin, 500.

Dose.—Same as fluid extract.

Hydrastina. Hydrastine. $C_{21}H_{18}O_7$.

Occurs in white, glistening prisms of bitter taste and permanent in the air. Almost insoluble in water; sparingly soluble in alcohol and ether; soluble in chloroform.

Dose.—H., gr.iii, (0.18); D., gr.1/4, (0.015).

**Hydrastininæ Hydrochloridum. Hydrastinine Hydrochloride. $C_{21}H_{18}O_7NHCl.$ (U. S. P.)

The hydrochloride of hydrastinine, an alkaloid obtained from the oxidation of hydrastine.

Properties.—Light, yellowish needles, or a yellowish-white crystalline powder; odorless, and having a bitter, saline taste; deliquescent on exposure to damp air. Very soluble in water and alcohol.

Dose.—H., gr.v, (0.8); D., gr.1/2, (0.08).

Hydrastin. (Non-official.)

The commercial name for a mixture of variable composition, consisting chiefly of berberine, together with hydrastine, and a resin. A greenish-yellow powder, having a bitter taste. Wrongly termed hydrastine.

Dose.—H., gr.xv-xxx, (1-2); D., gr.iii-v, (18-3).
Actions.—Hydrastis and its alkaloids, berberine and hydrastine, act as simple bitters and stomachics, in small doses, by improving the appetite and stimulating the secretion, motion and vascularity of the stomach. Hydrastis causes contraction of the non-pregnant uterus, and may induce abortion in pregnant animals. It also increases the flow of urine. The drug is a mild anti-periodic, but is decidedly inferior to quinine in this respect. Hydrastine and berberine resemble each other in actions, uses and doses. Hydrastine acts on the nervous system as a mild form of strychnine, stimulating slightly the vagus, respiratory and vasocostric- tor centres, and increasing reflex excitability. It has no appreciable effect on the heart and but slightly raises blood pressure. It excites all kinds of muscle and thus is a good tonic. Poisonous doses of hydrastine and berberine are followed by convulsions and paralysis; the former is more convulsant. In poisoning by either alkaloid there is great cardiac and vasomotor depression. Hydrastinine hydrochloride stimulates vasocostric- tor centres and also constricts vessels locally, but is chiefly used for its action in stimulating uterine muscle and stopping metrorrhagia at times other than parturition. A 10% solution is applied locally to stop bleeding from the nose, uterus and rectum.

Uses.—Hydrastis, berberine, and hydrastine are employed in anorexia and atonic indigestion. The fluidextract of hydrastis and hydras- tine (both, however, are very expensive) are especially efficient for horses in combination with other bitters and iron, as follows:

R
Fluidextr. capsici .. 5ii.
Fluidextr. hydrastis.
Fluidextr. nucis vomicae 5iii.
M. (Furnish 5ii bottle.)
Sig. Small bottleful t. i. d. on tongue.

or:

R
Hydrastinæ .. gr.xxx.
Pulv. gentianæ.
Pulv. nucis vomicae.
Ferri sulph. exsicc. ... 5ii.
M. et div. in ch’t, no. xii.
Sig. One powder on food t. i. d.

Hydrastis is exhibited empirically (probably as a local stimulant and antiseptic) in atonic and inflammatory conditions of the digestive organs, with great benefit, as in chronic gastro-intestinal catarrh or catarrhal jaundice. Hydrastis is used most frequently in human medici- ne to stop uterine hemorrhage of all descriptions, and is often conjoined with the fluidextract of ergot for this purpose. Hydrastinine hydrochloride has been employed with great success as a hemostatic in metrorrhagia. Hydrastine is given to horses and dogs as a bitter tonic. Externally, the fluidextracts of hydrastis (1-8 to 1-2), or hydrastine (gr. v-5i), in aqueous solution, are most serviceable as local stimulants in the treatment of the subacute stages in inflammatory diseases of mucous membranes, and in relaxed or atonic conditions of these tissues. The solutions are applied as injections, or lotions, in leukorrhea, endometritis, balanitis, otorrhea, stomatitis, etc., and upon indolent ulcers.
SECTION XI.—VEGETABLE CATHARTICS.

Class I.—Simple Purgatives.

Aloe. Aloes. (U. S. P.)

(Aloe Barbadensis, Aloe Socotrina, Pharmacopoeia 1890.)

Socotrane Aloes.

Synonym.—Aloe succotrina, aloes succotrin, s. succotrin, Fr.; socotra, s. socotrinese aloe, G.

Habitat.—Eastern Africa.

The inspissated juice of the leaves of Aloe Perryi Baker, yielding Socotrane aloes; or Aloe vera Linné, yielding Curacaoo aloes; or Aloe ferroX Miller, yielding Cape aloes (Fam. Liliaceae).

Properties.—In yellowish-brown to blackish-brown opaque, or smooth and glistening masses; fractured surface somewhat conchooidal; sometimes soft or semi-liquid; odor aromatic or saffron-like, never fetid or putrid; taste nauseous, bitter. Soluble to extent of 50 per cent. in water; solution yellowish. The powder is dark brown.

Curacao Aloes. Aloe Barbadensis. Barbadoes Aloes. (B. P.)

Synonym.—Curacaoo aloes, E.; aloes des Barbades, Fr.; Barbados-aleo, G.

The inspissated juice of the leaves of Aloe vera (Linné) Webb (nat. ord. Liliaceae).

Habitat.—The island of Barbadoes.

Properties.—In orange to blackish-brown, opaque masses; fractured surface uneven, waxy, somewhat resinous; odor characteristic but not aromatic as in Socotrane aloes.

Not less than 60 per cent. of Curacao aloes is soluble in cold water, the solution being of a purplish-red color.

The powder is deep reddish-brown.

Aloe Capensis. Cape Aloes.

Synonym.—Aloës der Cap, Fr.

Habitat.—Africa.

Properties.—Cape Aloes—In reddish-brown or olive-black masses, usually covered with a yellowish-powder, or in thin, transparent fragments of a reddish-brown color; fracture smooth and glassy; odor characteristic.

Not less than 60 per cent. of Cape aloes is soluble in cold water, the solution being of a pale yellow color.

The powder is greenish-yellow, changing to light brown on ageing.

Dose of Aloes.—H. 5ss-i, (15-30); C. 5ii-i, (30-60); Sh., 5ss-i, (15-30); Sw., 5ii-iv, (8-15); D. gr.xxx-5i, (1.3-4); Foals, 1 to 3 months, 5ss-ii; Foals, 6 months, 5iii; Foals, 1 year, 5iv.

Constituents.—1, aloin; 2, a resin; 3, a volatile oil, giving the odor; 4, a trace of gallic acid.

Aloinum. Aloin. (U. S. & B. P.)

Synonym.—Alöine, Fr.

A pentoside or mixture of pentosides obtained from aloes, varying in chemical composition, physical and chemical properties according to the source. Preserve in well-closed containers, protected from light.

Derivation.—Obtained by pulverizing and macerating Barbadoes aloes in cold water, and evaporating the resulting solution in vacuo. Aloin crystallizes out and is dried between folds of bibulous paper. It is purified by repeated solution in hot water, filtration, recrystallization, and finally by solution in hot alcohol and crystallization. Nataloin is derived from Cape aloes.

Properties.—A micro-crystalline powder or in minute acicular crystals from lemon-yellow to dark-yellow in color, odorless, or possessing a slight odor of aloes and an intensely bitter taste. It becomes darker on exposure to light and air.

Aloin varies in solubility with its composition. It is soluble in water, alcohol or acetone; slightly soluble in ether.

Aloes from Curacao aloes is soluble in about 65 parts of water and 10.75
parts of alcohol. Barbaloín and socaloin are soluble in about 60 parts of cold water. Barbaloín is soluble in 20 parts of alcohol. Socaloin in 80 parts of absolute alcohol.

Dose.—H. & C., 5ii-iii, (8-12); D., gr.ii-xx, (.12-1.3), in combination with other purgatives.

Preparations of Aloe.

The official preparations are numerous, but most are not applicable to veterinary practice.

Tincture Aloës et Myrrha. Tincture of Aloes and Myrrh. (U. S. P. 1905.)

Synonym.—"Elixis pro," elixir proprietas Paracelsi, E.

Made by maceration and percolation of purified aloes, 100; myrrh, 100; and liquorice root, 100; with alcohol and water to make 1000.

*Pilulæ Laxative Compositæ, U. S. P. 1905. Aloin 1.3 gm.; strychnine, 0.05 Gm.; extr. belladonna leaves, 0.8 Gm.; ipecac, 0.4 Gm.; glycyrrhiza, 4.6 Gm.; syrup q. s. to make 100 pills. Dogs.—Dose, 1 to 2 pills.

Action External.—Aloes is a slight stimulant to raw surfaces. It is absorbed from the denuded skin and thus may occasion purging.

Action Internal.—Alimentary Canal.—Aloes is first of all a purgative. In addition to this it is a bitter, and therefore small doses excite salivary and gastric secretion, together with the movements and vascularity of the stomach, and appetite. The activity of aloes in the bowels is due largely to the solvent action of bile upon it. Aloes is absorbed from the digestive tract and is eliminated by the bowels, kidneys and mammary glands. It may be excreted in sufficient quantity in the milk to create looseness of the bowels in nursing animals.

Aloes stimulates peristalsis of the large intestines, but does not notably increase the secretions of the bowels. Moreover, its action is very slow (12-36 hours). This probably happens because the drug does not act till it reaches the large intestines, locally, or through elimination. Aloes is preeminently the best purgative for horses, but does not operate so well on the other domestic animals. Epsom salt, Glauber salt or linseed oil are preferable for cattle; linseed oil or carron oil for foals and calves; and castor oil or calomel for dogs. In chronic constipation in dogs cascara sagrada, phenolphthalein and aloes are, however, effective (see below). A full dose of aloes often creates some general disturbances in horses, including nausea, slight colic, diuresis, elevation of temperature (1°-2° F.) and pulse, with purging lasting from 2 or 3 to 24 hours. Aloes also possesses anthelmintic properties because of its bitter qualities and purgative action. Socotrine aloes may be used in the official preparations, but Barbadoes aloes finds most favor in veterinary medicine, and is probably the stronger of the two. Cape aloes is a little inferior to the other varieties and is more apt to produce diuresis. Aloin and aloin lead to catharsis, whether injected under the skin, into the blood, or applied on raw surfaces. Administration by the mouth is more effective. Aloin appears to contain the active principles of aloes, and is usually as operative, but some manufactures are ineffective.

Kidneys and Sexual Organs.—Aloes causes reflex, or sympathetic irritation of the female pelvic organs in its operation on the lower bowel; is an emmenagogue, and may prove abortifacient. The drug sometimes excites diuresis.

Administration.—Aloes is given to horses in semi-solution after being
rubbed up with hot (115°-120° F.) water; or in ball. The patient should, if possible, be previously prepared by a diet of bran mashes and salt only, for 2 or 3 feedings before exhibition of the purge. An effective aloe ball is made by melting and mixing Barbadoes aloe (1 lb.) with glycerin and molasses (each 5i), and powdered ginger root (3i), on a water bath. When the mass is properly mixed it is removed from the fire and alcohol (5v) is added. The mass is poured on a layer of flaxseed meal to cool, and then is weighed into portions of 510½ each. These are rolled into balls, covered with tissue paper, and preserved in tight tin or glass vessels. Horses should not be worked after receiving aloe balls, but should be given a little walking exercise 12 hours after the administration of the dose. Colic and superpurgation may follow if the dose is repeated within 48 hours, or if large quantities of cold water or green food are allowed during the action of the cathartic. If aloe does not operate satisfactorily, it is safer to give linseed oil by the mouth and rectal injections, than to administer a second dose of aloe.

Uses External.—The tincture of aloe and myrrh is sometimes applied as a stimulant to wounds, and powdered aloe is mixed with plaster of Paris in making splints for dogs, to prevent these animals from biting and tearing them off.

Uses Internal.—Aloes is employed in the treatment of the horse, whenever an active purge is desirable, with the following exceptions: It must not be used in acute diseases of the respiratory tract lest metastasis occur, and the inflammation attack the bowels. Neither in acute inflammation of the alimentary canal nor the kidneys is it desirable; nor in intestinal obstruction or impaction of the colon. In the first two named conditions, aloe is too irritating to the organs implicated; in the two last, the drug may aggravate the trouble by the production of impotent peristaltic movements. Pregnancy contra-indicates the use of aloe, lest abortion ensue. The therapeutic scope of aloe being large, it is impossible to enumerate all the diseases in which it is useful. Perhaps this cathartic is more commonly serviceable in indigestion and spasmodic or flatulent colic.

In acute inflammatory diseases of the brain and cord aloe is often combined with calomel (3i) in ball to enhance the effect. The administration of an aloe ball is followed by that of small doses of Epsom salt (5iv) in the drinking water in the treatment of hemoglobinemia of horses, or in conditions when we wish to assist the depleting action of aloe. Turpentine is followed by aloe, or aloe is given prior to a course of iron sulphate and gentian, for the destruction of round-worms in horses.

Laxative physic ball for horses, less powerful than above.

\[\text{Pulveris aloe} \quad \text{Pulveris zingiberis.} \quad \text{Pulveris nucis vomicae.} \quad \text{Glycerin q. s.} \quad \text{Sig. Give at once.} \]

It is often taught that aloe is contraindicated in hemorrhoids, but
this teaching does not obtain unless the piles are inflamed. In piles, associated with an atonic condition, aloes may be beneficial by improving the tone of the bowels. The U. S. P. compound laxative pill is one of the best laxatives in chronic constipation of dogs and cats. Each pill contains 1/120 gr. of strychnine. Aloes may be useful in jaundice due to constipation, but in general it is inferior to salines, calomel and podophyllin in the treatment of this disorder. According to Brunton, the presence of bile in the intestines is essential for the action of aloes. Therefore the absence of bile in the bowels would forbid the use of aloes as a purgative. Laxative doses of aloes, in combination with iron, are valuable in amenorrhea, or absence of estrum, about the time that “heat” should occur.

OLEUM LINI. Linseed Oil. (U. S. & B. P.)

Synonym.— Oil of flaxseed, E.; huile de lin, Fr.; leinöl, leinsamenöl, G.

Properties.—A yellowish, oily liquid, having a peculiar odor and bland taste. When exposed to the air it gradually thickens, darkens in color, and acquires a strong odor and taste.

Spec. gr. 0.925 to 0.935. Slightly soluble in alcohol, miscible with ether, chloroform, benzin, carbon disulphide, or oil of turpentine.

Constituents.—1, linolein; 2, myristin; 3, palmitin; 4, albumin, which gives the oil its drying qualities.

Dose.—H., Oss-i, (250–500). Mild laxative, on bran mash. C., Oi-ii, (500–1000); Sh. & Sw., 5vi–xii, (180–360); D. & C., 5ss–ii, (15–60).

Action and Uses.—Linseed oil exerts a laxative, or mild purgative effect by its mechanical action in lubricating the bowels and their contents. It is suitable for horses when a derivative or depleting action is not desirable, as in fecal impaction or overloaded bowels in weak animals, and in those suffering from inflammatory diseases of the respiratory tract or digestive organs; diarrhea, dysentery, and in pregnancy. Aloes, on the other hand, would be contraindicated in these conditions. Carron oil (linseed oil and lime water, equal parts), is particularly appropriate as a remedy for “heaves” in horses (5ii–iv), and is one of the best cathartics for foals, lambs and calves (5ii–iv). The laxative and antacid properties of this preparation tend to combat intestinal fermentation which is so common in young animals with digestive disorders and diarrhea. The same qualities of carron oil prevent flatulence and interference with the already impeded breathing in “heaves” of horses.

Carron Oil.

<table>
<thead>
<tr>
<th>B</th>
<th>Olei lini.</th>
<th>S, Four tablespoonfuls 3 times daily on feed for horses with heaves; also in the same dose as a cathartic for foals or calves.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Liquoris calcis……………………………̷aa ̷5iv.</td>
<td></td>
</tr>
</tbody>
</table>

Carron oil is frequently employed on cotton cloth or gauze in burns. It was first used for this purpose in the Carron iron works. It is not so good as boric acid ointment since it is not antiseptic.

Linseed oil is frequently given to ruminants, although Epsom salt is generally the best purge for them. It is indicated for these animals
when a milder operation than that obtained by a full dose of salts is required, and for its demulcent action in irritable states of the digestive organs. Linseed oil, combined with salts, is useful in impaction of the rumen and omasum in cattle. By combining linseed oil with erotion oil we procure a potent purge for cattle. Castor oil or sweet oil is usually preferable to linseed oil in the treatment of dogs. Soap suds enemata are made more effective by the addition of 1 or 2 pints of linseed oil (for horses), and 1 or 2 ounces (for dogs). The oil may be given in its pure state, but more uncommonly is prescribed with gruel, glycerin, mucilage, or molasses. One ounce each of linseed oil and molasses may be given to the larger animals; or one dram of either to the smaller animals, as an expectorant in bronchitis. The mixture is often a most serviceable one and probably acts by improving the nutrition of the bronchial mucous membrane. Linseed oil and sweet oil resemble cod liver oil in this respect, and while both are probably inferior to the latter, as expectorants, they are more palatable and cheaper.

Oleum Ricii. Castor Oil. (U. S. & B. P.)

Synonym.—Oleum e semini ricini, huile de ricin, Fr.; ricinusöl, G.

A fixed oil obtained from the seed of Ricinus communis Linné (Fam. Euphorbiaceae).

Habitat.—India. Cultivated in many countries.

Properties.—A pale, yellowish and almost colorless, transparent, viscid fluid, having a faint, mild odor and a bland, afterwards slightly acrid, and generally nauseating taste. Spec. gr. 0.945 to 0.965. Soluble in equal volumes of alcohol, and in all proportions in absolute alcohol, or in glacial acetic acid; also soluble in three times its volume of 92.5 per cent. alcohol (absence of more than about 5 per cent. of most other fixed oils). Partly soluble in benzoin.

Constituents.—1, ricinolein, or ricinoleic acid glyceride, C₉H₅(C₆H₅O₂)₃; 2, an acid principle; 3, palmitin, stearin and myristin; 4, possibly a non-purgative alkaloid, ricin.

Dose.—H. & C., Oil, (500); Sh. & Sw., 5ii-iv, (60-120); D. & Cats, 3i-ii, (30-60); poultry, 5i, (4).

Castor Oil Seeds.—These are not official. The name Ricinus is applied to the plant because of the resemblance of the seed to a ricinus, or tick. The seeds: are of a shiny, gray color, marked with brownish spots and streaks. They are about the size of small beans (17 mm. x 8 mm.), ovoid, flattened, and white inside. They contain 50 per cent. of oil, and an acrid, poisonous substance, a toxalbumin, ricin. Three seeds have caused death in man, and they are ten times more purgative than the oil.

Action and Uses.—Castor oil closely resembles olive oil save that when saponified ricinoleic, instead of oleic, acid is formed. In the intestines the oil is decomposed into its component parts—fatty acids, glycerin and ricinoleic acid—by the bile and pancreatic juice, and the ricinoleic acid is further changed to ricinoleates (soaps, as sodium ricinoleate), which are irritant and therefore cause purgation. Much of the castor oil is absorbed like other oils and in China castor oil is even used for food. Castor oil is mild, but has a more decided purgative action than linseed oil and often occasions gripping. It acts within 4 or 5 hours in dogs, and will purge when absorbed from the skin or rectum. Castor oil is specially applicable in canine practice, to unload the bowels, and in irritated conditions of the digestive tract. It is useful in constipation only as an occasional remedy since it is followed by greater tendency to this condition, but small doses (D., 3i) are sometimes given daily in chronic con-
stipation. It is also indicated in overloaded bowels, indigestion, diarrhea, and pregnancy; after the ingestion of foreign or putrid matters; and to assist the action of antihelmintics. Castor oil is inferior to linseed oil for horses, as a simple laxative, because it is more prone to cause colicky pains, and because it is more expensive. Castor oil is notably useful in irritation and inflammation of the intestines in young animals, however, as in diarrhea, dysentery, and enteritis; diarrhea from distemper in dogs; retained meconium in foals and calves; and can be combined with anodynes and antispasmodics to prevent griping. Two or three ounces of castor oil are suitable for calves or foals with gastro-intestinal disorders. One or two teaspoonfuls are suitable for poultry.

Administration.—Castor oil is given to dogs with syrupus rhamni cathartici in the proportion of 1 ounce of the former to 1 dram of the latter; or with glycerin (equal parts) and a few drops of oil of wintergreen. It is administered to puppies (3i-ii) with an equal volume of sweet oil. The soft gelatine capsules, containing 5ss-i, are most convenient and palatable in giving castor oil to small dogs. Castor oil may be exhibited to horses with oil of peppermint (Mxx); or in digestive irritation, in warm cooked flour gruel with laudanum (5ss) and fluidextract belladonna (5i); to foals and calves with mucilage or gruel and 5 drops of oil of peppermint.

In diarrhea in foals and calves.

B.
Olei ricini.. 3iii.
Tincturae opii.. 5i.
Olei menthae piperitae................................... Mv.

M.
Sig. Give at once in a pint of warm cooked flour gruel.

Purge for large dog.

B.
Olei ricini.
Glycerini .. 3iss.
Olei cinnamomii.. Mii.

M.
Sig. Give at one dose.

Cascara Sagrada. (U. S. & B. P.)

Synonym.—Rhamnus purshiana, California buckthorn, sacred bark, chittem bark.

The dried bark of the trunk and branches of Rhamnus Purshiana de Candolle (Fam. Rhamnaceae).

Habitat.—United States from northern Idaho west to Pacific Ocean.

Description.—Usually in flattened or transversely curved pieces, occasionally in quills; bark from 1 to 5 mm. in thickness; outer surface dark brown or brownish-red, longitudinally ridged, often nearly covered with grayish or whitish lichens; inner surface yellowish to light brownish, becoming dark brown with age; odor distinct; taste disagreeable, bitter and slightly acrid.

Constituents.—1, a glucoside, cascarin or frangulin (see below); 2, three resins; 3, a volatile oil; 4, malic and tannic acids.

Dose.—D., gr.v-xxx, (3-2).

Preparations.

Fluidextractum Cascara Sagradae. Fluidextract of Cascara Sagrada.

Made by maceration and percolation with diluted alcohol, and evaporation, so that 1 ml=1 Gm. of the crude drug. (U. S. P.)

Dose.—D., m lv-xxx, (3-2).
Fluidextractum Cascara Sagrada Aromaticum. (U. S. P.)

Dose. — m\(_v\)-xxx, (3-2).

Extractum Cascara Sagrada Liquidum. (B. P.)

Dose. — D., m\(_v\)-xxx, (3-2).

Extractum Cascara Sagradae. (U. S. & B. P.)

Dose. — D., gr. il-vii, (.12-.5).

Syrupus Cascara Sagradae Aromaticus. (B. P.)

Dose. — D., 5ss-ii, (2-8).

Frangula. Frangula. (U. S. P.)

Synonym. — Rhamni frangulae cortex, B. P.; buckthorn, alder buckthorn, black alder, E.; écôre de bourdaine (bourgènè), Fr.; faulbaumrinde, G.; cortex fragulae, P. G.

The dried bark of Rhamnus Frangula Linné (Fam. Rhamnaceae).

Habitat. — Europe and northern Asia.

Description. — In quills varying in length, frequently flattened or crushed; from 0.5 to 1 mm. in thickness; outer surface grayish-brown or purplish-black; odor distinctive; taste slightly bitter.

Constituents. — 1, a glucoside, frangulin (C\(_{15}\)H\(_{14}\)O\(_{6}\)), converted in time into (2) emodin (C\(_{15}\)H\(_{14}\)O\(_{6}\)), a glucoside, to which the drug owes its purgative action. Frangulin also yields emodin, a constituent of rhubarb as well, and rhamnose (C\(_{6}\)H\(_{12}\)O\(_{5}\)), by hydrolysis.

Dose. — D., 5ss-i, (2-4).

Preparations.

Fluidextractum Frangulae. Fluid Extract of Frangula. (U. S. P.)

Made by maceration and percolation with alcohol and water, and evaporation, so that 1 ml of the preparation = 1 Gm. of the crude drug.

Dose. — D., 5ss-i, (2-4).

Actions and Uses. — The buckthorns are laxatives in the doses employed in medicine. The fresh bark of R. frangula produces violent gastrointestinal (frangulin), and the same effect is produced by the bark of cascara sagrada, so that both should be kept a year before using.

Frangula is rarely employed, but cascara sagrada is one of the best purgatives for chronic constipation in dogs, acting in 10 or 12 hours. The dose does not require to be increased on repetition. On the contrary, the tone of the bowels is improved by the drug. It has a very bitter taste and is apt to cause griping so that cascara is commonly given with aromatics. Fluidextractum Cascareae Sagradæ Aromaticum (U. S. P.), Syrupus Cascareae Sagradæ Aromaticus (B. P.), are the best preparations. The aromatic syrup of cascara sagrada may be prescribed to advantage with an ounce or two of castor oil, as an occasional purgative for dogs. Pills of extract of cascara sagrada are kept in stock by druggists, one of the most convenient forms for dogs. A syrup of purging buckthorn (Rhamnus catharticus) D., 5i-ii; Cats, 3ss-i, is also occasionally given dogs and cats with castor oil.

Phenolphthaleinum. Phenolphthalein. C\(_{20}\)H\(_{14}\)O\(_{6}\). (U. S. P.)

Is made from phenol, phthalic anhydride and sulphuric acid by the action of heat. It occurs in white, or faintly yellowish-white crystalline powder. It is tasteless and odorless, and soluble in 600 parts of water, in 18 parts of alcohol, and in solutions of hydroxides and carbonates. Its solutions in acids are colorless but with alkales turn red. It is used in chemistry as an indicator of acidity or alkalinity. It does not apparently have any other physiological effect than that of a peristaltic stimulant and is especially indicated in habitual constipation, producing watery movements. It does not cause griping, produces no bad effect on the system even when used over long periods of time, and is non-toxic in
enormous doses. It is sometimes prescribed with aloe's. Phenolphthalein is eliminated chiefly by the intestines. Phenolphthalein is eliminated chiefly by the intestines. Phenolphthalein is eliminated chiefly by the intestines.

Dose.—H., 5i-ii, (4-6); dogs, gr.ii-x, (0.12-0.6); puppies and cats, gr.ssi, (0.03-0.12).

Phenolphthalein may be given to horses with food. To dogs and cats it is given in capsule, or tablets with chocolate (Thaletts, Mulford), or in pill with aloe's, strychnine, belladonna and cascara (Phenalos, Mulford).

RHEUM. Rhubarb. (U. S. P.)

Synonym.—Rhei radix, B. P.; rhubarbe, Fr.; rhubarber, G.

The rhizome and roots of *Rheum officinale* Baillon, *Rheum palmatum* Linné, and the var. *tanguticum* Maximowicz (Fam. Polygonaceae), or probably other species of *Rheum*, grown in China and Thibet, deprived of most of the bark and carefully dried.

Description.—In sub-cylindrical, barrel-shaped, or conical pieces known in commerce as "rounds," or in plano-convex pieces known in commerce as "flats," or in irregularly formed pieces, frequently with perforations. It is hard and moderately heavy; attaining a length of 17 cm. and a diameter of 10 cm., often cut in pieces of variable form and size; outer surfaces yellowish-brown, mottled, with alternating, longitudinal striae of grayish-white parenchyma and reddish or brownish medullary rays; odor aromatic, characteristic; taste characteristic, slightly bitter and astringent, gritty when chewed and tingeing the saliva yellow.

The powder is bright orange-yellow to yellowish-brown; becoming red with alkalies; when examined under the microscope it exhibits calcium oxalate.

Constituents.—1, the purgative principle which gives the yellow color, a glucoside, chrysoarbin (C₉H₆O₂), yields 2-3 per cent. of chrysophanic acid (C₁₆H₁₄O₅), also called rhei or chrysophan; 2, rheotannic acid (C₃₀H₂₃O₇), which gives astringency to rhubarb; 3, calcium oxalate (35 per cent.), causing grittiness; 4, resinous bodies: phæoretin, emodin, aperetin and erythroretin. Chrysophanic acid and the resins are somewhat purgative, but the exact purgative principles have yet to be discovered.

Dose.—Stomachic—H. & C, 5i-ii, (30-60); Sh., 5i, (4); D. & Cats, gr.v-x, (3-6).

Mild Purgative.—Foals and Calves, 5i-ii, (4-8); D., 5i-ii, (4-8). Fowl, gr.v-vii in pill.

PREPARATIONS.

Fluidextractum Rhei. Fluidextract of Rhubarb. (U. S. P.)

Made by maceration and percolation with alcohol and water, and evaporation, so that 1 ml=1 Gm. of the crude drug.

Dose.—Same as that of rhubarb.

Pulvis Rhei Compositus. Compound Powder of Rhubarb. (U. S. & B. P.)

Synonym.—Gregory's powder. Rhubarb, 25; magnesium oxide, 65; ginger, 10.

Dose.—Foals and Calves, 5ss-i, (15-30).

Extractum Rhei. Extract of Rhubarb. (U. S. & B. P.)

Dose.—D., gr.v-x, (3-6).

There are many other official preparations, but they possess no value in veterinary medicine.

Action Internal.—***Alimentary Canal.***—Rhubarb is a bitter, and therefore in small doses improves digestion in all animals by increasing the flow of salivary and gastric juices, and by stimulating the appetite, vascularitiy, and movements of the stomach. It is called a stomachic and bitter tonic. Larger doses cause mild purgation in the case of dogs and cats, but horses and cattle are but slightly affected in this way. The activity of rhubarb is partly due to the solvent action of bile. It is commonly described as an agent which stimulates peristaltic action, but it is not certainly known how purging is brought about. Secondary constipation is more apt to follow the use of rhubarb than other drugs, because of rheotannic acid. This substance may be absorbed and eliminated into
the bowels after the occurrence of purgation. Rhubarb, by virtue of chrysophanic acid, stains the feces, urine, milk and sweat yellow in its excretion.

Uses.—Rhubarb is an efficient laxative remedy for the treatment of indigestion in young animals associated with diarrhea. In this condition it sweeps out the source of irritation and then exerts an astringent effect. The drug often acts most favorably with an antacid in the disorders noted. Gregory's powder is useful in the care of foals, calves and lambs with diarrhea. The fluidextract may be given to dogs, but rhubarb is not so generally useful a purgative for these animals as castor oil, calomel, caseara sagrada, phenolphthalein, or compound laxative pills. Rhubarb has been recommended when a laxative is desirable, in cases of hemorroides, to improve local tone, and also as a purgative in diarrhea of young animals due to worms.

Diarrhea in Foals and Calves.

\[\text{Sig.} 1 \text{ tablespoonful in milk 3 times daily.} \]

Diarrhea in dogs.

\[\text{Sig.} \]

Olei ricini.

\[\text{Syrupi rhei aromatici} \]

\[\text{Sig. Give at once in one dose.} \]

One or two drops of the tincture of rhubarb in the drinking water form a serviceable laxative for small birds.

Chrysarobinum. Chrysarobin. \(C_9H_8O_4 \). (U. S. & B. P.)

Synonym.—Chrysarobine, Fr.; araroba depurata, G.

A neutral principle, extracted from Goa powder, a substance found deposited in the wood of Vouacapoua Araroba (Aguiar) Druce (nat. ord. Leguminosae).

Habitat.—Brazil.

Properties.—A pale orange-yellow, microcrystalline powder, odorless and tasteless; turning brownish-yellow on exposure to the air. Very slightly soluble in cold water or alcohol. Soluble in chloroform and solutions of alkalies.

It is oxidized into chrysophanic acid (\(C_{15}H_8O_3 \)), and glucose.

Preparation.

Unguentum Chrysarobinii. Chrysarobin Ointment. (U. S. & B. P.)

Chrysarobin, 6; benzonlated lard, 94. (U. S.)

Action and Uses.—Chrysarobin is a powerful irritant to the skin and destroys parasites. It stains the skin and other materials dark brown. This may be removed, unless fixed by an alkali, with a weak solution of chlorinated lime or caustic soda. Chrysarobin is also a strong irritant in the gastro-intestinal tract, causing vomiting and purging in carnivora. It is eliminated by the kidneys, coloring the urine yellow.

Chrysarobin is used as a parasiticide in the treatment of ringworm, and as a stimulant to the skin in chronic cutaneous disorders, particularly psoriasis and eczema (with much itching and scaling), and in alopecia areata. The official 5 per cent. ointment should be diluted 2 or 3 times for delicate skins. It should be applied over a large area with care, but is one of the most efficient remedies in obstinate diseases of the skin. In
psoriasis the following ointment is useful after the scales have been washed off:

B

Chrysarobini ... 5i.
Aetheris.
Alcoholis .. q. s. ft. sol.
Collodii .. 5ii.

M.

Sig. Apply with brush to skin.

SENA. **Senna.**

Synonym.—Senna Alexandrina, senna Indica, B. P.; senna leaves, E.; folia sennae, P. G.; feuilles de sénè, Fr.; sennesblätter, G.

The dried leaflets of _Cassia acutifolia_ Delile, known in commerce as Alexandria senna, or of _Cassia angustifolia_ Vahl, known in commerce as India senna (Fam. _Leguminosae_).

Description.—Alexandria Senna—Usually unbroken, occasionally in fragments, leaflets inequilaterally lanceolate or lance-ovate, from 2 to 3.5 cm. in length and from 6 to 10 mm. in breadth, having extremely short, stout petiolules; acutely cuspidate, entire, subcoriaceous, brittle, pale green or gravish-green, sparsely and obscurely hairy, especially beneath, the hairs pressed; odor characteristic, taste somewhat mucilaginous and bitter.

Pods few, broadly elliptical, somewhat reniform, dark green, thin and membranous.

India Senna.—Leaflets usually unbroken, from 2 to 5 cm. in length and from 6 to 14 mm. in breadth, usually more abruptly pointed than those of Alexandria senna, yellowish-green and smooth above, paler beneath; in odor and taste closely resembling Alexandria senna.

Pods few, elliptical, more or less reniform and from 4 to 5 cm. in length.

Powdered Alexandria senna is light green.

Habitat.—Alexandria Senna.—Upper Egypt, Nubia, and Central Africa.

Indian Senna, or Tinnucelly Senna.—Eastern Africa to India.

Constituents.—1, the purgative properties are chiefly due to magnesium and calcium cathartates; salts of cathartin (C_{15}H_{102}N_{8}SO_{4}), a black, amorphous sulphurated glucoside; 2, two glucosides, sennaol and sennapinol, insoluble in water; 3, chrysophanic acid; 4, cathartomannit (C_{9}H_{40}O_{4}), an unfermentable sugar; 5, emodin.

Dose.—H. & C., 5i-v, (120-150); Sh. & Sw., 5i-ii (30-60); D. & C., 5i-iv (4-15); fowl, gr.xv-xx in pills.

PREPARATIONS.

Fluidextractum Senna. Fluidextract of Senna. (U. S. P.)

Made by maceration and percolation with diluted alcohol, and evaporation, so that 1 mil=1 Gm. of the crude drug.

Dose.—Same as senna.

Pulvis Glycyrrhiza Compositus. Compound Powder of Glycyrrhiza.

(U. S. & B. P.)

Synonym.—Compound liquorice powder.

Senna, 180; glycyrrhiza, 236; washed sulphur, 80; oil of fennel, 4; sugar, 500.

Dose.—D., 5ss-ii (2-8).

Syrupus Senna. (U. S. & B. P.)

Dose.—D., 5i-iv (4-15).

Action Internal.—Senna stimulates and increases the vascularity of the intestinal mucous membrane, and causes increased peristalsis of the large intestines, particularly of the colon. It produces copious pale-yellow and watery evacuations. The drug has a nauseous taste and purging is accompanied by some griping and flatulence. Senna acts more satisfactorily when combined with other purgative agents. It is absorbed
and will occasion catharsis in sucklings after administration to their mothers, and after intravenous injection. The urine may be colored red or yellow by its elimination. It is extremely doubtful if senna exerts any influence on biliary secretion.

Uses.—Senna is but rarely employed in veterinary medicine. It may be used where a simple, vigorous cathartic is indicated in constipation, or in cases of slight fecal accumulation.

The drug acts more effectively when given in conjunction with salts. The fluidextract, or an infusion made by pouring boiling water over the leaves and allowing them to macerate until the water becomes cold, is added to solutions of magnesium sulphate. This combination is more suitable for cattle or sheep. The syrup or compound liquorice powder may be given to dogs as a simple purgative in occasional or habitual constipation.

Class 2.—Drastic Purgatives

Oleum Tiglii. Croton Oil. (U. S. P.)

Synonym.—Oleum crotonis, B. P.; huile de croton tiglium, Fr.; krotonoil, G.

A fixed oil expressed from the seed of Croton Tiglium Linné (nat. ord. Euphorbiaceæ).

Habitat.—India, Indian Archipelago, and Philippine Islands. Also cultivated.

Properties.—A pale yellow or brownish-yellow, somewhat viscid, and somewhat fluorescent liquid, having a slight characteristic odor, and a mild, oily, afterwards burning and acrid taste (great caution is necessary in tasting). Spec. gr. 0.935 to 0.950. When fresh it is soluble in about 60 parts of alcohol, the solubility increasing by age. It is freely soluble in ether, chloroform, carbon disulphide, and in fixed and volatile oils.

Constituents.—1, crotonoleic acid (C₈H₁₀O₄), the purgative principle. A slight amount is free in the oil but it is mostly formed in the bowels. It resembles ricinoleic acid in its chemistry; 2, crotonol (C₄H₅O₂), a non-purgative body causing irritation of the skin; 3, tiglinic acid (C₁₅H₂₀O₄), and many volatile acids existing as glycerides and accounting for the odor of croton oil; 4, free and combined fatty acids.

Dose.—H., m₅xv-xxx, (1-2); C., 5ss-iii, (2-4); Sh. & Sw., m₅v-x, (3-6); D., m₅ss-iii (.08-.18).

Croton seeds resemble castor seeds in size, but are not mottled or shiny. They are 13 mm. long by 8 mm. wide; oval in shape; white within, and possessing a mild, mucilaginous taste at first, but soon becoming hot and sharp. They contain from 50 to 60 per cent. of croton oil and a toxalbumin, crotin, which is, however, less poisonous than the toxalbumin of castor oil seeds, ricin.

Action External.—Croton oil is a most powerful irritant, causing pain, redness and swelling of the skin, soon followed by vesicles and pustules. Permanent destruction of the hair follicles succeeds with loss of hair and cicatrices. When applied to the skin, injected into the blood or under the skin, it is eliminated to some extent by the bowels, producing purging; and sometimes by the kidneys, creating diuresis, irritation of these organs and strangury.

Action Internal.—The acrid, irritant, purgative principle of croton oil is crotonoleic acid. Some already exists free in the oil while more is formed by saponification or decomposition of the oil in the bile and alkaline juices of the bowels into crotonoleic acid and glycerin. Croton oil is an intense internal irritant. It increases the vascularity of the stomach and bowels and in large doses creates gastro-enteritis. Medicinal doses
notably augment the intestinal secretions—but not that of bile—and to a
degree peristalsis. The drug may act in half an hour, but usually within
a few hours, and purgation is attended with colicky pain and griping.
The movements are very fluid and sometimes contain blood. Croton oil
is therefore a drastic hydragogue cathartic. The purgative action is
probably due in part to direct irritation of the intestinal mucous mem-
brane; in part to absorption and elimination of the purgative principle
by the bowels.

Toxicology.—Ten drops of croton oil will kill a dog unless vomiting
occurs. Eight to thirty drops prove fatal to a horse, intravenously. The
treatment of poisoning includes the use of emetics or stomach tube, de-
mulcents and opium.

Administration.—Croton oil may be placed on the tongue of an un-
conscious animal, in a small quantity of linseed oil, olive oil, or lard. The
oil can also be given in enema with a pint of linseed oil. It may be ex-
hibited to dogs in pill, castor oil, or rubbed up with a little butter and
smeared on the back of the tongue. Croton oil (in a pint of linseed oil)
is valuable in assisting the action of salts in obstinate constipation of
cattle. It may be administered to horses (&frac10;X), when a powerful deriva-
tive and purgative action is indicated, as in acute inflammation of the
brain and cord, with calomel and aloe in ball.

Uses External.—Croton oil is ordinarily superseded by milder coun-
ter-irritants, as turpentine, mustard, or stimulating liniments; but it may
be employed so as to secure any degree of irritation according to its
strength. It is occasionally used for horses in acute diseases of the brain,
applied around the poll and on the back of the neck; 1 part (20-30ml),
with 30 parts each of oil of turpentine and linseed oil; in acute disorders
of the chest (10-15ml on either side) and abdomen (40ml), similarly
diluted.

Absorption, purging and revulsant action may be secured by the
external application of croton oil. Croton oil is more often employed in
cattle (1-6 or 10, with cod liver oil) for its counter-irritant effect when
rubbed into the skin, as in laryngitis, glandular enlargement, and rheu-
matic joints. It is less likely to cause severe inflammation and blemish-
ing than in horses. For swine, croton oil is diluted with 2 volumes of
linseed or cod liver oil.

Uses Internal.—Croton oil is more suitable as a drastic cathartic for
cattle, than for horses. It is prescribed in obstinate constipation (not of
organic origin) when other remedies fail, and in impaction of the omasum.
Also in unconscious conditions where its small bulk will allow of its
exhibition. Again, for its derivative and rapid effect in cerebral conges-
tion, parturient apoplexy, etc. Croton oil may be given to dogs and pigs
in similar conditions. The oil is too irritant for horses to justify its use
save in exceptional cases.

For Cattle.

\[\begin{align*}
\text{M.} & \\
\text{S.} & \text{Give at one dose in drench.}
\end{align*}\]
For Horses.

R

Hydraryri chloridi mitis. 5i.
Olei tiglīi. 5i.v.
Pulveris aloes. 5v.
M. et flat bolus No. 1.
S. Give at once.

Blisters for Cattle.

R

Olei tiglīi 5i.
Olei terebinthīnāe 3ii.
Petrolāti 5ii.
M.
S. Externos use with friction.

Scammonia Radix. Scammony Root. (U. S. P.)

Synonym.—Scammoniē, Fr.; scammonium, G.
The dried root of Convolvulus Scammonia Linnaé (Fam. Convolvulaceae), yielding not less than 8 per cent. of total resins.

Description.—Cylindrical, tapering, from 10 to 25 cm. in length, and from 1 to 4.5 cm. in thickness; externally grayish to reddish brown. The powder is light, grayish brown.

Constituents.—1, a resin (80-95 per cent.); 2, gum; 3, starch.

Dose.—D., 5i-ii, (4-8); Cats, 3ss-i, (2-4); Sw., 3ii-iv (8-15).

Preparation.

Resina Scammonii. Resin of Scammony. (U. S. P.)

Scammonia Resina. (B. P.)

Derivation.—Made by maceration and percolation with alcohol, distillation to remove the excess of alcohol, and precipitation in water.

Properties.—Yellowish to brown masses or fragments, breaking with a resinous glassy fracture; translucent at the edges; or a yellowish-gray to yellowish-brown powder, having a slight, peculiar odor, and a somewhat acrid taste. Soluble in alcohol, ether, and insoluble in fixed and volatile oils.

Constituents.—Mainly scammonin (C₁₃₄H₂₅₂O₁₂), identical with jalapin.

Dose.—One-half that of scammony.

Synonym.—Tubera jalapae, P. G.; jalap tubicreux, Fr.; jalape, jalapenknollen, G.
The dried tuberous root of Exogonium Purga (Wendroth) Bentham (Fam. Convolvulaceae), yielding not less than 7 per cent. of total resins of jalap.

Habitat.—Mexico.

Description.—Fusiform, irregularly ovoid or pyriform, upper end more or less rounded, lower end slightly tapering, the large roots often incised or cut into pieces; from 4 to 15 cm. in length and from 12 to 60 mm. in diameter; externally dark brown, longitudinally wrinkled or furrowed and with numerous lenticels; odor slight but distinctive, smoky; taste somewhat sweet and acrid.

The powder is light brown.

Constituents.—1, a hard resin (7-22%), chiefly the glucoside jalapurgin (C₃₂H₆₀₂O₁₂); 2, a soft resin.

Dose.—D., 5i-ii, (4-8); Cats, 3ss-i, (2-4); Sw., 3ii-iv, (8-15).

Preparations.

Pulvis Jalap Compositus. (U. S. & B. P.)

Jalap, 35; potassium bitartrate, 65. Dose.—D., gr.xv-lx.

Derivation.—Made by maceration and percolation with alcohol, partial distillation; precipitation with water; washing and drying.

Properties.—Yellow to brown masses or fragments, breaking with a resinous, glossy fracture, translucent at the edges, or a yellowish-gray or yellowish-brown powder, having a slight, peculiar odor, and a somewhat acrid taste. Permanent
in the air. Soluble in alcohol; insoluble in carbon disulphide, benzene, and fixed and volatile oils. Not more than 10 per cent. of it is soluble in ether.

Constituents.—1, jalapurgin or convolvulin \(\text{C}_{36}\text{H}_{30}\text{O}_{23} \); the most active principle; insoluble in ether; 2, jalapin, identical with scammonin; 3, starch or gum.

Dose.—One-quarter that of jalap.

Action of Scammony and Jalap.

Scammony and jalap are powerful hydragogue cathartics in their action on swine, dogs and cats. Horses and cattle are but slightly affected by them in ordinary doses. Their resins are dissolved by the bile in the duodenum, and a purgative substance is formed which chiefly stimulates the intestinal glands and causes a copious outpouring of secretion.

Both drugs excite peristaltic action and increase the vascularity of the intestinal mucous membrane, particularly scammony, so that griping may occur. They produce gastrointestinal irritation, with vomiting and purging, in animals capable of the act, after large doses. While jalap and scammony are active purgatives, they are not always certain, and are therefore more frequently employed in combination with other cathartics. They are indirectly cholagogue—like calomel—in sweeping out bile from the small intestines and preventing its reabsorption, and are said to be anthelmintics as well. The active principles of both drugs are absorbed, as death has taken place in an infant after exhibition of scammony to its nurse, and purging has followed the rubbing of jalap into the shaven skin of dogs.

Uses.—Jalap is in more common use than scammony because it is somewhat more of a hydragogue and less prone to cause griping. It is particularly indicated in dropsy or ascites of dogs, made into pills with calomel.

Dropsy in dogs.

\[R \]

Resinæ jalapæ .. gr. xx.
Hydrargyi chloridi nitris gr. iii.
M. et divide in capsulas No. ii.
S. Give 2 capsules at one dose.

Jalap may also be given to expel round or thread worms; in torpidity of the liver; and in obstinate constipation in dogs. The latter is treated more satisfactorily by massage, rectal enemata, manual evacuation and repeated doses of liquid petrolatum.

Cambogia. Gamboge. (B. P.)

Synonym.—Gutti, P. G.; gutte, gomme-gutte, Fr.; gummigut, gutti, G.

A gum-resin obtained from Garcinia Hanburii Hooker filius (nat. ord. Guttiferae).

Habitat.—Siam, Anam, and Camboja.

Properties.—In cylindrical pieces, usually hollow in the centre, of variable length, 2 to 5 cm. in diameter, externally grayish orange-brown, longitudinally striate; fracture conchoidal, orange-red, waxy, and somewhat porous; inodorous; taste very acrid.

Powder bright yellow, sternutatory, containing few or no starch grains. Not more than 25 per cent. should be insoluble in alcohol; ash not more than 3 per cent.
Constituents.—1, gambogic acid, a bright yellow or orange-red resin, to the extent of about 75 per cent. of the crude drug; it is not so active as the crude drug; 2, a soluble gum.

Dose.—H., 5ss-i, (15-30); C., 5i-iss, (30-45); Sh. & Sw., gr.xx-5i, (1.3-4); D., gr.v-xi, (.3-.6).

Action and Uses.—Gamboge is a drastic, hydragogue purgative, and slightly diuretic. Its action is uncertain and often violent, with production of griping pains. Large doses cause vomiting in carnivora and omnivora, and gastro-enteritis in all animals.

Gamboge is dissolved by the bile and alkaline intestinal juices and some of it is absorbed, since it colors the urine yellow in its elimination and occasions diuresis. Attempts to create catharsis by injection of gamboge into the blood, have proved futile. Gamboge should never be prescribed alone and is rarely used in veterinary medicine. It has been recommended in obstinate constipation, indigestion, impaction of the third stomach, and cerebral diseases of cattle, combined with salts, or rubbed up with water and an equal amount of aloes (aa1/2). The gum forms an emulsion when the drug is triturated with water.

Purge for Cattle.

\[
\begin{align*}
\text{Re} & \quad \text{Pulveris cambogiae} & \quad 3i. \\
\text{Sodium sulphatis} & \\
\text{Sodium chloridii} & \quad \text{a} \quad \text{lbss.} \\
\text{Aqua} & \quad \text{Oii.}
\end{align*}
\]

M.

S. Give at one dose.

Colocynthis. Colocynth. (U. S. P.)

Synonym.—Colocynthidis pulpa, B. P.; bitter apple, gourd, or cucumber, E.; coloquinte, Fr.; keloquinthen, G.

Habitat.—A vine growing in North and South Africa, South and West Asia, and Japan, etc.

Description.—Fruits, before the removal of the seeds, nearly globular, from 4 to 7 cm. in diameter, usually more or less crushed and in broken pieces, with occasional patches of the nearly smooth epicarp; yellowish-white or brownish; light, spongy; odor slight; taste intensely bitter.

The powder is yellowish-white or buff.

Constituents.—1, the chief purgative principle is colocynthin \((C_{36}H_{58}O_{22})\), 1-2 per cent. An amorphous or crystalline bitter glucoside. Soluble in water and alcohol. There is also (2) an insoluble, resinous body called colocolchitin, colocynthin or citrullin.

Dose.—Colocynthin.—H., 5ss-i, (2-4); D., gr.1/4-i, (.015-.06).

Colocynth.—D., gr.ii-iii, (.12-.18).

Elaterinum. Elaterin. \(C_{36}H_{58}O_{22}\). (U. S. & B. P.)

Synonym.—Elaterinae, Fr.; elaterin, G.

A neutral principle obtained from elaterium (wild or squirting cucumber), a substance deposited by the juice of the fruit of Ecballium Elaterium (Linné) A. Richard (nat. ord. Cucurbitacæ).

Habitat.—Elaterium grows in North Africa, West Asia and Southern Europe. It is also cultivated.

Derivation.—Elaterium is exhausted with chloroform. Ether is added and elaterin is precipitated and is purified by redissolving in chloroform and crystallizing.
Properties.—Minute, white, hexagonal scales, or prismatic crystals, without odor, and having a slight, acrid, bitter taste. Insoluble in water; soluble in 325 parts of alcohol; also soluble in 450 parts of ether, or in 15.5 parts of chloroform. Permanent in the air.

Dose.—D., gr. 1/20-1/12 (.003-.005).

Actions and Uses of Colocynth and Elaterin.

The action of colocynth and elaterin is similar in man, but the latter is more powerful. Both greatly increase secretions while they stimulate peristalsis in some degree. Large doses cause painful griping, gastrointestinal inflammation, excessive watery purging, and collapse. Elaterin frequently fails to purge horses and dogs, although death may follow large doses. Colocynth acts more certainly in the lower animals and is recommended by P. Cagny in dropsy and cerebral disease. Neither drug, however, is of any importance in veterinary medicine. Colocynth is contained in the compound cathartic pill given to dogs in doses of from one to three pills.

Podophyllum. Podophyllum.

Synonym.—Podophyli rhizoma, B. P.; May apple, mandrake root, E.; rhizome de podophyllum, Fr.; fussblattwurzel, G.

The dried rhizome and roots of Podophyllum peltatum Linné (Fam. Berberidaceae), yielding not less than 3 per cent. of resin.

Habitat.—North America.

Description.—Rhizome horizontal, nearly cylindrical, jointed, compressed on the upper and lower surfaces, sometimes branched; in pieces from 3 to 20 cm. in length, the internodes from 2 to 9 mm. in diameter; externally dark brown, longitudinally wrinkled or nearly smooth with irregular, somewhat V-shaped scars of scale leaves; odor slight, more pronounced and characteristic in the powder; taste sweetish and disagreeably bitter and acrid.

Constituents.—1, a resin, podophyllin (4-5 per cent.); 2, a coloring matter, podophylic acid.

Preparation.

Resina Podophylli. Resin of Podophyllum. (U. S. & B. P.)

Synonym.—Podophyllin.

Derivation.—Made by maceration and percolation of podophyllum with alcohol; partial evaporation, and precipitation of the resin with diluted hydrochloric acid; washing with water, drying.

Properties.—An amorphous powder, varying in color from light brown to greenish-yellow, turning darker when subjected to a temperature exceeding 25° C., or when exposed to light. It has a slight, peculiar odor, and a faintly bitter taste, Permanent in the air. Soluble in alcohol and partly soluble in ether and chloroform.

Constituents.—Chiefly podophyllotoxin ($\text{C}_{23}\text{H}_{22}\text{O}_{11}+2\text{H}_{2}\text{O}$), stated to be a mixture of a purgative principle, picropodophyllin, and an inert body, podophyllinic acid, associated with a coloring matter, podophyllouercitin, and other resins.

Dose.—H. & C., 3i-ii, (4-8); D., gr. $\frac{1}{12}$, (.006-.06).

Dose.—D., 1 pill.

Action.—Podophyllin is a powerful though slow acting cathartic. Podophyllotoxin when given in large doses under the skin or into a vein causes glomerular nephritis and hemorrhages into various organs. Large doses cause purging and vomiting in animals, and lethal quantities occasion gastro-enteritis, colic, super-purgation, with bloody fecal evacuations, convulsions and death. It acts in the same way whether it is applied externally, injected into the blood, or given internally. Podo-
phyllin must therefore exert its effect after absorption, during excretion from the bowel, and about ten hours are required to produce purgation. The action is exerted mainly on the duodenum, which is intensely inflamed and even ulcerated in poisoning. Podophyllin owes its activity partly to the presence of bile, which seems to be a solvent for it. It is probable that the intestinal secretions are somewhat augmented. The fecal movements, after medicinal doses of podophyllin, are liquid, often stained with bile, and may be accompanied by some nausea and griping. Since podophyllin is an uncertain purgative, affecting different patients unequally, it should be combined with other agents when a purgative action is desired; preferably calomel and aloes. The time required for the action of these drugs is nearly the same as that necessary for podophyllin. Podophyllin is often regarded as essentially a cholagogue, but there is no sufficient evidence to warrant this assumption.

Laxative pill for dogs.

\[\text{Resinæ podophylli} \quad \text{gr. i.}
\]

\[\text{Hydrargyri chloridi mitis} \quad \text{gr. x.}
\]

\[\text{Aloini} \quad \text{gr. lxxi.}
\]

M. et fiant pilulae No. x.

S. One pill at night.

Administration.—Podophyllin should be given to dogs in pills; to horses in ball with calomel and aloes, if purgation is desired; or dissolved in liquor potassæ and diluted with water.

Uses.—Podophyllin, clinically, appears to be particularly useful in chronic constipation associated with jaundice and hepatic disorders. The result of its action is said to be more favorable when the fecal discharges are dark colored, whereas calomel is more successful if the evacuations are of a light hue.

SECTION XII.—TANNIC ACID, AND DRUGS CONTAINING IT.

GALLA. Nutgall. (U. S. & B. P.)

Synonym.—Galls, E.; gallæ, P. G.; noix de galle, galle de chêne, Fr.; gallipfel, G.

Excrescences on the young twigs of Quercus infectoria Olivier and other allied species of Quercus (Fam. Fagaceæ), induced by the punctures on the leaf-buds and by the deposited ova of Cynips tinctoria Hartig (Order Hymenoptera). Not more than 5 per cent. of galls float in water.

Habitat.—Levant.

Description.—Nearly globular, from 0.8 to 2.2 cm. in diameter; externally blackish-olive-green or blackish-gray; heavy, sinking in water, excepting the smaller galls; internally grayish or dark brown, consisting of a central portion slightly radiating and resinous, occasionally hollow and traversed by a narrow radial canal extending to the exterior as shown by the perforation in the whole gall; odor slight; taste strongly astringent.

Constituents.—1, (gallo) tannic acid, 60 per cent.; 2, gallic acid, 2-3 per cent.; 3, sugar; 4, resin.

PREPARATIONS.

Unguentum Galla. Nutgall Ointment. (U. S. & B. P.)

Nutgall, 20; Ointment, 80. (U. S. P.)
Unguentum Galle Cum Opio. (B. P.)

Acidum Tannicum. Tannic Acid. $\text{HC}_4\text{H}_4\text{O}_6$. (U. S. & B. P.)

Synonym.—Acidum gallo-tannicum, tanninium, tannin, digallie acid, E.; acid tannique, tannin, Fr.; gerbsäure, tannin, G.

A tannin usually obtained from nutgalls.

Derivation.—Powdered nutgall is exposed to damp air for 48 hours. It is then treated with water and ether. The water dissolves tannic acid; the ether removes gallic acid, coloring matters and impurities. The mixture is filtered and allowed to stand, when the lower aqueous layer yields tannic acid on evaporation.

Properties.—A light yellowish-white to light brown amorphous powder, gradually turning darker when exposed to air and light, usually cohering in the form of glistening scales or spongy masses, odorless, or having a faint, characteristic odor, and a strongly astringent taste.

Very soluble in water and alcohol; also in about 1 part of glycerin, with the application of a moderate heat; freely soluble in diluted alcohol, sparingly in dehydrated alcohol; almost insoluble in absolute ether, chloroform, benzene, or petroleum benzin.

Incompatibles.—Alkaloids, alkalies, mineral acids, silver, ferric, lead and antimony salts, gelatin and emulsions.

Dose.—H. & C., 5ss-5ss, (2–15); Sh. & Sw., 5ss-i, (2–4); D., gr.i-xv, (.06–1).

Preparations.

Collodium Stypticum. Styptic Collodion. (U. S. P. 1905.)

Tannic acid, 20; alcohol, 5; ether, 25; collodion, to 100. Made by solution.

Unguentum Acidii Tannici. Ointment of Tannic Acid. (U. S. P.)

Tannic acid, 20; glycerin, 20; ointment, 60.

Glyceritum Acidii Tannici. Glycerite of Tannic Acid. (U. S. & B. P.)

Tannic acid, 20; glycerin, 80. (U. S. P.)

Administration.—Tannic acid is given in solution in aromatic waters, alcohol, syrup, wine, glycerine, and water; also it is exhibited in powder. The drug is used externally in powder, ointment, glycerite and lotion. Suppositories containing tannic acid are sometimes introduced into the rectum.

Action External.—Tannic acid coagulates albumin, gelatin, and fibrin. It has little effect upon the unbroken skin, but when applied to a raw surface or mucous membrane, it coagulates and dries secretion, and so fills up the mouths of glands, making the tissues harder, denser, and drier. Tannic acid causes a species of "tanning" compatible with life, by occasioning coagulation of the interstitial fluid in the tissues, abstraction of moisture, and contraction of the cells of the part—through the formation of protein tannate. It is the most important astringent principle contained in vegetable drugs. Tannic acid is, moreover, a local styptic or hemostatic in arresting hemorrhage by contraction of the smooth muscles of the vessel walls by coagulation of the blood, and constriction of the tissues surrounding the blood vessels. Tannic acid causes arrest of leukocyte movements, and diapedesis of the same, at the point of its application. Tannic acid, although a slight local irritant to raw surfaces, exerts a depressing action upon the sensory nerve endings, and is essentially a sedative in inflammatory conditions by causing ischemia. There are several kinds of tannic acid, possessing slightly different chemical and physiological properties. The official tannic acid—gallotannic acid—is contained in nutgall and oak bark, while another variety—catechutannic acid—is found in kino, catechu, etc.

Action Internal.—Tannic acid dries the mouth by closure of glan-
cular (mucous) ducts with coagulated secretion, and by constriction of the surrounding parts. It lessens the flow of mucus and of the digestive juices in the stomach and intestines by the same process. In the stomach tannic acid precipitates protein but as digestion proceeds and peptones are formed, with which tannic acid does not combine, the acid is set free again and acts as an astringent. Large doses irritate the alimentary canal and may create vomiting and diarrhea. Tannic acid in the bowels is converted first into sodium tannate, and then sodium gallate, which is not astringent. For this reason tannic acid only acts a short time in the intestine and other drugs are more often used in diarrhea. Traces appear in the blood and urine as sodium tannate or gallate. Of the tannic acid swallowed not more than 1 per cent. is excreted in the feces and urine as tannic or gallic acid. All the rest is oxidized in the body. Gallic acid does not coagulate albumin or gelatin and has a very feeble astringent action—like that of any weak acid—so that tannic acid should always be used for a local effect. The remote astringent influence of tannic or gallic acid on the tissues, after absorption in the form of sodium gallate or tannate, is nil. Catechu and kino are often chosen in place of tannic acid in the treatment of diarrhea, because they are less soluble (than tannic acid), and their colloid and extractive matters prevent the conversion of tannic acid into non-astringent salts, and the contained catechutannic acid comes in contact with the intestinal mucous membrane for a longer time. The salts of tannic acid (tannates) are not astringent.

Uses External.—Tannic acid is a valuable astringent in a great variety of local inflammatory lesions. In the form of the glycerite, tannic acid may be applied advantageously to the skin in moist eczema, and as a remedy for frost bites. It is a useful application for sore and cracked teats. The mouth is painted with glycerite for the cure of ulcerative or aphthous stomatitis. The same preparation is injected into the ear in otorrhea of dogs, and into the vagina to arrest vaginitis and leukorrhea. Pure tannic acid is an excellent agent when dusted upon raw surfaces, ulcers, and sores; and to stop bleeding in slight wounds. An aqueous solution is useful in leukorrhea (2-5 per cent.), in eczema (5-10 per cent.), as a high enema in dysentery (1 per cent.), and to kill ascarides (1-2 per cent.) in the rectum. A one per cent, aqueous solution is sometimes utilized as an inhalation in subacute laryngitis, tracheitis, and bronchitis. Powdered opium and nutgall ointment (1-14), or glycerite of tannin, are serviceable in hemorrhoids and rectal fissures, ulcers, or prolapse of the rectum.

Uses Internal.—Tannic acid is exhibited in powder or solution to arrest bleeding in the stomach. It is an astringent in diarrhea and an hemostatic in intestinal hemorrhage, given in ball or pill, and often with opium. Tannic acid is an antidote to alkaloids, metallic salts, and tartar emetic, forming comparatively insoluble tannates, which should be removed if possible by evacuation of the stomach.

Tannalbin is a tasteless, odorless, non-irritating, brown powder of tannic acid (50 per cent.), combined with albumin by heat, and only soluble in the pancreatic juice in the bowel. It is more suitable for young animals in diarrhea than is tannic acid.

Dose.—H. & C., 5i-iv, (4-15); foals & calves, gr.xx-xl, (1.3-2.6); D. & C.,

Synonym.—Acide gallique, Fr.; gallussiure, G.

An organic acid, usually prepared from tannic acid.

Derivation.—Made by exposure of paste of nutgall and water to the air for a month, when tannic acid undergoes hydration (tannic acid) HC₆H₄O₂+H₂O= 2 HC₆H₄O₂ (gallic acid). The liquid is then expressed from the paste and the residue is boiled with distilled water and filtered, when hot, through animal charcoal. Gallic acid crystallizes out from the filtrate.

Properties.—White, or pale fawn-colored, silky, interlaced needles or trigonal prisms; odorless; having an astringent or slightly acidulous taste; permanent in the air. Soluble in 87 parts of water, and in 4.6 parts of alcohol; in 100 parts of ether, and in 10 parts of glycerin.

Incomparables.—Metalllic salts and spirit of nitrous ether.

Dose.—H. & C., 5ii-58s, (8-15); Sh. & Sw., 5ss-i, (2-4); D., gr.x-xx, (3-1.3).

Action and Uses.—Experiments show that gallic acid has a very feeble astringent action when locally applied and tannic acid should always be preferred. It is absorbed and transformed into sodium gallate and exists in this form in the tissues.

Since sodium gallate has no remote astringent action its use by the mouth for such a purpose is without scientific basis, although successful results are alleged to have followed its administration in the treatment of hemorrhage from the lungs, uterus and kidneys, and in polyuria, albuminuria, bronchorrhea, leukorrhea, and excessive sweating.

Pyrogallol. Pyrogallol. C₆H₅(OH)₃. (U. S. P.)

Synonym.—Pyrogallic acid.

Derivation.—Trihydroxybenzene obtained chiefly by the dry distillation of gallic acid, C₆H₅O₅= C₆H₅(OH)₃+CO₂.

Properties.—Light, white, or nearly white, laminae, or fine needles; odorless, and having a bitter taste; acquiring a grayish tint on exposure to air and light. Soluble in 1.7 parts of water, and in 1.3 parts of alcohol; also soluble in 1.6 parts of ether.

Action and Uses.—Pyrogallol is an excellent agent for the treatment of chronic psoriasis and for ringworm. An ointment containing an amount of pyrogallol varying from gr.x-5 to the ounce of lard, is commonly employed. Toxic symptoms may follow its extensive application.
Quercus. White Oak. (U. S. P. 1905.)

The dried bark of Quercus alba Linné (Fam. Cupuliferae), collected from trunks or branches ten to twenty-five years of age, and deprived of the periderm.

Synonym.—Quercus cortex, B. P.; cortex quercus, P. G.; écorce de chêne, Fr.; eichenrinde, G.

Habitat.—North America, in woods.

Description.—In nearly flat pieces, 2 to 10 mm. thick; externally light brown, becoming darker with age, rough-fibrous; fracture uneven, coarsely fibrous; odor distinct; taste strongly astringent; not tingeing the saliva yellow when chewed.

 Constituents.—1, quercitannic acid, 6 to 11 per cent.; 2, a bitter principle, quercin; 3, resin; 4, a sugar, quercite.

Dose.—H., 5ss-i, (15-30); C., 5i-ii, (30-60); Sh. & Sw., 5i-ii, (4-8); D., gr.x-xxx, (.6-2).

Preparation.—Fluidextractum Quercus.—H., 5ss, (15); D., ml15, (1).

Action and Uses.—White oak bark is identical in action with tannic acid, but the latter is preferable for internal use. Oak bark is a cheap substitute for tannic acid applied externally in poultices, infusions, and decoctions, as an astringent. It is administered internally in infusion, or decoction (1-8), in diarrhea and dysentery. The infusion may be given in gruel and combined with ginger, opium and alcohol in the treatment of "scouring" in foals and calves.

Catechu. Catechu. (B. P., P. G.)

Synonym.—Catechu nigrum, cutch, E.; cachou de pégu, Fr.; katechu, pegu-catechu, G.

Gambir. Gambir. (U. S. P.)

[To replace Catechu, Pharm. 1890.]

Synonym.—Catechu, B. P., P. G.; pale catechu, catechu pallidum, terra japonica, E.; gambir cubique, Fr.; gambir, G.

A dried extract prepared from decoctions of the leaves and twigs of Ourouparia Gambir (Hunter) Baillon (Fam. Rubiaceae).

Description.—Usually in cubical or rectangular pieces from 20 to 30 mm. in diameter; externally pale grayish-brown to reddish-brown, more or less dull and porous; friable; internally of a light brown or dull earthy color; inodorous; taste bitterish and very astringent.

 Constituents.—1, catechutannic acid (40 per cent.) is the active principle; it is converted into the isomeric inactive catechusic acid, or catechin \(\text{C}_6\text{H}_8\text{O}_4 + 5 \text{H}_2\text{O} \), by the saliva and by boiling, a red color being developed. There is also (2) pyrocatechin or catechol.

 Incompatibles.—Metallic salts, alkalies, and gelatin.

Dose.—H., 5ss-i, (15-30); C., 5i-ii, (30-60); Sh. & Sw., 5i-ii, (4-8); D., gr.v-xxx, (.3-2).

Preparations.

 Tinctura Catechu. (B. P.)

Dose.—H. & C., 5i-ii, (30-60); Foals, Calves and Sheep, 5ss-i, (15-30); D., 5ss-ii, (2-8).

 Pulvis Catechu Compositus. Kino, Rhatany and Catechu. (B. P.)

Dose.—Same as catechu.

 Tinctura Gambir Composita. Compound Tincture of Gambir. (U. S. P.)

Gambir (a species of catechu), 50; saigon cinnamon, 25; alcohol to make 1000. Now replaces the compound tincture of catechu and possesses the same action and is given in the same doses as the tincture.

Administration.—The compound tincture, or an infusion (made by pouring boiling water over catechu, digesting for an hour, and straining), and the powder, are employed internally. The powder is given in flour.
gruel. The powder, or an infusion of any strength, may be applied externally.

Action and Uses.—The action of catechu is exactly like that of tannic acid. The latter is preferable for external use on account of its greater solubility and astringency. Catechu acts more slowly and persistently in the digestive tract by virtue of its tardy solubility, and is a useful remedy in diarrhea, particularly in that of a watery or serous nature. It is frequently prescribed in this disorder with other synergistic agents, as opium, ginger and chalk.

For diarrhea in horses, cattle, sheep or calves.

1. Creteae preparatae.
 Pulveris gambir.
 Pulveris zingiberis 3i, 3i.
 Pulveris opii 5vi.

(1) M. et divide in chartulas No. vii.
Sig. Give one powder 3 times daily in boiled flour gruel to horses.
(2) M. et divide in chartulas No. vi.
Sig. Give one powder in flour gruel 3 times daily to cattle.
(3) M. et divide in chartulas No. x.
Sig. Give one powder 3 times daily in flour gruel to calves or sheep.

The compound tincture of gambir with laudanum is an equally suitable combination for all animals with diarrhea, given in drench. If there is much mucus in the fecal discharges, showing a catarrhal state of the intestinal mucous membrane, it is advisable to order oil, salts, or calomel before locking up the bowels with an astringent. Catechu has been given internally in dysentery, and to stop uterine and other hemorrhages.

Kino. Kino. (U. S. & B. P.)

The spontaneously dried juice of Pterocarpus Marsupium Roxburgh (Fam. Leguminosea).

Habitat.—East Indies. Kino, indigenous in the West Indies, is occasionally imported here.

Properties.—In small, brittle angular fragments, usually considerably less than 15 mm. in diameter, varying in color from dark reddish-brown to reddish-black; inodorous; taste very astringent; when masticated it colors the saliva somewhat pink.

The powder is of a dark brick-red color. Partly soluble in cold water, soluble in alcohol.

Constituents.—The most important is (1) kinotannic acid (C₇H₆O₇, 75 per cent.), resembling catechu-tannic acid, but not identical with it. There are also: 2, kinoin, a crystalline, neutral substance; 3, pyrocatechin, C₇H₆(OH)₃; 4, gum; 5, pectin; 6, kinored, formed by oxidation from kinotannic acid.

Incompatibles.—Mineral acids, metallic salts, strong solutions of alkaloids, alkalies, and gelatin.

Dose.—H., 5ss-i, (15-30); C., 5i-ii, (30-60); Sh. & Sw., 5i-ii, (4-8); D., gr.v-xxx, (3-2).

PREPARATIONS.

Tinctura Kino. Tincture of Kino. (U. S. & B. P.)

Prepared by maceration of kino, 100; in boiling water with agitation and addition, after cooling, of boiled water and alcohol to make 100. (U. S. P.)
Dose.—H. & C., ʒi-ii, (30-60); Foals, Calves and Sheep, ʒss-i, (15-30); D., ʒss-ii, (2-8).

Pulvis Kino Compositus. Compound Powder of Kino. (B. P.)
(Pulv. cinnamon, 4 grs.; kino, 15 grs.; opium, 1 gr.)

Dose.—Dog, 1 powder; Foals and Calves, 4 powders.

Administration.—Kino may be given in ball, powder, infusion (1-32), or tincture.

Action and Uses.—The physiological actions and therapeutics of kino are nearly similar to those of catchu. The gum and pectin contained in kino render its effect milder and more soothing to mucous membranes. Aqueous solutions gelatinize on standing, on account of the gum in them. The drug is prescribed chiefly in serous diarrhea, and also is occasionally exhibited in dysentery and internal hemorrhages.

Hamamelidis Folia et Cortex. Hamamelis Leaves. (B. P.)

Synonym.—Witch-hazel.

The leaves of Hamamelis virginiana Linné (Fam. Hamamelidaceae), collected in autumn.

Description.—Short, petiolate, about 10 cm. long, obovate or oval, slightly heart-shaped and oblique at the base, sinuate-toothed, thickish nearly smooth; inodorous; taste astringent and bitter.

Hamamelidis Cortex. Hamamelis Bark.

The bark and twigs of *Hamamelis virginiana* Linné (Fam. Hamamelidaceae).

Constituents.—The most important principle is (1) tannic acid, 8 per cent.; there are also: (2) a bitter substance, and (3) a resin.

PREPARATIONS.

Fluidextractum Hamamelidis Foliorum. Fluidextract of *Hamamelis* Leaves.
Made by maceration and percolation with alcohol, glycerin and water, and evaporation, so that 1 mil—1 Gm. of the crude drug.

Dose.—H. & C., ʒi-ii, (30-60); D., ʒss-ii, (2-8).

Extractum Hamamelidis Liquidum. (B. P.)

Dose.—Same as fluidextract.

Aqua Hamamelidis.
Takes place of the proprietary extracts and consists of the bark macerated in water and distilled, alcohol being added to the distillate.
Dose.—Double that of fluidextract.

Unguentum Hamamelidis. (B. P.)

Action and Uses.—Hamamelis is apparently physiologically inert, as shown by experiments on healthy animals. It nevertheless possesses considerable medicinal virtue as an astringent and styptic. Witch-hazel is a valuable agent, applied externally, to stop venous oozing in wounds, and to reduce swelling and pain of bruises and sores. The fluidextract may be diluted with 8, or less, parts of water, for these purposes; or the B. P. ointment (1-10) may be employed. Internally hamamelis is useful in diarrhea and mucous discharges. It arrests hemorrhage from the uterus, kidneys, lungs and digestive tract; sometimes in a surprising manner. The fluidextract is a successful hemostatic in bleeding from the bladder or rectum (piles) when injected (1-8) into these parts. It lessens soreness and swelling of blind piles—with an equal part of glycerin and a little starch—and the same preparation is beneficial in eczema, pruritus, and cutaneous irritations. The clear, colorless proprietary extracts—now the aqua takes their place—are often more efficient externally and internally (in the same doses) than the official fluidextract.
SECTION XIII.—VEGETABLE DEMULCENTS.

Oleum Olivé. Olive Oil. (U. S. & B. P.)

Synonym.—Sweet oil, E.; oleum olivarum, P. G.; huile d’olive, Fr.; oilvenöl, G. A fixed oil obtained from the ripe fruit of Olea europaea Linné (Fam. Oleaceae). It should be kept in well stoppered bottles in a cool place.

Habitat.—Southern Europe and Asia.

Properties.—A pale yellow, or light greenish-yellow, oily liquid, having a slightly peculiar odor, and taste, with a faintly acrid after-taste. Spec. gr. 0.910 to 0.915. Slightly soluble in alcohol, but miscible with ether, chloroform, or carbon disulphide. Very frequently adulterated with cotton seed, or other seed oils, which probably are of equal medicinal value, however.

Constituents.—1, olein, $C_{31}H_{52}(C_3H_2O_2)_3$, 72 per cent., a fluid oil, a combination of oleic acid (HC=CH=CH=COO-), and glycercyl; 2, palmitin, $C_{32}H_{54}(C_3H_2O_2)_3$, about 28 per cent., a combination of palmitic acid (HC=CH=COO-) and glycercyl; and 3, arachin, $C_{34}H_{68}O_2$.

Dose.—Laxative.—H. & C., Oi-ii, (500-1000); D., 3ii-iv, (60-120).

Oleum Gossypii Seminis. Cotton Seed Oil. (U. S. P.)

A fixed oil obtained from the seed of Gossypium herbaceum Linné and other species of Gossypium (Fam. Malvaceae).

Habitat.—S. United States and other semi-tropical countries; cultivated.

Properties.—A pale yellow, oily liquid, odorless or nearly odorless, and having a bland taste. Spec. gr. 0.915 to 0.921. Slightly soluble in alcohol but miscible with ether, chloroform, or carbon disulphide.

Constituents.—1, olein; 2, palmitin; 3, coloring matter.

Dose.—Same as that of olive oil.

Action and Uses.—Olive oil is in common use as an emollient in burns and skin irritation. It assists in the performance of massage for sprains and bruises. Cotton seed oil has superseded it in liniments, as a matter of economy. Administered internally, sweet oil (with an equal part of castor oil) is a useful laxative for dogs. Linseed oil is more frequently given to the larger animals. An enema of ½ pint, or more, of olive oil is serviceable in softening hard fecal masses in dogs, and should be followed by the use of warm soap suds.

Sweet oil is a food, but is rarely used as such. Like other bland oils, it improves the nutrition of the bronchial mucous membrane in subacute or chronic bronchitis, and is of considerable benefit in these disorders, but inferior to cod liver oil or linseed oil. Olive oil is an efficient demulcent in inflamed conditions of the alimentary tract, and in poisoning by irritants. Large quantities form soap-like masses,—with the alkaline intestinal juices,—which have been mistaken for gall stones. Cotton seed oil is of equal therapeutic value with sweet oil.

Sapo. Soap.

Synonym.—Sapo duras, B. P.; hard soap, white castile soap, E.; savon médicinal, Fr.; medizinische seife, G.

Derivation.—Soap is made by boiling olive oil with a solution of caustic soda, $C_{31}H_{52}(C_3H_2O_2)_3$ (olein) + 3 NaOH = 3 NaC_{16}H_{32}O_2 (sodium oleate or soap) + $C_{31}H_2(OH)_3$ (glycerin).

Properties.—A white, or whitish solid, in the form of bars, hard, yet easily cut when fresh; or as a fine, yellowish-white powder, having a faint, peculiar odor free from rancidity; a disagreeable alkaline taste, and an alkaline reaction. Soluble in water and in alcohol; more readily with the aid of heat.

Preparations.

Linimentum Saponis. Soap Liniment. (U. S. & B. P.)

Synonym.—Opodeldoc. Lin. sapo. camph.
Soap, 60; camphor, 45; oil of rosemary, 10; alcohol, 700; water to make 1000. Made by solution, agitation and filtration. (U. S. P.)

Emplastrum Saponis. Soap Plaster. (U. S. & B. P.)

Soap, 10; lead plaster, 90; made by solution in water, 100; and evaporation.

Sapo Mollis. Soft Soap. (U. S. & B. P.)

Synonym.—Potassium oleate, sapo viridis, green soap, E.; savon mou, savon vert, Fr.; kali seife, grüne seife, G.

A soap prepared from potassa and a fixed oil.

Derivation.—Dissolve potassium hydroxide, 86; in water, 100; by heat, and add cottonseed oil, 480; stir and heat till it froths from boiling, and add alcohol, 50. Withdraw heat and stir till paste forms. Test for alkalinity and add water to make 1000. (U. S. P.)

Properties.—A soft unctuous, yellowish-white to brownish-yellow mass, having a slight characteristic odor and an alkaline taste. Soluble in about 5 parts of hot water and in 2 parts of alcohol.

Preparation.

Linimentum Saponis Mollis. Liniment of Soft Soap. (U. S. P.)

Synonym.—Tinctura saponis viridis.

Soft soap, 650; oil of lavender flowers, 20; alcohol to make 1000. Made by solution and filtration.

Castile soap is the best example of a pure soap. Mottled castile soap contains iron as the coloring matter. The household “soft soap” is not sapo mollis, but is made of all kinds of rancid fats and is generally unfit for medicinal use. Yellow laundry soap owes its color to rosin. Super-fatted soaps are of neutral reaction and unirritating. They are used as a basis for medicinal soaps containing tar, carbolic acid, etc.

Action and Uses.—Most soaps are alkaline. Soap is a detergent or cleansing agent. The lather mechanically removes dirt, while the alkalinity assists in the removal of grease, dead epidermis, and sebaceous matter from the skin. The caustic alkali contained in soap relieves itching and is stimulating to the skin; so much so, that cheap soaps are harmful in normal conditions of the integument.

Liniment of soft soap is frequently employed in chronic eczema and psoriasis, to remove scales and crusts; to stimulate the parts; and to quiet itching. It should be rubbed smartly into the skin, washed off, and followed by the application of a suitable ointment. This liniment or, as it is commonly called, tincture of green soap, is as powerful a disinfectant as tincture of iodine, 5% phenol, or 1 to 500 mercuric chloride, in killing common pathogenic bacteria within one minute. So it is an admirable hand disinfectant. Gauze saturated with soap suds (soap suds poultice) is an excellent agency to cause the exfoliation of the epidermis in patches of old scaly eczema or psoriasis, when applied for several hours. Soft soap, oil of cade, and alcohol, equal parts, are recommended as a useful preparation for the treatment of chronic eczema and pruritus. The application of soap and water is a necessary preliminary to the employment of a vesicating ointment, or parasiticide, since it cleanses the skin, and, by removing epidermis, exposes the burrows of acari in mange and scab. Soap liniment is a favorite remedy for sprains and bruises. If a more stimulating action is desirable, it is advisable to combine oil of turpentine or water of ammonia with it. If an anodyne effect is indicated, tincture of aconite or opium is added.

Chafing of the skin produced by harness, should be treated by wash-
GLYCERIN

ing the skin with soap and water, and then by dusting with zinc oxide and starch, equal parts. Sapo mollis, together with an equal amount of flour of mustard, forms a most satisfactory cleansing and disinfectant mixture for the hands of the operating surgeon when employed in the same manner as ordinary soap. Soap may also be used as a lubricating agent for the hands or instruments in making examinations. Soap is a useful excipient for balls, pills, and plasters, and it is a constituent of liniments.

Soap is employed both as a qualitative and quantitative test for hard water. This contains salts of the alkaline earth metals, as sulphates and carbonates of magnesium and calcium. Soap is decomposed by these salts, and insoluble soaps, i. e., calcium and magnesium stearate, are precipitated. The free alkali of the soap is then converted into insoluble sulphates and carbonates. These reactions produce a milky precipitate when a solution of soap is added to hard water.

Internally soap is an antacid and somewhat irritating, and may occasion vomiting and stimulation of intestinal peristalsis. These actions are taken advantage of in emergencies, when it may be given to dogs as an emetic, or to all animals in poisoning by acids. A piece of soap, when shaped by the hands into a conical form, dipped an instant into water, and introduced into the rectum, is one of the best agents for moving the bowels in the case of puppies and all young animals. Enemata of soap suds are in every day use. A mixture of sapo mollis, molasses, and water, in varying proportions, is a more efficient preparation. Oil of turpentine may be added in flatulence.

GLYCERINUM. Glycerin. C₃H₅(OH)₃. (U. S. & B. P.)

Synonym.—Glycerine, glycerole, E.; glycérine, Fr.; glycerin, ölsüss, G.; glycerinum, P. G.

Derivation.—A liquid obtained by the hydrolysis of vegetable or animal fats or fixed oils, purified by distillation, and containing not less than 95 per cent. of trihydric alcohol. It occurs as a by-product in the manufacture of soap, but is made chiefly from palm oil by the action of superheated steam at a temperature of about 600° F.

Properties.—A clear, colorless liquid, of a thick, syrupy consistence, having not more than a slight, characteristic odor which is neither harsh nor disagreeable, sweet to the taste and producing a sensation of warmth in the mouth. When exposed to the air it absorbs moisture. Spec. gr. not less than 1.249. Miscible with water or alcohol; insoluble in ether, chloroform, carbon disulphide, benzoin, benzoil, and fixed and volatile oils. Reaction neutral. Glycerin is a solvent for alkaloids, digestive ferments, fixed alkalies, bromine, iodine, tannin, extracts, salicin, borax, boric acid, phenol, etc.

Dose.—H. & C., 5i, (30); D., 5ss-1, (2-4).

PREPARATIONS.

Glyceritum Amyli. Glycerite of Starch. (U. S. & B. P.)

Starch, 10; water, 10; glycerin, 80. Made by solution with heat.

There are also official glycerites of phenol (1-5), of tannic acid (1-4), of boroglycerin (31 per cent.) and of hydrastis.

Suppositoria Glycerini. Suppositories of Glycerin. (U. S. P.)

Glycerin, 30 Gm.; monohydrated sodium carbonate, 0.5 Gm.; stearic acid, 2.0 Gm.; water, 5 mls. Made by solution with heat and moulded into ten suppositories.

Action External.—Glycerin is hygroscopic, emollient, sometimes
parasiticidal, and antiseptic. It does not evaporate or become rancid. The chief medicinal value of glycerin depends upon its affinity for water, so that (in solution) it keeps moist the surface to which it is applied. Pure glycerin is, however, slightly irritant to the skin and may cause some inflammation of raw surfaces and mucous membranes on account of withdrawal of water from the tissues. It should therefore be diluted with water for most therapeutic purposes.

Action Internal.—Glycerin is absorbed and oxidized in the body, and possesses some value as a carbohydrous food. It may give rise to a substance in the urine which reduces cupric oxide and renders the sugar test positive. It is somewhat antiseptic in the digestive tract, and appears to inhibit the formation of glycogen in the liver in some cases of glycosuria. Large doses are irritant and slightly purgative. Enormous quantities cause poisoning in animals, with the production of hemoglobinuria, glomerulonephritis, muscular weakness, dryness of the mucous membranes, restlessness, collapse, tremor, convulsions, coma and death.

Uses External.—These are manifold. It is largely employed in lotions, ointments, and as a vehicle for the substances of which it is a solvent. Glycerite of starch is a successful remedy for rough, dry skin, and scaly eczema. Glycerite of phenol is an appropriate application for fetid sores and ulcers, and, diluted with an equal part of glycerin, will destroy the acari of mange and scab. It should be used with caution to prevent poisoning. Glycerite of boroglycerin is an excellent preparation for the treatment of aphthous stomatitis and thrush. In dryness of the meatus, and in canker of the ear (otorrhea) in dogs, the following mixture is recommended:

R
- Tincturæ iodi.......................... 5i.
- Glycerinii.......................... 55s.

M. S. Drop in ear.
 (Furnish medicine dropper.)

Scratches and cracked heels of horses, fissured and excoriated surfaces, and erythema, are successfully treated with the following prescription:

R
- Tinct. opii.......................... 5i.
- Liq. plumbi subacetat. 5iv.
- Glycerinii.......................... 5ii.
- Aquæ ad £viii.

M. S. Apply externally.

Uses Internal.—Glycerin is employed as an excipient for balls and pills, and as a vehicle for nauseous and irritating drugs. It is not a valuable remedy for internal use, but is sometimes given with the food to prevent intestinal fermentation and relieve flatulence. It may prove curative in cases of glycosuria; and in trichinosis when given by the mouth, and in high rectal injections after active purgation. Glycerin is a useful addition to cough mixtures in moistening and soothing the
throat, and in not interfering with digestion. When injected into the rectum in quantities of 34/- for horses, or 3/- for dogs, it often causes prompt evacuation of the lower bowel. The suppositories may be employed in canine practice.

GLYCyrRhiza. Glycyrrhiza.

Synonym.—Glycyrrhizia radix, B. P.; radix liquoritiae, P. G.; liquorice or licorice root, E.; réglisse, bois de réglisse, boix doux, racine douce, Fr.; süßholz, G.

The dried rhizome and roots of Glycyrrhiza glabra typica Regel et Herder, known in commerce as Spanish licorice, or of Glycyrrhiza glabra glandulifera Regel et Herder, known in commerce as Russian licorice (Fam. Leguminosae).

Habitat.—S. Europe and W. Asia; cultivated.

Description.—Spanish Licorice (also known as Italian, Levant, Persian, Turkish, or Arabian Licorice).—Nearly cylindrical, upper portion more or less knotty; usually in pieces from 14 to 20 cm. or more in length and from 5 to 20 mm. in thickness; externally yellowish-brown or dark brown, longitudinally wrinkled; internally lemon-yellow; odor distinctive; taste sweetish and slightly acid.

Russian Licorice.—Nearly cylindrical, somewhat tapering, sometimes split longitudinally, from 15 to 30 cm. in length and from 1 to 5 cm. in diameter; when deprived of the outer corky layer, it is externally pale-yellow; internally lemon-yellow; odor distinct; taste sweetish.

Powdered glycyrrhiza is pale brownish-yellow (Spanish licorice) or pale yellow (Russian licorice).

Constituents.—1, a yellow, sweet, amorphous glucoside, glycyrrhizin \((\text{C}_{31}\text{H}_{22}\text{O}_{11})\), about 6 per cent., which with acids yields a bitter substance, glycyrrhetin, and glucose; 2, glycyrramin; 3, asparagin, about 3 per cent.; 4, an acid resin; 5, starch; 6, glucose.

Preparations.

Fluidextractum Glycyrrhiza. Fluidextract of Glycyrrhiza. (U. S. P.)

Made by maceration and percolation with chloroform water, and evaporation, with addition of alcohol and water, so that 1 milled = 1 Gm. of the crude drug. Dose of the root or fluidextract is unimportant.

Extractum Glycyrrhizae Liquidum. (B. P.)

Dose unimportant.

Pulvis Glycyrrhizae Compositus. (U. S. P.) (See p. 411.)

Action and Uses.—Licorice is demulcent and slightly laxative. The powdered root is employed as an excipient in making electuaries, since it is soothing to the throat. It is also used as an excipient in the preparation of balls, and more or less successfully conceals, in the form of the fluidextract, the taste of aloes, cascara sagrada, ammonium chloride, turpentine, hyoscyamus and quinine sulphate.

Linum. Linseed. (U. S. & B. P.)

Synonym.—Flaxseed, E.; semence de lin, Fr.; leinsamen, flachssamen, G.; semen lini, P. G.

The ripe seed of Linum usitatissimum Linné (Fam. Linaceae).

Habitat.—Most temperate climates.

Description.—Ovate or oblong-lanceolate, flattened, 3 or 5 mm. long, obliquely pointed at one end; externally chestnut-brown, very smooth and glossy, covered with transparent, mucilaginous outer wall which swells in water; odor slight; taste mucilaginous, oily.

Ground linseed (linseed meal or flaxseed meal) should be recently prepared and free from unpleasant or rancid odor. It is a grayish-yellow powder containing brownish fragments.

Constituents.—1, linseed oil, 30 to 35 per cent. in the embryo; 2, gum, 15 per cent. in the epidermis; 3, proteids, 25 per cent.; 4, a trace of amygdalin.
Action and Uses.—Linseed is a food. Oil cake or linseed cake from which the oil has been expressed is exceedingly rich in protein (25-30 per cent.), and is also richer in fat (10 per cent.) than most foods. Cottonseed meal, which contains considerably more protein and fat, is more frequently employed in the United States. Gruel made from crushed linseed meal cake, or linseed meal, is useful as a restorative in all animals recovering from acute and debilitating diseases. The cake (1 lb.), or a pint of cottonseed meal per diem, is a good addition to the ordinary fodder for horses suffering from malnutrition, with rough staring coats and dry skin, and for those affected with “broken wind.” Gruel of linseed meal or cake is also serviceable for calves or lambs when reared on skimmed milk or other poor food. Linseed tea, made by steeping 1 part of whole linseed in 20 parts by weight, of boiling water, for 1-4 hours, followed by straining, is a valuable demulcent preparation in pharyngitis, bronchitis, gastro-enteritis, and is possibly useful in acute cystitis and nephritis. It may be given in any amount which an animal will take voluntarily. The mucilage contained in linseed tea cannot be carried through the blood and eliminated by the kidneys, so that it must act by virtue of the water contained in it and perhaps by some intrinsic diuretic property.

The addition of a few drams of gum arabic to the quart of linseed tea will improve the demulcent action. Linseed, linseed meal or farina lini is the best substance to use in the preparation of poultices. It should be mixed with an equal quantity of bran, when the poultice is applied directly to the part. If the poultice is enclosed in a bag, the outside should be oiled to prevent its sticking to the skin. Linseed meal, mixed with an equal amount of molasses, forms a common excipient for ball masses. Linseed tea, made thicker than usual, is a good local application in irritation of the rectum, or vagina.

Acacia. Acacia.

Synonym.—Acacia gummi, B. P.; gum arabic, E.; gomme arabique, Fr.; arabisches gummi, G.

A gummy exudation of Acacia Senegal Willdenow and of other African species of Acacia (Fam. Leguminosae).

Habitat.—N., E., and W. Africa.

Properties.—In ovoid, more or less spheroidal tears, or in broken, angular fragments from 2 to 30 mm. in diameter, varying from white or yellowish-white to light amber-colored; translucent; very brittle; fractured surface glass-like, sometimes iridescent; nearly inodorous; taste insipid, mucilaginous.

Insoluble in alcohol; slowly and almost completely soluble in twice its weight of water, forming a mucilaginous liquid, which has a slight, characteristic odor and is acid to litmus.

 Constituents.—Arabin or arabic acid (C_{21}H_{22}O_{11}), in combination with about 3 per cent. of magnesium, potassium and calcium.

 Incompatibles.—Alcohol, ferrie salts, lead subacetate, borax, and sulphuric acid.

Preparations.—Mucilago acaciae, U. S. & B. P. (35 per cent., U. S. P.), and syrupus acaciae, U. S. P. (10 per cent.).

Dose.—Ad lib.

Action and Uses.—Gum arabic is but slightly nutritious. It is a useful demulcent in covering and protecting inflamed mucous membranes of
the upper respiratory and digestive tracts. It may be given freely in water, but large quantities may undergo fermentation and cause indigestion and diarrhea. A 10 per cent. aqueous solution is sometimes injected into the bladder, vagina or rectum in inflammation of these parts. Acacia is chiefly of value in medicine for the preparation of mixtures, emulsions, pills, balls and electuaries. About 5iii of mucilage acacia are required to suspend 3 i. of oil or resinous tincture. Acacia is sometimes prescribed in genito-urinary irritation. Animals will voluntarily drink aqueous solutions.

Tragacantha. Tragacanth. (U. S. & B. P.)

Synonym.—Gomme adragante, Fr.; gomma adraganta, G.

A spontaneously dried gummy exudation from the stems of Astragalus gum-mifer Labillardière, or from other Asiatic species of Astragalus (Fam. Leguminosae).

Habitat.—Asia Minor.

Properties.—In flattened, lamellated fragments varying from ribbon-shaped bands to long and linear pieces, which may be either straight or spirally twisted, and from 0.5 to 2.5 mm. in thickness; whitish to light brown in color, translucent and horny; fracture short; rendered more easily pulverizable by heating to 50° C.; inodorous; taste insipid, mucilaginous.

Add 1 Gm. of tragacanth to 50 mils of distilled water; it swells and forms a smooth, nearly uniform, stiff, opalescent mucilage free from cellular fragments.

Constituents.—1, arabin, 53.3 per cent., not identical with arabin of acacia, however; 2, bassorin (C₁₀H₁₆O₃), 33 per cent., a gum, swells up with water but does not dissolve; 3, starch; 4, ash.

Preparation.

Mucilago Tragacanthæ. Mucilage of Tragacanth. (U. S. & B. P.)

Tragacanth, 6; glycerin, 18; water to make 100. (U. S.)

Action and Uses.—Tragacanth is a demulcent, but is chiefly used in the preparation of mixtures and emulsions to suspend oils, resins and insoluble powders.

Althaea. Althaea. (U. S. P.)

Synonym.—Marshmallow root, E.; racine de guimauve, Fr.; altheewurzel, eibischwurzel, G.; radix althææ, P. G.

The root of Althæa officinalis Linné (Fam. Malvaceæ), deprived of the brown, corky layer and small roots, and carefully dried.

Habitat.—N. and W. Asia and Europe. Cultivated in Europe, and naturalized in E. United States and Australia, growing in salt marshes.

Constituents.—1, bassorin, 35 per cent.; 2, pectin, 10 per cent.; 3, asparagin, 1 per cent.; 4, sugar, 8 per cent.

Action and Uses.—Althaea is occasionally employed as a demulcent in irritable conditions of the digestive canal, and as a vehicle in the form of syrup.

Saccharum. Sugar. C₁₂H₂₂O₁₁. (U. S. P.)

Synonym.—Saccharum purificatum, B. P.; sucrose, refined sugar, cane sugar, E.; sucre, sucre de canne, Fr.; zucker, rohrzucker, G.

The refined sugar obtained from Saccharum officinarum Linné, and from Beta vulgaris Linné var. Ropa Dumort (Fam. Chenopodiaceæ), and from other sources.

Habitat.—Indigenous in S. Asia, but cultivated in many tropical and sub-tropical countries.
Properties.—White, hard, dry crystals, or as a white, crystalline powder, odorless, and having a sweet taste. Permanent in the air. Soluble in 0.5 part of water; in 0.2 part of boiling water, and in 170 parts of alcohol. Insoluble in ether or chloroform.

PREPARATION.

Syropus. Syrup. (U. S. P.)

Synonym.—Simple syrup, E.; sirop de sucre, Fr.; weisser syrup, G.; syrupus simplex, P. G.

Made by solution of sugar, 850; with heat in distilled water, straining, and addition of distilled water to make 1000. (U. S. P.)

Molasses. (Non-official.)

Synonym.—Theriaca, B. P.; sacchari faex, syrupus fuscus, treacle, E.; mélasse, Fr.; melasse, G.

The brown, uncrystallizable syrup that drains away from the crystals of raw sugar in the refining process.

Action and Uses.—Sugar, syrup and molasses are demulcents, and are sometimes employed in medicated syrup or electuary, for their soothing action on the throat in catarrh of the upper air passages. They are liable to ferment in the alimentary canal if given continuously, with the production of acidity and indigestion, so that they are not suitable for general use as demulcents. Sugar, syrup and molasses are mainly useful as vehicles, corrigents, preservatives, and excipients in pharmacy. Sugar is utilized as a constituent of powders, and syrup and molasses are excipients in the preparation of balls and electuaries. Sugar increases the solubility of calcium salts (see Syrupus Calcis, p. 126) and protects ferrous compounds from oxidation (see Ferri Carb. Sacch., p. 153).

Sugar is an antiseptic, and, in syrup, prevents the fermentation of active medicinal substances. Brown sugar and molasses are laxative (withdraw water from the tissues), in large doses, and are prescribed in veterinary practice, with ginger, to aid the action of salts on cattle (Oss-i) and sheep (fii-vi). (See Epsom salt, p. 131.) Molasses and milk, equal parts, form an excellent enema for stimulating peristalsis, 4 to 6 ounces of each for dogs, and 2 quarts of each for horses or cows.

SECTION XIV.—VEGETABLE DRUGS KILLING PARASITES.

Class 1.—Used to Destroy Tape-Worms.

Aspidium. Aspidium. (U. S. P.)

Synonym.—Filix mas, B. P.; radix filicis maris, male fern, male shield fern, E.; fougère mâle, Fr.; wurmfarn, waldfarn, johanniswurzel, G.; rhizoma filicis, P. G.

The rhizome and stipes of *Dryopteris Filix-mas* (Linné) Schott, or of *Dryopteris marginalis* (Linné) Asa Gray (Fam. Polypodiaceae), collected in the autumn, freed from the roots and dead portions of rhizome and stipes and dried at a temperature not exceeding 70° C.

Habitat.—D. filix-mas, Europe; D. marginalis, U. S.

Description.—Usually with the blackish-brown outer layers removed; rhizome 1 to 3 cm. in thickness, cylindraceous and nearly straight, or curved and tapering toward one end, usually split longitudinally, roughly scarred with remains of the stipe-bases, or bearing several coarse longitudinal ridges and grooves; odor slight; taste sweetish, astringent, bitter, acrid.

The chaff, together with the dead portions of the rhizome and stipes, should
be removed, and only such portions used as have retained their internal green color. Powdered aspidium should be freshly prepared and have a bright green color.

Constituents.—Aspidium contains: (1) filicic acid (C_{28}H_{42}O_{10}), a white, amorphous or crystalline substance, and a series of bodies, as aspidin, aspidinin, flavaspidic acid, albaspiddin, aspidol, filmarin and flavaspidin. It is not known to which of the bodies the action of aspidium may be attributed. There are also: (2) a fixed oil, 6 per cent.; (3) resin, 4 per cent.; (4) filicin (C_{29}H_{44}O_{12}), a crystalline principle soluble in chloroform, benzol, fixed and volatile oils; (5) filix-red, a coloring matter; (6) a small quantity of a volatile oil.

Dose.—H. & C., 3v-vi, (150-180); Sh., 5ii-iv, (60-120); Lambs, 5i-ii, (4-8); D. & C., 5iv-5i, (15-30).

Preparation.

Oleoresina Aspidii. Oleoresin of Aspidium. (U. S. P.)

Made by percolation with ether, distillation and evaporation of the ether.

Dose (also of the extractum filicis liquidum, B. P.).—H. & C., 5iii-vi, (12-24); Sh. & Sw., 5i-ii, (4-8); D. & C., 5iv-v, (1-4).

Action and Uses.—Aspidium is chiefly of value in veterinary medicine as a taeniacide or agent destroying tapeworms, particularly those inhabiting dogs. Large quantities of the drug cause hemorrhagic, gastrointestinal, tremors, weakness, stupor, coma, acute nephritis and cystitis. Six drams of the oleoresin have proved fatal in man and sheep; five drams in a medium-sized dog; and three ounces in the case of a cow. Aspidium must never be given with oil, which aids its absorption. Dogs should be fasted 24 hours or fed on a little milk; then the oleoresin should be administered, and the dose repeated in 3 hours. After the expiration of 12 hours from the administration of the first dose, a purgative quantity of castor oil is to be exhibited. An injection of salt and water assists the expulsion of segments of taenia from the rectum. If the head of the taenia is not expelled the treatment may be repeated in three days or a week. The oleoresin may be flavored with a few drops of oil of peppermint, and is often combined with a small dose of areca nut (gr.i to the lb. live weight) in emulsion with mucilage of tragacanth, or with fluid extract of kousso. 5i to 5ii. The oleoresin may also be exhibited in pills or capsules.

For setter dog with tapeworm.

B	Oleoresinæ aspidii	5i
	Fluidextracti arecae semenis	5iii
	Mucilaginis acacæ	5ii
	Olei menthae piperitæ	4v

M. Sig. Give one-half in one dose.

It is on the whole the best agent against the tapeworms of dogs, including Taenia serrata, T. marginata, T. caenurus and T. echinococcus. Male fern is not efficient against round worms in dogs and is dangerous except for strong cats and then not more than a mil should be given. Oleo-resin of male fern has a decided action in destroying the flukes in the liver, gall bladder, and bile passages of sheep in distomiasis.

Four doses of 5 grams each should be given 24 to 48 hours apart and, if liver cirrhosis has not set in, recovery may ensue. Two ounces each of
creolin, Peruvian balsam and oleoresin of male fern to the pint of alcohol are useful as a lotion in the treatment of canine follicular mange.

Areca. (Non-official.)

Synonym.—Areca-nut, betal-nut, E.; noix d’arêque, Fr.; arecanuss, G.
The seed of Areca Catechu (nat. ord. Palmaeæ).

Habitat.—India, Coromandel and Malabar coasts; also in warm parts of Asia.

Description.—The seeds resemble nutmeg in size, shape and color. They yield a brown powder, partially soluble in water and alcohol. The taste is astringent.

Constituents.—1, the active principle is the liquid alkaloid, arecoline \((C_{16}H_{21}NO_2)\). Arecoline hydrobromide \((C_{16}H_{23}NO_2HBr)\) is the commercial salt, occurring in colorless, anhydrous needle-shaped prisms, soluble in alcohol and water. H. & C., gr. ¼-⅛, (0.04-0.09); average dose, gr. i, (0.06), subcutaneously. Repeat if necessary at half hour intervals for 2 or 3 doses. There are three other alkaloids, arecaine, aracaidine and guvachine, which are of no medicinal value. Red tannic acid. An oil.

Dose.—Areca Nut.—H., 5ss-i, (15-30); Lamb, 5i, (4); D., gr. ii for each lb. of live weight, or gr.xv-5ii, (1-8); Fowl (against A. gibbosa), gr.x-xl in pill.

Action and Uses.—Areca nut is an anthelmintic more commonly classed as a taniacide, but capable of killing round-worms satisfactorily. It acts more successfully as a vermicide in dogs than in the case of the larger animals. Areca nut is an astringent in small doses, but large amounts induce catharsis. When the drug is used as an anthelmintic the animal should be deprived of food for 24 hours previous to its administration. The powder is given to dogs in milk, frequently with oleoresin of male fern in small quantity, or mixed with butter, or in pills or capsules, as it is rather irritating to the stomach and may cause vomiting. Areca nut should be freshly ground. It is not a wholly safe anthelmintic for weak animals, puppies or cats. If purgation does not follow the use of areca nut within a short time, a dose of castor oil is indicated. The fluidextract is a more convenient preparation.

\[R \]
Fluidextracti seminis arecae……………………………5ss.
Oleoresinae aspidii………………………………………5i.
Mucilaginis acacae………………………………………5ii.
Olei menthae piperitae…………………………………mil.

M.
Sig. Give one-half to dog with tape or round worms.

\[R \]
Seminis arecae………………………………………3iv.
Sig. Teaspoonful (5i) in milk for lambs with worms.

\[R \]
Seminis arecae………………………………………11i.
Sig. 2 tablespoonfuls (5i) on feed 3 times daily for horses with tapeworm. 1 tablespoonful once daily on feed for colts with round worms.

Arecoline has not been studied in scientific detail as to its physiological actions, but in general it resembles pilocarpine in stimulating the ends of the secretory nerves, the ends of the motor nerves of smooth muscle, and the ends of the third nerve in the eye. Thus arecoline is directly opposed by atropine which depresses these structures. It causes
more salivation than pilocarpine, beginning in the horse in 5 minutes, after injection under the skin, and continuing for an hour with champing of the jaws, and flow from the mouth in some cases. It contracts the pupil. It stimulates the secretions of sweat, saliva, and succus entericus. It moreover stimulates peristaltic action, and is one of the quickly acting purgatives given under the skin. Like pilocarpine arecoline increases secretion and constriction of the bronchi, and leads to dyspnea, especially in animals with asthma or heaves. While sometimes causing considerable nausea and colic yet arecoline is not so powerful or poisonous as eserine and barium chloride and, as it can be given subcutaneously, is often preferred by practitioners to the aforesaid drugs. In large doses it diminishes the force and frequency of the pulse and in lethal doses paralyzes the heart. The pulse is slow and weak, the breathing is shallow and slow, there is cyanosis, dyspnea, sweating and salivation, and death from respiratory failure. Large doses cause muscular spasms. Atropine should be given promptly under the skin in arecoline poisoning and may save animals after otherwise lethal doses (horses, 13 grs. subcutaneously) of arecoline.

Arecoline is indicated in mild colics, indigestion, flatulent colic and impacted colon in horses. Also in acute laminitis and azoturia of horses. It should be given once daily in laminitis and is a particularly successful remedy. In severe impactions and great distention, obstruction and inflammation of the bowels, it is contraindicated. Also in the weak and pregnant, in spasmodic colic, and in respiratory disorders. In constipation of cattle it is of value. Its cathartic action usually begins within 15 minutes. One per cent. solutions of arecoline hydrobromide are sometimes used to contract the pupil and reduce intraocular tension, and to offset the action of atropine. It may be used in place of eserine or pilocarpine as a myotic.

KAMALA. Kamala. (Non-official.)

Synonym.—Rottlera, kameela, kamola, Fr., G.

The glands and hairs from the capsules of Mallotus philippinensis (Lamarck) Mueller Arg. (nat. ord. Euphorbiaceae).

Habitat.—India, China and the Philippine Islands.

Properties.—A granular, mobile, brick-red or brownish-red powder, inodorous, and nearly tasteless; imparting a deep red color to alkaline liquids, alcohol, ether or chloroform, and a pale yellow tinge to boiling water.

Constituents.—The chief principle is (1) rottlerin (C₁₅H₂₉O₆), occurring in yellow acicular crystals, soluble in hot alcohol, ether, benzol, and carbon disulphide. There are also (2) resins, 80 per cent.

Dose.—D., 5ss-ii, (2-8); H. & C., ʒi, (30).

Action and Uses.—Kamala is an anthelmintic. It is employed more frequently as a taeniacide, but will also kill ascarides and oxyurides. Large doses may give rise to nausea and vomiting in dogs and cats. Kamala is also a purgative, so that it is rarely necessary to employ one after its administration. It should be given in syrup to the fasting animal, and repeated in eight hours if the first dose is not operative by that time.

Cusso. Kousso. (Non-official.)

Synonym.—Brayera, kooso, kusso, E.; cousso, kousso, Fr.; koso, cusso, kusso, G.; flores kosso, P. G.
The female inflorescence of Hagenia abyssinica (Bruce) Gmelin (nat. ord. Rodaceae).

Habitat.—Abyssinia.

Description.—In bundles, rolls, or compressed clusters consisting of pannicles about 25 cm. long; the two roundish bracts at the base of each flower, and the four or five obovate, outer sepals are of a reddish color; membranous and veiny; odor slight, fragrant and tea-like; taste bitter, acrid and nauseous.

Constituents.—1, the active principle is kosin or koussin \((C_{21}H_{30}O_{\nu})\), a yellowish, bitter, crystalline glucoside, soluble in alcohol, chloroform, benzol and ether, but insoluble in water; dose—dogs, gr.x-xl, (6-2.6); 2, a volatile oil; 3, gum; 4, tannic acid; 5, two resins.

Dose.—Small dogs, 5ss-i, (2-4); large dogs, 5ii-iv, (8-15).

Preparation.

Fluidextractum Kusso. Fluidextract of Kousso. (Non-official.)

Synonym.—Extractum brayerae fluidum.

Made by maceration and percolation of kousso with alcohol, and evaporation, so that 1 ml.=1 Gm. of the crude drug.

Dose.—Same as kousso.

Action and Uses.—Kousso is an effective taeniacide in dogs and cats. Large doses cause nausea, colicky pains and some catharsis. Kousso is administered in milk, or as an infusion flavored with peppermint; also in the form of the fluidextract, or glucoside in capsules, to the fasting animal. It should be repeated 3 times, at hour intervals, and followed by a small dose of castor oil if the bowels are not sufficiently relaxed. There is little danger of poisoning even by great quantities of the drug.

Granatum. Pomegranate. (U. S. P.)

Synonym.—Granati cortex, B. P.; écôre de grenadier (or de balaustier), Fr.; granatrinde, G.; cortex granati, P. G.

The dried bark of the stems and roots of Punica Granatum Linné (Fam. Punicaceae).

Habitat.—India and S. W. Asia. Also cultivated and naturalized in subtropical countries.

Description.—The stem bark is mostly in somewhat flattened or transversely curved pieces, to some extent in quills, from 2 to 8 cm. in length; bark from 0.5 to 3.5 mm. in thickness; outer surface yellowish to grayish-brown; odor slight; taste astringent, somewhat bitter and nauseous.

The root bark is in transversely curved pieces; externally brownish-yellow to dark brown with irregular patches of cork; internally dark yellow.

The powder is yellowish-brown to dark brown; calcium oxalate crystals in rosette aggregates.

Constituents.—The active principle is (1) pelletierine \((C_{9}H_{15}NO)\), \(\frac{1}{2}\) per cent., a colorless, oily, aromatic alkaid, soluble in alcohol, chloroform and ether; four salts occur in commerce; the tannate, sulphate, hydrobromide and hydrochloride; the first is more frequently used; dose—D., gr.ii-v, (12-5); 2, punicotannic acid, 22 per cent.; 3, methyl, pseudo, and iso-pelletierine; the latter is a taeniacide.

Dose.—Dogs, 5ss-1ss, (2-6).

Preparations.

Fluidextractum Granati. (U. S. P.)

Dose.—D., 5ss-i, (2-4).

Pelletierina Tannas. (U. S. P.)

Dose.—D., gr. iv, (.24).

Action and Uses.—Pomegranate is inferior to the foregoing drugs as an anthelmintic, since it is disagreeable and prone to produce vomiting. Pomegranate is an astringent, but, in large doses, acts as an emetic and
purgative and has occasioned weakness, colic, dizziness and convulsions. In sufficient amount pelletierine is said to paralyze motor nerves like curare. Granatum is an anthelminthic, chiefly against tape-worm. The decoction (1-8, B. P.) may be employed (with \(\frac{1}{4} \) part syrup of ginger) in three doses, at hour intervals, for dogs. The patient should be previously fasted for 24 hours, and castor oil is indicated if purging is not produced by pomegranate. Tanmate of pelletierine is a yellowish, astringent-tasting powder, soluble in 12.6 parts of alcohol and 235 parts of water. It is invariably used in human medicine in preference to the crude drug, and should be followed in 2 hours by a dose of castor oil. The use of pelletierine is undesirable in young animals.

Pepo.

The seed of the ordinary pumpkin is a very efficient and harmless vermicide not only for tapeworm but for round worms as well. Very recently Sollmann experimenting with anthelminitics finds pepo highly efficient, more so than many others generally esteemed, as spigelia. He states that its active principle is soluble in water but destroyed by boiling. It has the advantage of being practically harmless for the higher animals. Fresh seed should be used and the coverings removed and an infusion made by rubbing up the remaining part in cold water and the whole allowed to stand for 2 hours and water filtered off and given. Or the rubbed up pulp may be given in an electuary with sugar or syrup. The dose for dogs is 2 ounces of the seed. It should be given after starving for 24 hours and followed by a dose of castor oil in 2 hours.

Class 2.—Used to Destroy Round-Worms.

Santonica. Santonica. (Non-official.)

Synonym.—Levant worm seed, E.; barbotine, semencine, Fr.; wummsamen, zitwersamen, G.; flores cinae, P. G.

Habitat.—Northern middle Europe and Asia.

Description.—Heads 2 to 4 mm. long, oblong-ovoid, slightly flattened, obtuse, consisting of an involucre of about 12 to 18 closely imbricated, glandular scales with broad midribs, enclosing 4 or 5 rudimentary florets. Santonica has the appearance of a granular, yellowish-green or greenish-brown, somewhat glossy powder; odor strong, peculiar, somewhat camphoraceous; taste aromatic and bitter.

Constituents.—The active principle is (1) santonin. There is also (2) a volatile oil, 2 per cent., consisting chiefly of cineol, \(\text{C}_{10}\text{H}_{15}\text{O}. \)

Santoninum. Santonin. \(\text{C}_{15}\text{H}_{15}\text{O}_2 \). (U. S. & B. P.)

Synonym.—Santonine, Fr.; santonin, G.

The inner anhydride or lactone of santonic acid obtained from Artemisia pauciflora (Ledebour) Weber (Fam. Compositae).

Derivation.—Made from a mixture of lime and santonica by exhausting with alcohol, evaporation of the latter, and by the addition of acetic acid to the residue. Santonin is obtained by treating an alcoholic solution of the residue with animal charcoal and crystallization.

Properties.—Colorless, shining, flattened, rhombic prisms, or as a crystalline powder; odorless and nearly tasteless at first, but afterwards developing a bitter taste; permanent in the air, but turning yellow on exposure to light. Nearly insoluble in cold water; soluble in 43 parts of alcohol, in 110 parts of ether and 1.7 parts of chloroform.

Dose.—D., gr.\(\frac{1}{2} \) to the pound live-weight. It should not be given to puppies under two months old, and a total dose above gr. iv should be avoided for dogs or hogs. H., 3\(\frac{1}{2} \)-iv, (1-15).
Action and Uses.—Santonin is preferable to santonica. Santonin is chiefly valuable as a parasicide against round-worms; viz.: A. lumbricoides of cattle and swine, A. mystax and marginata of cats and dogs, and A. megaloocephala of horses. It is ineffective against tapeworm or hookworm but it has a fair degree of efficacy against whipworm (Hall and Foster).

Large doses cause poisoning, with the occurrence, in dogs, of nausea and vomiting, weakness, giddiness, muscular trembling, salivation, twitching of the head muscles, rolling of the eyes and grinding of the teeth. Then flexion and extension, and rotation of the head from side to side, are followed by epileptiform convulsions. Between the convulsions momentary contractions of the muscles all over the body may be seen (Cushny). The convulsions are due to stimulation of the cerebral cortex and the parts lying between the cerebral peduncles and medulla. There are—slow pulse, dilated pupils, and rapid respiration, and death ensues from asphyxia. While 5 to 6 grains induce symptoms of poisoning in dogs, 1/2 to 1 dram has often failed to produce a fatal result. Santonin is eliminated by the kidneys, increasing their secretion, coloring an acid urine yellow, and an alkaline urine purplish-red, or a bloody hue. Xanthopsy or yellow sight occurs in man, probably from a specific action on the retina. There is congestion of the heart, lungs and nervous centres observed after death, but no gastro-enteritis. Santonin is very slowly absorbed from the intestines and is oxidized in the tissues and eliminated as oxysantonins. The best treatment of poisoning consists in emptying the stomach and bowels by emetics and purgatives, and in the use of artificial respiration, cold to the head, inhalations of anesthetics, and enemata of chloral, to relieve the convulsions. The administration of santonin should be preceded or accompanied by that of a cathartic, as santonin is repugnant, rather than fatal, to worms.

The drug may be given to fasting puppies as follows:

R

Hydrarg. chlorid. mitis.
Santonini — 3/4 gr.iii.
M. et div. in capsulas no. iii.
Sig. One capsule in morning every third day (for round worms).

or for dogs:

R

Santonini — gr.vi.
Ol. ricini — 3 jiss.
M.
Sig. Give one-third every third day (for round worms).

Hogs of 40 lbs. may be given 2 grains each of santonin and calomel on feed every third day as an effective mixture against round worms, but it is more costly and troublesome than oil of chenopodium. Santonin is not so commonly or successfully used in the treatment of round-worms in horses, as turpentine and aloes, creolin, etc. A ball containing 5ii of santonin and 5i of calomel, or a combination of 5iv santonin and 1 pint of castor oil, are suitable prescriptions for the horse. Santonin is too
expensive for general use for horses. Santonin is often remedial in incontinence of urine in young animals, when belladonna fails, and is frequently beneficial in the treatment of amaurosis.

Class 3.—Used to Expel Round and Hook Worms.

CHENOPODIUM. American Wormseed. (Non-official.)

The fruit of Chenopodium ambrosioides, a perennial plant growing in the United States and the West Indies. The seeds contain a volatile oil of an aromatic and disagreeable odor, to which the action of chenopodium is due.

Dose.—H., iii-iii, (8-12); D., m ili, (0.2), per 2.2 lb.; Cats, mi-iii, (.06-0.18).

The drug has been used extensively in the treatment of hookworm in man. Cases of poisoning have occurred with nausea, vomiting, diarrhoea and dysentery, weakness, staggering, paralysis, stupor and coma. Ascaridole the active principle, depresses the muscular tone of the bowels, heart and vagus center. Treatment consists in the use of castor oil, caffeine and strychnine. The oil is given to dogs on sugar or in capsule.

Hall and Foster have found oil of chenopodium the most successful agent against ascarids in dogs, giving 0.2 mils per kilo live weight; and the best remedy in lambs for hookworm in the same dosage. Dogs are starved for 24 hours and given a dose of castor oil before the chenopodium is administered.

For mixed infestation with intestinal parasites in dogs (ascarids, hookworm, whipworm) the same investigators discovered that a combination of chloroform and oil of chenopodium in the dose of 0.2 mils per kilo (mil per 2.2 lb.), of each, with castor oil, 30 mils, was the best remedy as follows for 22 lb. dog:

B. Olei chenopodii.
Chloroformi ... 58. 3ss.
Olei ricini ... ji.

M. S. Give at one dose after starving 24 hours.

Against hookworms in dogs, chloroform was found most efficient in the same dose (0.2 per kilo); more so than chenopodium. Chenopodium is very efficient against round worms in hogs, giving about 1 minim to every 2 lbs. live-weight on the feed. The hog should be previously fasted for 24 hours and fed individually. The oil of chenopodium is also very successful against hookworm and stomach worms of sheep, given to them in the same dosage (0.2 mils per kilo) as for dogs, in a glass of milk.

SPIGELIA. Pinkroot.

Spigelia or pinkroot is the root and rhizome of Spigelia marilandica (Carolina pink), growing in the Southern United States.

Spigelia is used against round worms and should be followed by a purge. For this purpose it is often given with senna.

Round worms, Dogs.

B. Fluidextracti spigellae et sennae ji.

Sig. Two teaspoonfuls as dose.

It has some toxicity for higher animals and may cause poisoning resembling that of belladonna, as dilatation of the pupils, stupor, coma. It contains an alkaloid, spigeline, a bitter, volatile oil and tannin.
Dose.—Dogs (30 lbs.), Fluidextract, 3i, (4.0); unofficial flextr. spigeliae et senae, D, 3ii, (8); puppies, 3ss, (2).

Class 3.—Used to Destroy Lice.

Staphisagria. Staphisagria. (U. S. P.)

Synonym.—Staphisagriae semina, B. P.; stavesacre, E.; staphisaigrie, Fr.; stephauskörner, lausekörner, G.

The ripe seeds of Delphinium Staphisagria Linné (Fam. Ranunculaceae).

Habitat.—Shores of Mediterranean; cultivated.

Description.—Irregularly triangular, flattened, or somewhat tetrahedral, one side being convex, from 4 to 7 mm. in length and from 3 to 6 mm. in breadth; externally dark brown, becoming lighter with age; odor slight, disagreeable; taste intensely bitter and acid.

 Constituents.—1, the important principle is delphinine (C₁₉H₂₅NO₅), a white, poisonous, crystalline alkaloid resembling aconite; soluble in alcohol, chloroform, and ether; 2, delphisine (C₂₀H₂₅NO₅); 3, delphinoidine (C₁₃H₁₄NO₅); 4, staphisagrine (C₁₀H₁₄NO₅); 5, a fixed oil.

Action and Uses.—Powdered staphisagria is employed solely to kill lice (pediculi) in ointment (1-2) with benzoinated lard or vaseline. Creolin solutions (3-6 per cent.), tobacco infusions (5-10 per cent.), and oil of anise with sweet oil (1-10 per cent.), are also used for the same purpose. The latter mixture is an elegant preparation for pet dogs.

The tincture of larkspur (Delphinium consolida), another species of the same genus, is also a very efficient parasiticide against pediculi. It contains 1 part of larkspur seeds to 16 of alcohol.

Class 4.—Used to Destroy Fleas.

Pyrethrum. Pyrethrum. (U. S. P.)

Synonym.—Persian, Caucasian or Dalmatian insect powder.

The dried root of Anacyclus Pyrethrum (Linné) De Candolle (Fam. Compositae).

Habitat.—Caucasian Mountains; cultivated in California, U. S.

Description.—Somewhat fusiform, nearly simple, 5 to 10 cm. long, 2 to 20 mm. in diameter, externally dark brown or grayish brown, longitudinally wrinkled and somewhat furrowed; odor distinct, taste pungent, very acid, producing a prompt sialagogue effect. The powder is light to dark brown. Pyrethrum powder is the best parasiticide for fleas (pulicidæ). It is used more frequently to kill these parasites on cats and dogs. Pyrethrum is simply dusted over the whole body or is applied in the form of a tincture (1-4), diluted with 10 parts of water.

The application of Dalmatian insect powder to kittens and puppies, or to dogs and cats in enfeebled condition, may be attended with danger unless the powder is brushed off within 10 or 15 minutes after its use. Deaths have occurred in these animals following its free and careless employment.

SECTION XV.—VEGETABLE DRUGS STIMULATING UNSTRI-ATED MUSCLE, PARTICULARLY THAT OF THE UTERUS.

Ergota. Ergot. (U. S. & B. P.)

Synonym.—Ergot of rye, spurred rye, E.; ergot de seigle, blé cornu, Fr.; muttermkorn, kornmutter, zapfenkorn, G.; secale cornutum, P. G.

The sclerotium of Claviceps purpurea (Fries) Tulasne (Fam. Hypocreaceæ), replacing the grain of rye, Secale cereale Linné (nat. ord. Gramineæ).

Habitat.—Ergot is obtained mainly from Spain and Russia.

Description.—Subcylindrical, obscurely three-angled, tapering toward both
ends but obtuse, somewhat curved, 1.5 to 3 cm. long and about 3 mm. thick; externally purplish-black, longitudinally furrowed on each side, more conspicuously on the concave side; fracture short, pinkish or reddish-white; odor peculiar, heavy, increased by trituration with potassium hydroxide T. S.; taste disagreeable.

** Constituents.**—The active principles of ergot have hitherto been considered to be sphecalinic acid, sphecolotoxin, cornutine, and ergotinic acid but these were not pure and the recent researches of Barger and Dale have shown the true active principles to be the following alkaloids: (1) ergotinine, $C_{25}H_{22}O_{5}N_3$, inert but easily converted into its hydrate (2) ergotoxine, $C_{25}H_{24}O_2N_3$, which is most active; (3) tyramine, OH-CH$_2$CH$_2$NH$_2$, resembling adrenalin in chemistry and therapeutics; (4) histamine or ergamine which, intravenously, causes great fall of blood pressure from peripheral action, and also contracts the uterus; and (5) isoamylamine (CH$_3$)CH$_2$CH$_2$NH$_2$; (6) an inert oil; (7) saponin bodies. The two latter cause suspension of the active principles in alcohol and water.

Dose.—H. & C., 5 ss-i, (15-30); Sh. & Sw., 5 i-ii, (4-8); D., 5 ss-i, (2-4).

Preparations.

Fluidextractum Ergotæ. Fluidextract of Ergot. (U. S. P.)

Made by maceration and percolation with diluted alcohol and acetic acid, and evaporation, so that 1 mil.=1 Gm. of ergot.

Dose.—H. & C., 5 ss-i, (15-30); Sh. & Sw., 5 i-ii, (4-8); D., 5 ss-i, (2-4).

Extractum Ergotæ. Extract of Ergot. (U. S. & B. P.)

Synonym.—Ergotin.

Made by evaporation of the fluidextract to a pilular consistence.

Dose.—H. & C., gr. xx-5i, (1.3-4); D., gr. ii-x, (.12-6). (By mouth or subcutaneously.)

Extractum Ergotæ Liquidum. (B. P.)

(5i ergot=5i of preparation.)

Dose.—Same as fluidextract.

Tinctura Ergotæ Ammoniata. (B. P.)

(109 gr. to $\frac{5}{1}$.)

Dose.—H. & C., 5 ss-ii, (15-60); Sh. & Sw., 5 i-iv, (4-15); D., 5 ss-ii, (2-8).

Injectio Ergotini Hypodermica. (B. P.) (33 per cent.)

Dose.—H., 5 $\frac{3}{4}$-1½, (3-6); D., mlii-x, (.2-6).

Ergotoxine Phosphate.—D., gr.1/50.

Tyramine.—D., gr.½, (0.03), given subcutaneously in shock for raising blood pressure.

Ergot deterioration with age. Both it and its preparations should be fresh.

As the essential action of ergot on the circulation is to cause contraction of the blood vessels until, in poisoning, it finally occludes them, the test for active ergot is the production of gangrene of a cock's comb.

The standard is the development of a purple hue in the comb of a rooster from the injection of 0.75 mil of fluidextract per kilo; or 1.87 mg. of ergotoxine. Wood states that the fluidextract loses 10% in strength a month, but Haskell and Eckler found these preparations up to the standard until over two years old.

Action Internal.—**Digestive Organs.** Ergot (tyramine) stimulates the splanchnic inhibitory fibres supplying the stomach and intestines so that the motion and tone of these are somewhat inhibited, while vomiting and purging follows toxic doses of ergot, due to paralysis of these same nerves.

Circulation.—Ergot is absorbed into the blood, but does not influence that fluid. The essential action of ergot is caused by its two alkaloids, ergotoxine and tyramine. Its effect on the circulation resembles that of
adrenalin but, when injected into the blood, the action is less powerful and of much longer duration.

Constriction of the blood vessels of the belly and limbs with stimulation of the heart, constitutes the chief action on the circulation. This is brought about by the stimulating effect of ergotoxine on the vaso-constrictor nerve endings, especially of the sympathetic nerves from the thoracic and lumbar spinal cord. There is great rise in blood pressure, as always occurs when the vaso-constrictors of the splanchnic area are stimulated. Stimulation is followed by paralysis of the splanchnic vessels, after large doses.

Tyramine given intravenously produces marked rise in blood pressure lasting 4 or 5 times longer than that from adrenalin. It constricts blood vessels, locally and generally, and its effects are so lasting that it may cause local gangrene. By the mouth, or subcutaneously, its action is much less noticeable.

The rate and force of the heart are augmented by stimulation of the heart muscle or accelerator nerve endings (tyramine). This is followed by slowing of the heart caused by stimulation of the vagus centre by the increased blood pressure. After large doses there is depression of the accelerator nerve endings in the heart (ergotoxine). While such are the actions of the alkaloids yet, when the whole drug is given intravenously, there may be a rise or fall of blood pressure owing to other principles.

And, when ergot is given by the mouth, the effect of medicinal doses in increasing blood pressure is so feeble as to be of no therapeutic value. Ergot produces practically no constriction of the blood vessels when locally applied to the mucous membranes, and for this reason it can be given by the mouth and subcutaneously, whereas the constriction induced by adrenalin is so great that its absorption is prevented and its systemic action is only fully shown when it is given intravenously.

Nervous system.—The nervous system is not affected by medicinal doses of ergot, nor by large single doses of the drug. Certain changes occur in poisoning, but these are not understood.

Respiration.—Toxic doses of ergotoxine, intravenously, depress the respiratory centre, and the breathing becomes slow and shallow, while asthma is caused by ergamine intravenously from stimulation and constriction of the bronchial muscle.

Uterus.—The most important action of ergot is that on the womb. It stimulates rythmical uterine contractions by the paramount effect of the drug in directly stimulating the uterine muscle. Which of its alkaloids is chiefly responsible for this effect is uncertain. Tyramine is said to stimulate the inhibitory fibres of the hypogastric nerve and while its action is commonly overcome by ergotoxine and histamine yet in the non-pregnant cat it may lead to relaxation of the womb, when given alone, because the inhibitory nerves predominate. Contractions ordinarily alternate with relaxation of the womb under the influence of ergot, but after large doses the contraction may last many minutes. Ergot acts most powerfully on the pregnant uterus and may cause abortion. On the non-pregnant uterus it has less effect but is clinically of value in improving
USES OF ERGOT

443

the tone and arresting hemorrhage from the non-pregnant womb, as well as following parturition. Ergot and pituitrin are the oxytocics in most common use.

Administration.—The fluidextract is generally given by the mouth. Some proprietary preparations are made for subcutaneous use. The preparation known as “Ergot Aseptic,” and sold in glass ampules containing one dose (for average-sized bitches), is most convenient for hypodermic use in small animals to stop post-partum hemorrhage. Bonjean’s ergotin, or the official extract, are employed hypodermatically.

R

Extr. Ergotæ..gr.xl.
Alcohol.
Glycerini.
Aq. dest. ..āā 5i.

M.

Sig. Give one-half subcutaneously to a horse; 10 to 15 M. to dogs.

Injections should be made deeply into the muscular tissue to avoid abscess. Ergot should be repeated frequently to arrest hemorrhage.

Toxicology.—Enormous single doses are required to poison animals or man. When as much as two drams of ergot to the pound, live weight, are given to dogs, death is not constant. Three ounces, however, have proved fatal to small dogs. *Acute poisoning* is characterized by vomiting (in dogs), diarrhea, profuse salivation, dilation of the pupils, rapid breathing, and feeble, frequent pulse. The animal cries out, has convulsive twitchings, staggering gait, paraplegia, intense thirst, icterus, coma, and death takes place by respiratory failure. Abortion may occur in pregnant animals. Horses, cattle, and sheep are unaffected by any ordinary quantity of the drug.

Chronic poisoning or ergotism rarely occurs in animals owing to continuous ingestion of ergotized grains. It is characterized by gastrointestinal indigestion, with nausea, vomiting, colic, diarrhea or constipation, and abortion often ensues in pregnant animals. In addition to gastrointestinal irritation the symptoms naturally assume two forms: 1, the gangrenous form; 2, the spasmodic form. In the first variety of ergotism there are coldness and anesthesia of the extremities, including the feet, ears, and tail of quadrupeds; the comb, tongue and beak of birds—followed by the appearance of passive congestion, blebs, and dry gangrene in the vicinity of these parts. The hoofs and beaks often drop off. Death ensues from general exhaustion. In the spasmodic form (due to spasm of arteries of central nervous system), are seen tonic contraction of the flexor tendons of the limbs and anesthesia of the extremities; muscular trembling and general tetanic spasm, with opisthotonos, convulsions and delirium. Death also occurs from asthenia. When a cock is given large doses it becomes drowsy, breathes with difficulty, sways in standing, loses appetite and often has vomiting and diarrhea with anorexia. The comb and wattles become of a dusky purple. With larger doses the comb becomes gangrenous, dries and falls, and there may be gangrene of the legs, tongue and wing, but recovery may ensue if the drug is withheld.
Uses.—Two therapeutic indications for the use of ergot can be directly deduced from its physiological actions: 1, to cause uterine contraction; 2, to produce vascular contraction.

1. Ergot is occasionally of service in simple uterine inertia in bitches and cats, when there is no malposition of the fetus, or mechanical obstruction (pelvic deformity, rigid os uteri) to its passage. Very small doses must be given for this purpose in order to intensify the force of the uterine contractions without inducing spasm of the uterus. Pituitrin has, however, superseded ergot for this purpose. The more common causes of dystocia are remedied most advantageously by manual interference. Ergot is of chiefest value in obstetric practice, after expulsion of the placenta, to prevent or arrest post-partum hemorrhage which sometimes occurs in cows and ewes. If administered before delivery of the placenta, ergot may give rise to tonic contraction of the womb and retention of the afterbirth.

Ergot is of benefit in some disorders of the unimpregnated and non-parturient uterus. Thus to aid the expulsion of cysts, and to contract the uterus and its blood vessels in hypertrophy, subinvolution, chronic metritis and fibroid tumors. Ergot is given as a routine treatment in human medicine after delivery to hasten involution of the uterus, 3 times daily for a week or 10 days.

In paralysis of the bladder, ergot is occasionally useful by creating contraction of the muscular coat of its walls. This condition is most satisfactorily treated by the injection of an ordinary dose of ergotin into the empty urinary bladder.

2. Ergot is commonly recommended for combating internal hemorrhage, when surgical measures are impossible. Under this head may be included bleeding from the nose, mouth, stomach, intestines, lungs, uterus and kidneys. Ergot has been thought beneficial in causing constriction of the blood vessels in the early stages of some hyperemias and inflammations, notably pulmonary, cerebral and spinal congestion, parturient apoplexy, cerebritis, cerebro-spinal meningitis, spinal meningitis and myelitis.

There are two physiological reasons for the uselessness of ergot in preventing internal hemorrhages and congestions in special organs: (a) The fact that general blood pressure is augmented would favor hemorrhage from a ruptured vessel. (b) The fact that the blood vessels of the brain and lungs are not supplied by vaso-constrictors to be stimulated by ergot. The effect of the drug on these organs would therefore be to cause vascular dilatation from increase of general blood tension. It is only in uterine hemorrhage that ergot proves of much value owing to the contraction of that organ. Ergot is recommended in surgical shock but adenalin, tyramine, morphine, digitalone, camphor and strychnine are more valuable. In dysentery, watery diarrhea, diabetes insipidus and bleeding piles ergot is said to be of service but we believe it of doubtful utility.
SECTION XVI.—VEGETABLE DRUGS ACTING MECHANICALLY.

AMYRUM. Starch. C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}. (U. S. & B. P.)

Synonym.—Corn starch, E.; féculé (amidon) de maïze, Fr.; kraftmehl, mais-
stärke, G.

The starch grains obtained from the fruit of Zea Mays Linné (nat. ord. Gramineæ).

Habitat.—Western hemisphere.

Description.—In fine powder or irregular, angular white masses, consisting of somewhat spherical, but usually polygonal grains, about 0.010 to 0.025 mm. in diameter, with a lenticular, circular, or triangular central fissure; inodorous and tasteless; insoluble in cold water or alcohol; forming a whitish jelly when boiled with water, which when cool gives a deep blue color with iodine T. S.; triturated.

Constituents.—1, starch-granulose; 2, starch-cellulose.

Preparation.

Glyceritum Amyli. (U. S. P.) (See p. 427.)

Glycerinum Amyli. (B. P.)

Action and Uses.—Starch is a mechanical protective externally, used as a dusting powder, alone or with zinc oxide (1–4), in chafing, erythema, and moist eczema. The glycerite of starch is a serviceable demulcent. Boiled starch paste, mixed with glue, is used to stiffen bandages by painting the mixture on in layers with a brush. Boiled starch gruel (2 tablespoons of starch to a pint of water) is a suitable diet for diarrhea, and is frequently injected into the rectum as a demulcent in diarrhea and dysentery, and as a vehicle for enemata. Starch is an antidote to iodine. It is utilized in pharmacy as a vehicle to suspend insoluble powders or oils, and in mucilage (1–40, B. P.), as a basis for ointments. Zinc oxide, one part; starch and vaseline, each 3 parts, form a very satisfactory preparation for acute eczema in dogs, which does not rub off so readily as zinc ointment.

OLEUM THEOBROMATIS. Oil of Theobroma. (U. S. & B. P.)

Synonym.—Butter of cacao, E.; beurre de cacao, Fr.; kakaobutter, G.; oleum (butyrum) cacao, P. G.

A fixed oil expressed from the roasted seed of Theobroma Cacao Linné (nat. ord. Sterculiaceæ).

Properties.—A yellowish-white solid, having a faint, agreeable odor, and a bland, chocolate-like taste. Readily soluble in ether or chloroform.

Constituents.—1, olein; 2, stearin; 3, theobromine, C\textsubscript{7}H\textsubscript{10}N\textsubscript{2}O\textsubscript{2}, an alkaloid; 4, glycerides of formic, butyric, and acetic acids.

Uses.—Cacao butter melts at the temperature of the body, and is chiefly used as an excipient for suppositories and electuaries. It also has a demulcent action and may be employed on raw surfaces or in inflammation of the throat and digestive tract.

GOSSYPYUM PURIFICATUM. Purified Cotton. (U. S. P.)

Synonym.—Absorbent cotton, E.; cotton absorbant, Fr.; gereinigte baum-
wolle, G.

The hairs of the seed of Gossypium herbaceum Linné, and of other cultivated species of Gossypium (nat. ord. Malvaceæ), freed from adhering impurities and deprived of fatty matter.

Habitat.—Tropical Asia and Africa; cultivated in subtropical and tropical countries, mostly in the Southern United States.
Description.—White, soft, fine filaments, appearing under the microscope as hollow, flattened and twisted bands, spirally striate and slightly thickened at the edges; inodorous and tasteless; insoluble in ordinary solvents, but soluble in ammonia solution of cupric oxide.

Uses.—Absorbent cotton is used as a cheap, convenient and cleanly substitute for ordinary sponges; to make poultices by soaking it in antiseptic solutions (as lysol or creolyn, 1-2 per cent.) and placing it between layers of gauze; and for surgical dressings.

Oakum, consisting of the fibres of old rope, is often employed as a cheap absorbent material, saturated with tar, in packing horses' feet.

Tow.—The coarser unbleached fibres of flax; and lint,—the scrapings of soft, loosely woven linen,—are also utilized as absorbent substances for surgical purposes.

Pyroxylinum. Pyroxylin. (U. S. & B. P.)

Synonym.—Gun cotton, soluble gun cotton, colloxylin.

Derivation.—A product obtained by the action of nitric and sulphuric acids on cotton and consisting chiefly of cellulose tetranitrate \(\text{C}_{4}H_{8}(\text{ONO}_{2})_{4} \). Pyroxylin is a yellowish-white, matted mass of filaments, resembling raw cotton in appearance, harsh to the touch; exceedingly inflammable, burning when unconfined, very rapidly and with a luminous flame; less explosive than cellulose hexanitrate. Slowly but completely soluble in 25 parts of a mixture of 3 volumes of ether and 1 volume of alcohol.

Preparations.

Collodium. Collodion. (U. S. & B. P.)

Pyroxylin, 40; ether, 750; alcohol, 250. Made by solution, agitation, and decantation of clear portion.

Collodium-Cantharidatum. Cantharidal Collodion. (U. S. P.)

Synonym.—Blistering collodion.

Made by maceration and percolation of cantharides, 60; with glacial acetic acid, 5; and acetone, 55; distillation of the acetone, and evaporation of the residue until it weighs 15 (Gm.), and solution in flexible collodion, 85.

Collodium Flexile. Flexible Collodion. (U. S. & B. P.)

Mix collodion, 950; camphor, 20; and castor oil, 30. (U. S. P.)

Action and Uses.—Collodion, when painted on dry skin, rapidly dries and leaves a thin, protective coating. It is a useful agent to seal and secure coaptation of small wounds and to keep them aseptic. Also to protect abraded surfaces, as fissures of teats. Flexible collodion is less apt to crack. Collodion contracts the superficial tissues and will often abort boils when applied directly over them. Collodion is employed as a vehicle for the application of many other agents, as salicylic acid (p. corrosive sublimate, carbolic acid, iodoform, etc.

Euphorbiun. Euphorbium. (Non-official.)

Synonym.—Euphorbe, Fr.

The dried juice of a cactus-like plant, Euphorbiun resinifera, growing in Morocco and regions contiguous to the Atlas Mountains. Obtained by incising the stems and branches.

Description.—In dull yellowish tears, of the size of peas; odorless; taste acrid; powder of a grayish color; insoluble in water, but soluble in alcohol, ether and oil of turpentine.

 Constituents.—1, an amorphous, bitter, acrid resin \(\text{C}_{6}H_{8}O_{x} \), 40 per cent., the active principle; 2, euphorbon \(\text{C}_{12}H_{22}O_{x} \), a crystalline resin, soluble in chloroform and ether (20 per cent. of drug).
Action and Uses.—Euphorbium is an intense irritant, both externally and internally. It is sometimes employed in veterinary medicine as a constituent of vesicating preparations to enhance their effect, but if applied alone it is liable to cause extensive irritation, sloughing, and destruction of tissue. Euphorbium may, however, be safely applied in tincture (1-16), or in ointment with cantharides, as a vesicant for horses. The following combination is recommended as a powerful blister for the latter animals:

R | Pulveris euphorbii.
Pulveris cantharidis .. 3i.
Hydrargyi chloridi corrosivi ... 5i.
Petrolat ... 3i.
Cerati ... 3iss.
M. et fiat unguentum.
S. Rub into skin as a blister.

There is no danger of absorption and genito-urinary inflammation from the use of euphorbium, as with cantharides.

SECTION XVII.—MEDICINAL AGENTS OF ANIMAL ORIGIN.

Thyroid Glands, Dried. (See p. 192.)

Suprarenalum Siccum. Dried Suprarenals.

Synonym.—Supraren. sicc., U. S. P. VIII.; desiccated suprarenal glands.

The suprarenal glands of animals which are used for food by man, cleaned, dried, freed from fat, and powdered, and containing not less than 0.4 per cent. nor more than 0.6 per cent. of epinephrine, the active principle of the suprarenal gland. One part of dried suprarenals represents approximately 6 parts of fresh glands, free from fat. If assayed biologically one gram of dried suprarenals contains the equivalent of ten milligrams of laevomethylnine-ethanol-catechol.

A light yellowish-brown, amorphous powder, having a slight, characteristic odor; partially soluble in water.

Adrenalin or Epinephrin, C_{17}H_{15}O₃N, CHO₂H₂NCH₃.

Adrenalin (epinephrin) is the active principle of the suprarenal glands, first isolated by Abel (It is an animal alkaloid or leukomain), and introduced into medicine at the beginning of this century. It is a light, white, microcrystalline substance, slightly soluble in cold water, especially when slightly acidulated with HCl. It has a somewhat bitter taste and produces a benumbing of the tongue. Adrenalin is permanent in powder, but changes color and is oxidized in aqueous solution. It is the active principle of the suprarenals. Adrenalin is from 825 to 1,000 times more powerful than the glands in its physiological effect. Solutions may be boiled for a moment without impairing their therapeutic activity. Solutions of adrenalin deteriorate on standing, with formation of a reddish color and precipitate, and should be discarded.

Action.—Circulation.—The action of adrenalin on the circulation is only seen to advantage when the drug is given intravenously. There is a great rise of blood pressure and the heart beats first more rapidly and strongly, then more slowly, and again it is accelerated. The cause of the high blood pressure is stimulation of the vasoconstrictor nerve endings. The vessels in the abdominal cavity are more particularly contracted while the blood vessels of the lungs, brain and heart are not supplied with vasoconstrictor fibres and are not constricted. While
there is blanching of the vessels of the intestines the skeletal vessels are dilated by adrenalin intravenously.

The peculiar effect of adrenalin on the heart is due to primary stimulation of the accelerator nerve endings of the heart muscle, making the organ beat faster and more strongly, while the slowing is due to stimulation of the vagus centre by the increased blood pressure. Acceleration again occurs when the blood pressure falls away, and the vagus ceases to be stimulated, and accelerator stimulation resumes its sway. Adrenalin also directly stimulates the heart muscle itself. The action on the circulation is very transient, lasting not more than five minutes, and being repeated with each new dose.

But the predominant and most valuable effect of adrenalin consists in the complete blanching of mucous membranes and raw surfaces after the local application of these substances. Adrenalin is undoubtedly the most powerful astringent and hemostatic known, owing to its stimulation of the involuntary muscles of the blood vessels. When painted on a mucous membrane or raw surface the constriction of the blood vessels takes place at once and lasts for a quarter to two hours.

Subcutaneous injection of a 1 to 1000 solution causes blanching over an area about two inches in diameter within a minute and lasts for six to twelve hours. Solutions containing adrenalin to the amount of 1 to 5000, 1 to 10,000, or even 1 to 20,000, will produce an ischemia after their hypodermal use within a few minutes and lasting for three to six hours. Neither ecchymoses nor sloughing occurs after the proper injection of the drug. Sometimes great vasodilation follows the use of adrenalin aggravating congestion, or hemorrhage from the part, but this is rare.

The local constricting action is undoubtedly due to direct stimulation of the vasoconstrictor nerve endings as it does not occur when adrenalin is painted on the lung or brain since their vessels are not supplied with constrictor fibres.

There appears to be little or no absorption of adrenalin when it is applied to mucous membranes or taken by mouth. This may be due to local destruction of the drug or to vasoconstriction. Subcutaneously the action is but slight on the blood vessels, more so in relaxing bronchi.

Still more active is the intramuscular injection but the specific effect on the vessels is seen in highest degree when the drug is given into the veins. This must be done slowly in saline infusion to avoid heart failure (left ventricle) from the great peripheral resistance resulting. For these reasons the intramuscular, or better, intravenous injection is indicated for its systemic effect.

Respiration.—Adrenalin given under the skin in small doses makes the breathing deeper but, when injected intravenously, the respiration becomes more rapid and shallow. Adrenalin has a marked effect (Park) in relaxing the bronchi, owing presumably to stimulation of the sympathetic (broncho-dilator) fibres.

Abdominal Organs.—Here stimulation of the sympathetic nerve endings give rise to different actions according to the special functions of the fibres stimulated. Thus movements of the bowels and stomach are
inhibited, and lost in poisoning, through stimulation of the splanchnics. The same action is exerted on the gall bladder whose movements are inhibited. The pyloric, anal and ileo-colic sphincters, on the other hand, receive motor fibres from the sympathetic and are thus contracted by the stimulation of the sympathetic. Action on the uterus (contraction or relaxation from preponderance of inhibitory or motor fibres) varies with the species of animal and whether pregnant or non-pregnant, according to the particular effect of the sympathetic stimulation. The same remark applies to the action of adrenalin on the urinary bladder.

Eye.—Dilatation of the pupil, owing to sympathetic nerve stimulation, occurs after the intravenous injection of adrenalin solution but not when it is instilled into the eye.

Toxicology.—Poisoning may be produced in animals by the intravenous and subcutaneous injection of adrenalin. In smaller poisonous doses there are glycosuria, diuresis and nephritis, while fatal amounts cause vomiting, restlessness, tremors, paraplegia, prostration, dyspnea from edema of the lungs, respiratory failure and death. Sugar appears in the urine after toxic doses owing to an abnormal increase in the splitting of liver-glycogen and its discharge as sugar into the blood. There is increase in the secretion of saliva, tears, bile and esophageal and bronchial mucus. The secretions are increased by sympathetic stimulation but not greatly, on account of the vascular constriction. Ill effects from therapeutic use of adrenalin include 1. Local relaxation of the vessels, following local use, with secondary hemorrhage. 2. Hemorrhage increased, if given in cerebral or pulmonary bleeding, from lack of constriction of vessels in these organs and generally increased blood pressure. 3. Pulmonary edema and left ventricle failure from general vasoconstriction with weak heart.

Summary.—Study of the evolutionary development of the suprarenals shows that the secreting portion of the glands is derived from and is controlled by the sympathetic system. Suprarenal secretion (adrenalin) acts in the body to always and everywhere stimulate sympathetic nerve endings.

Thus it stimulates the heart (accelerator stimulation), constricts blood vessels (vasoconstrictor stimulation), inhibits the action of the stomach and bowels (splanchnic stimulation), dilates the pupil (sympathetic nerve stimulation), and contracts or relaxes the uterus according as to whether the motor or inhibitory fibres predominate in the hypogastric nerve.

Powerful emotions, as fright or anger, lead to immediate increased secretion of the adrenals in the normal animal, and the phenomena of dilated pupils, erection of hair, inhibition of digestive movements and increase of blood pressure, are typical of sympathetic stimulation.

Adrenalin given during administration of chloroform has a very unfortunate effect in leading to ventricular fibrillation and perhaps death.

Uses.—External.—Adrenalin chloride is commonly sold in a 1 to 1000 aqueous solution in the shops. It has proved of most value when combined with cocaine for subcutaneous use in operative work. One part of the 1-1000 solution may be added to nine parts of normal salt
solution (one heaping teaspoonful of sodium chloride to the quart of sterile water), to which is added 1 per cent. of cocaine, or more if desired. A stronger solution of adrenalin chloride than this (1 to 10,000) is not usually desirable in operative work, because it is irritating, and in some instances when stronger solutions were used so much ischemia was produced that the blood vessels could not be found and ligated and secondary hemorrhage ensued. It is usually sufficient to add mL adrenalin solution (1-1000) to each ounce of novocaine or cocaine solution.

The combination of cocaine with adrenalin marks a distinct progress in local anesthesia. Four advantages are claimed for this combination; 1, that the operation is made comparatively bloodless; 2, that the cocaine is retained in the operative field a longer time, owing to the contracted state of the vessels, and does not escape into the general circulation; this is a double advantage—in prolonging anesthesia and in preventing systemic effect of cocaine; 3, that adrenalin is a circulatory stimulant and will offset the toxic action of cocaine; 4, that adrenalin counteracts the vascular relaxation seen sometimes after the use of cocaine.

Adrenalin has also proved of great service in arresting hemorrhages from wounds, mucous membranes and cavities of the body. A solution equivalent to a 1 to 5000 of adrenalin in sterile salt solution may be applied for this purpose directly to the bleeding surface, or gauze saturated with it may be packed into wounds and cavities, as the nose, uterus and vagina. Adrenalin chloride is useful also in many inflammatory diseases of the eye and nose in the same strength. Catarrhal conjunctivitis, keratitis, episcleritis and iritis yield to its influence, particularly when it is combined with other astringents on account of its transient action. It is instilled with atropine in iritis. Adrenalin chloride in a 1 to 5,000 solution containing 2 per cent. of boric acid forms a useful preparation for general applications in inflammations of mucous membranes. Increased congestion may follow in some cases. Two to four mils of adrenalin solution are injected on either side of the fetlock in acute laminitis to lessen the blood supply in the foot. Reports have been somewhat conflicting.

Internal.—Adrenalin has been given empirically in azoturia with favorable results according to the reports of many reliable practitioners. Two drams of the 1-1000 solution in a little water are given subcutaneously every two hours, combined with arecoline under the skin. Adrenalin is employed internally to arrest bleeding from the stomach, intestines and uterus. Its local application in hemorrhage from the bladder, rectum, nose, vagina and uterus is, however, much more effective. Adrenalin given subcutaneously may at once relax bronchial spasm and relieve asthma. It is not of benefit for the arrest of internal hemorrhage other than in the digestive tract. This follows because it does not contract the vessels of the brain and lungs and because its effect in increasing general blood tension is inimical to its local effects in constricting vessels. Reichert, as the result of his experiments on morphinized dogs, believes that adrenalin is a valuable and rapidly acting stimulant to the heart, vasomotor system and respiration in poisoning by opium and anesthetics. Adrenalin solution undiluted may be applied on absorbent cotton in pruritus of anus or vulva.
The latest experimental and clinical studies show adrenalin is of chief value for internal use in conditions of greatly reduced blood pressure, as in poisoning by ether, by chloral, and in surgical shock, but not in chloroform inhalation. Here it is now considered an efficient remedy, although its action is very transient. In these conditions adrenalin solution should be injected directly into a vein. Horses, \(m \times x \), dogs, \(m \times ii \). Ten times this dosage may be safely given into a vein slowly with a saline infusion. Bossi has artificially produced osteomalacia in sheep by removal of one adrenal gland. Treatment has likewise been successful in osteomalacia in the human, and in rickets in puppies by intramuscular injection of 1-1,000 adrenalin solution (\(m \times v-x v \) t.i.d.).

Administration.—Adrenalin is preferable to the so-called suprarenal extracts, the dried and powdered suprarenal capsules of sheep and oxen. When the drug is given by the mouth or rectum, its action on the system at large is slow and uncertain, owing to the tardiness of absorption, presumably due to the vascular constriction it occasions and to its rapid decomposition. Intravenous injection is most effective in solutions of 1 to 10,000, or more dilute, in normal salt solution. Subcutaneous injection is somewhat uncertain owing to slow absorption, through vascular constriction. But the 1-1,000 solution (\(H \), 5 i; \(D \), \(m \times x \)) may be injected deep into the muscle with certain effect and without irritation. A stronger solution than 1 to 10,000 may cause an abscess if the drug be given hypodermically. The doses of adrenalin chloride by mouth in 1 to 1,000 solution subcutaneously or intramuscularly are: Dogs, \(m \times x-x v \), (0.6-1); horses, 5i-iv, (4-15). Adrenalin should be repeated once in two hours when given internally as an hemostatic. It is an expensive drug.

Hypophysis Sicca. Desiccated Hypophysis. (U. S. P.)

The posterior lobe obtained from the pituitary gland of cattle, cleaned, dried, and powdered. A yellowish or grayish, amorphous powder, having a characteristic odor and but partially soluble in water.

Dose.—About 1/30 of the solution of hypophysis.

Liquor Hypophysis. Solution of Hypophysis. (U. S. P.)

A colorless, or nearly so, transparent, watery extract of the principle of the fresh posterior lobe of the pituitary gland of cattle, sold under name of Pituitrin.

Derivation.—Extract finely minced gland with acidulated water, boil the solution 10 minutes and filter and sterilize. One mil diluted 20,000 times has the same activity on the isolated uterus of the virgin guinea pig as a 1 to 20,000,000 solution of beta-iminazolyl-ethylamine-hydrochloride.

Efforts to isolate an active principle from the posterior lobe have thus far been unsuccessful. The action of the extract is attributed to a hormone (Schaefer). Administration of pituitrin will not offset the effects of removal or disease of the gland (acromegaly, gigantism, obesity, wasting or imperfect development of the sexual organs) since it is the functioning of the anterior lobe which chiefly controls growth and development of the body. Removal of the anterior lobe, or of the whole pituitary gland, in dogs, causes death in 2 to 5 days with coma, glycosuria, relaxed muscles, and slow feeble pulse and respiration (Cushing).

Peritz finds disease of the pituitary gland may be classified as follows: Dwarfism is due to hypo- and gigantism and acromegaly to hyper-function of the anterior lobe. Decreased function of the posterior lobe causes adiposity, while hyper-function results in diabetes insipidus. These forms may be mixed as adi-
positivity with dwarfism or acromegaly. Disease of the pituitary with that of other glands, as the genitals, leads to enuchoidism, etc.

Dose.—Mares and Cows, 3i-iii, (4-12); Sows and Ewes, ml 45, (3); Bitches, ml xv, (1), as oxytocic.

Actions.—Pituitrin somewhat resembles adrenalin in its effect upon the body. The mechanism by which this effect is produced is different in the case of the two agents. When injected intravenously pituitrin causes a rise of blood pressure, which is rather less than that obtained with adrenalin, but lasts longer (5 to 30 or even 60 minutes). The heart's action is also slowed but not increased in strength. Experiments show that pituitrin stimulates directly smooth muscle and this explains its action on vessel walls, and also accounts for its influence in stimulating intestinal peristalsis and uterine contractions of the pregnant organ. Another important distinction between these glandular products: While adrenalin fails to constrict the arteries of the lungs, brain and heart, because of the absence of sympathetic constrictor fibres in the vessels of these organs, pituitrin causes contraction of the pulmonary, cerebral and coronary arteries by stimulating the muscular coat of these vessels.

The arterioles of the spleen and kidney are dilated, and diuresis follows the action of pituitrin from increased blood pressure. Pituitary extract apparently increases the flow of milk and fat but only empties out all the secretion by stimulation of smooth muscle. It lessens polyuria in diabetes insipidus. It has no action on the non-pregnant womb. Like adrenalin, the action of pituitrin is most marked after intravenous, subcutaneous and intramuscular injection, and is practically nil when the extract is given by the mouth. Pituitary extract inhibits to a certain extent the secretion of the thyroid, in hyperthyroidism, and also that of the pancreas. Pituitrin is not especially toxic, since neither 15 mls of the extract by the mouth, nor 3 mls hypodermically, caused any poisonous symptoms in 400 Gm. guinea pigs (Houghton).

To summarize: Pituitrin (posterior lobe) stimulates smooth muscle and hence the heart, vessel walls, uterus and intestines; it increases certain secretion, as the urine; and causes contraction of the arterioles of the lungs, brain and heart; and increases carbohydrate metabolism. The anterior part of the gland increases oxidation, stimulates growth of skeletal and connective tissue, and aids development of the sexual organs.

Uses.—The uses of pituitrin hang directly upon its known physiological action. Thus it is given intravenously to constrict blood vessels in shock. While its action is less powerful and sudden, its influence is more permanent, than that of adrenalin.

It has been largely employed to stimulate rhythmic contractions of the parturient (human) uterus in inertia. Unless the os is fully dilated the contractions produced by pituitrin are occasionally so violent as to cause rupture of the uterus—which has occurred in several reported cases, but it is a valuable drug in uterine inertia in bitches, cats and sows. In tympanites—especially that due to atony of the intestines following surgical operations—pituitrin is sometimes immediately successful. In flatulent colic of the horse pituitrin is worthy of trial. It appears to be the most certain agency for rapidly evacuating the bowels in human
medicine. It may be used as a quickly acting diuretic, or to stop pulmonary hemorrhage. In some cases of rapid heart (tachycardia) pituitrin has proved serviceable. In shock it should be given intravenously; in other conditions subcutaneously or intramuscularly.

The anterior lobe has been given with success in human medicine to stimulate growth and sexual functions in infantilism and dwarfism; and in a condition where there is great obesity, poor development of the sexual organs and general lassitude. The human dose of the powdered anterior lobe is 2 to 3 grains; of the posterior lobe, gr.ss.

Cantharis. Cantharides. (U. S. & B. P.)

Synonym.—Spanish flies, blister beetles, muscae hispanice, E.; cantharides, Fr.; spanische fliegen, canthariden, G.; cantharides, P. G.

Cantharis is the beetle, Canthoris vesicatoria De Geer (Fam. Meloidea, order Coleoptera), and yielding not less than 0.6 per cent. of cantharidin.

Habitat.—Southern Europe, Germany and Russia; living chiefly on Oleaceae and Caprifoliaceae.

Description.—From 15 to 25 mm. in length, 5 to 8 mm. in breadth, oblong, somewhat compressed above; of a brilliant green or bluish-green, metallic luster, changing in different parts, especially beneath, to a golden-green; head triangular, separated into two lateral lobes by a faint median line; mandibles stout and partly concealed; antennae filiform, of 11 conical joints, the upper ones being black; eyes comparatively small, prothorax angulate; legs with five tarsal joints; wings membranous and brownish; elytra or wing sheaths each with two parallel lines and finely wrinkled; odor strong, disagreeable; taste slight, afterwards acrid. Cantharides with an ammoniacal odor must not be used.

Constituents.—1, the active principle is cantharidin, $C_{9}H_{18}O_{4}$ (0.6 to 2 per cent.), in colorless scales, insoluble in water, soluble in alcohol, ether, chloroform, oils, acetic acid and acetic ether; it is found chiefly in the generative organs, eggs, and blood of the beetles; 2, a volatile oil; 3, a bland, green oil; 4, acetic and uric acids, extractives and salts; cantharides deteriorates with age and should be kept unpowdered in tightly stoppered bottles.

Dose.—H. & C., gr.v-xx, (3-1.3); Sh. & Sw., gr.iv-viii, (25-5); D., gr.i-ii, (.06-12).

PREPARATIONS.

Tinctura Cantharidis. Tincture of Cantharides. (U. S. & B. P.)

Made by maceration with heat for 24 hours and percolation of cantharides, 100; with alcohol to make 1000. (U. S. P.)

Dose.—H. & C., 5ii-iv, (8-15); D., mii-xv, (12-1).

Ceratum Cantharidis. (U. S. P.)

Cantharides powdered, 350; glacial acetic acid, 25; oil of turpentine, 150; yellow wax, 175; rosin, 175; and benzoinated lard to make 1000.

Unguentum Cantharidis. (B. P.)

Action External.—Cantharides, by virtue of cantharidin, is an intense irritant. When applied to the skin in ointment it produces no effect for several hours, but after that time causes dilatation of the cutaneous vessels, hyperemia, and blisters, which appear in from 3 to 12 hours. The blisters soon break, discharge their serous contents, and then dry and crust the surface. If the action of cantharides is maintained continuously; if the application is repeated or covered with a bandage; or if the skin was previously inflamed, then inflammation of the deeper-seated parts ensues, followed by suppuration, sloughing, loss of tissue, destruction of hair follicles, and scars. The drug is therapeutically a rubefacient and vesicant, and counter-irritant, in occasioning dilatation of the superficial vessels, and reflexly, contraction of those in the remote underlying
parts. Cantharides acts more powerfully on the skin of horses and dogs, than on that of cattle and swine. If applied over an extensive surface, absorption and poisoning may occur.

Action Internal.—Cantharides affects mainly the digestive and genito-urinary tracts. It is a violent gastro-intestinal irritant. Toxic doses cause vomiting, in animals capable of the act, at first bilious (and containing greenish specks of the wings and wing cases), then mucous, and finally bloody. There is purging in all associated with great pain and straining, of a mucous, fibrinous, and often hemorrhagic character. There are salivation, swelling and pain in the salivary glands. The gastro-enteritis is accompanied by general prostration, and feeble, rapid pulse. A few hours after the occurrence of the preceding symptoms there is enough absorption of cantharidin to induce lumbar pain, followed by frequent, scanty and painful micturition (strangury). The urine is albuminous and often bloody. Cantharides is eliminated chiefly by the kidneys, but also to some extent by the other excretory organs, including the skin. Sexual excitement may be present in poisoning. It is more common with small than large toxic doses. There are eruptions and great heat in the penis, and even inflammation and sloughing of the organ. Abortion is precipitated in the pregnant, and "heat" is hastened in the non-pregnant female. Stupor, coma, and collapse close the scene after lethal doses. Twenty grains of cantharides have killed a man; forty, a dog; one dram has destroyed a horse.

The treatment includes the use of emetics or the stomach tube; opium, to relieve pain and strangury; albuminous, mucilaginous drinks; and, in collapse, external heat, alcoholic stimulants, camphor, digitalone, strychnine and atropine under the skin. Oils and fats dissolve cantharidin and must not be given in poisoning as demulcents.

Post-Mortem Appearances.—Swelling, congestion, ecchymoses, and erosion of the gastro-intestinal mucous membrane are observed after death by cantharides. There are, moreover, lesions of acute nephritis and cystitis, with inflammation of the whole genito-urinary mucous membrane. Hyperemia of the brain and spinal cord have also been reported.

Uses External.—Cantharides is employed more frequently than any other counter-irritant, to cause blistering, in veterinary practice. The reader is referred to the section on counter-irritants (p. 491) for an account of their actions. The action of cantharides is too tardy and irritating, and there is too much danger of absorption and poisoning to recommend it for the production of counter-irritation over an extensive area (chest and abdomen) in acute pulmonary congestion, pneumonia, bronchitis, colic, enteritis and peritonitis. Mustard, turpentine, and external heat are generally preferable in these disorders.

A blister of cantharides is serviceable in pericarditis and pleuritis with effusion, and, applied over the throat in severe, acute laryngitis, may obviate the necessity of tracheotomy. Again, blisters are useful on the poll in inflammation of the brain and its membranes; and over the spine in myelitis and meningitis; over the lumbar region in paraplegia.

A cantharidal application is often efficacious in muscular or joint
rheumatism when placed over the affected area, or near by, in acute conditions. Furthermore, a cantharides blister is of advantage in acute diseases of the ear, when rubbed in above and behind this organ; and will relieve pain in the stomach, and vomiting when applied to the epigastrum.

Cantharides is the remedy usually employed in the treatment of diseases of the bones, joints, bursæ, ligaments, and tendons. In exostoses, as spavin and ringbone, the ointment is used most effectively after the actual cautery, to secure absorption and resolution, or anchylosis. Cantharidal ointment is often sufficient, together with complete rest, in the treatment of synovitis, and strains of tendons and ligaments. A cantharides blister is, sometimes, beneficial in hastening the formation of abscesses ("strangles"); or to aid their resolution after paracentesis; also to stimulate indolent ulcers or wounds; and to assist absorption of traumatic indurations, when applied around these lesions. The actual cautery, followed by a cantharides blister, will cause swelling and close the opening in the abdominal parietes of small umbilical hernias of foals and calves.

Likewise, blisters are valuable in closing and sealing punctured wounds into joints and synovial cavities.* Cantharides is commonly employed in ointment (1 to 4 to 8) made by melting and mixing the excipients in a double boiler; i.e., over a water bath, and stirring in thoroughly the powdered drug. The following is a good preparation:

<table>
<thead>
<tr>
<th>B</th>
<th>Pulv. cantharidis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceræ flav.</td>
</tr>
<tr>
<td></td>
<td>Adipis</td>
</tr>
<tr>
<td>M.</td>
<td>External use.</td>
</tr>
</tbody>
</table>

More powerful are the following:

<table>
<thead>
<tr>
<th>B</th>
<th>Pulveris cantharidis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulveris euphorbii</td>
</tr>
<tr>
<td></td>
<td>Hydrarg. chloridi corros.</td>
</tr>
<tr>
<td></td>
<td>Petrolatii</td>
</tr>
<tr>
<td></td>
<td>Ceratii</td>
</tr>
<tr>
<td>M. et fiat unguentum.</td>
<td></td>
</tr>
</tbody>
</table>

Sig. Apply externally as directed.

<table>
<thead>
<tr>
<th>B</th>
<th>Pulveris cantharidis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydrgyri iodidi rubri</td>
</tr>
<tr>
<td></td>
<td>Adipis</td>
</tr>
<tr>
<td>M. et fiat unguentum.</td>
<td></td>
</tr>
</tbody>
</table>

Sig. Apply externally as directed.

The technique of blistering consists in cutting the hair and washing the part to be blistered, and rubbing the blister long and thoroughly into

*The U. S. P. cerate may be used, as it is a powerful preparation. Its strength is 82 per cent. cantharides.
the skin. The animal should be controlled by tying up the head, or using a cradle, or side-bar attached to the halter and surcingle, to prevent horses from biting the blistered area. The tail should be tied up if the blister is applied within its reach. Dogs should be muzzled, but are apt to rub the sore spot. The serum discharged from the blister must be continually sponged off with soap sudz and water, to prevent excoriation of the subadjacent skin, or the latter may be covered with rosin cerate, or, better, a solution of rosin in alcohol, by means of a brush.

The blister is washed off in 36 or 48 hours after its application, and vaseline should thereafter be kept on the part. The use of cantharoidal blisters is contraindicated in weak or young animals, usually in dogs; on the flexures of joints; or delicate skin on the inner aspect of the upper part of the limbs; on acutely inflamed areas; and in renal disease.

Uses Internal.—Cantharides is rarely administered internally. It is sometimes successful in stopping incontinence of urine, when due to relaxation of the neck of the bladder, and it may be used as a stimulant in chronic cystitis and pyelitis. Cantharides is recommended to increase sexual desire in cows and mares, but it has usually to be given in toxic doses to produce an aphrodisiac action. The tincture should be employed when the drug is exhibited internally.

Adeps. Lard. (U. S. & B. P.)

Synonym.—Axungia, axungia porci s. porcina, prepared lard, hog’s lard, E.; axonge, graisse de porc, Fr.; schweineschmalz, G.; adeps suillus, P. G.
The purified internal fat of the abdomen of the hog (Sus. Scrofa Var. domesticus Gray Fam. Suidae).

Properties.—A soft, white, unctuous solid, having a faint odor free from rancidity, and a bland taste; insoluble in water; very slightly soluble in alcohol; readily soluble in ether, chloroform, carbon disulphide, or benzin. Melts between 36° and 42° C. to a clear liquid.

Preparations.

Ceratum. Cerate. (U. S. P.)

Synonym.—Cerat simple, Fr.; einfaches cerat, wachssalbe, G.
White wax, 300; benzoinated lard, 700.

Unguentum. Ointment. (U. S. P.)

Synonym.—Unguentum simplex, B. P.; simple ointment, E.; pommade simple, Fr.; wachssalbe, G.
Benzoinated lard, 800; white wax, 200. (U. S. P.)

Adeps Benzoinatus. (See p. 375.)

Synonym.—Mutton suet, E.; graisse de mouton, Fr.; hammeltalg, G.; sebum ovile, P. G.
The internal fat of the abdomen of the sheep Ovis aries Linné (Fam. Bovidæ), purified by melting and straining.

Properties.—A white, solid fat, nearly inodorous, and having a bland taste when fresh, but becoming rancid on prolonged exposure to the air. Insoluble in water or cold alcohol; soluble in about 60 parts of ether, and slowly in 2 parts of purified petroleum benzin.

 Constituents.—1, olein; 2, stearin; 3, palmitin; 4, hircin.

Synonym.—Lanolin, E.; wasserhaltiges wollefett, G.
The purified fat of the wool of sheep (Ovis aries, Linné; Fam. Bovidæ), combined with not less than 25 nor more than 30 per cent. of water.
WAX

Properties.—A yellowish-white, or nearly white ointment-like mass, having not more than a slight odor. Insoluble in water, but miscible with twice its weight of the latter, without losing its ointment-like character.

Constituents.—1, cholesterin, \(C_{30}H_{47}(OH) \); 2, ethers of oleic, stearic, palmitic and other acids.

Adeps Lânæ. (U. S. & B. P.)

(Wool fat without water. Anhydrous lanolin.)

Action and Use of Lard, Suet, and Hydrous Wool Fat.

Lard is used mainly as a basis of ointments and cerates. Benzoin is commonly added to it to prevent or retard rancidity. Lard is inferior to petrolatum as a lubricant. It is rarely given internally as an antitode to caustic alkalies, and as a demulcent.

Suet is contained in certain ointments and plasters. It is harder than lard and becomes rancid on prolonged exposure. Lanolin is not subject to rancidity, but possesses no particular medicinal action. It is indicated where absorption of some drug is desired (mercury, potassium iodide) by inunction as it is believed to be more readily absorbed from the skin than any other fat. Lanolin is used as a basis of ointments. It may be mixed with twice its weight of water without losing its ointment consistency.

Cera Flava. Yellow Wax. (U. S. & B. P.)

Synonym.—Beeswax, E.; cire jaune, Fr.; gelbes wachs, G.

A product obtained by melting and purifying the honey comb of the bee, Apis mellifica Linné (Fam. Apidae).

Properties.—A yellow to gray-brown solid, having an agreeable, honey-like odor, and faint, characteristic taste. Spec. gr. 0.950-0.960. It is brittle when cold; by the heat of the hand it becomes plastic; melts between 62° and 65° C. Insoluble in water; sparingly soluble in cold alcohol, but completely soluble in ether, chloroform, fixed and volatile oils.

Constituents.—1, myricin or myrical palmitate \(C_{30}H_{61}, C_{16}H_{50}O_2 \), a spermaceti-like substance; 2, erin or eretic acid \(C_{27}H_{43}O_2 \), an imperfectly saponifiable waxy body; 3, hydrocarbons \(C_{30}H_{50} \) and \(C_{28}H_{48} \) 12 per cent.; 4, an alcohol \(C_{25}H_{43}O \); 5, ceryl alcohol \(C_{27}H_{47}O \).

Cera Alba. White Wax. (U. S. & B. P.)

Synonym.—Cire blanche, Fr.; weisses wachs, G.

Yellow wax, bleached.

Properties.—A yellowish-white solid, somewhat translucent in thin layers, having a faint, characteristic odor. It is free from rancidity and nearly tasteless. Spec. gr. 0.950-0.960. Solubility, melting point, and composition the same as those of yellow wax.

Uses.—Yellow and white wax are used as bases for plasters, ointments and cerates, since they do not decompose nor melt at the temperature of the body.

Cetaceum. Spermaceti. (U. S. & B. P.)

Synonym.—Blanc de baleine, cétine, Fr.; walrat, G.

A concrete, fatty substance, obtained from (the head of the sperm whale) Physeter macrocephalus Linné (Fam. Physeteridae).

Habitat.—Indian and Pacific Oceans.

Properties.—White, somewhat translucent, slightly unctuous masses of a scaly, crystalline fracture, a pearly lustre; a very faint odor, and a bland, mild taste. It becomes yellow and rancid by exposure to the air. Spec. gr. 0.938 to 0.944. Insoluble in water, nearly so in cold alcohol; soluble in ether, chloroform, carbon disulphide, fixed and volatile oils.
Constituents.—1, chiefly a fat, cetin or cetyl palmitate \((C_{36}H_{72}O_{6})\), composed of cetyl alcohol \((C_{16}H_{33}OH)\) and palmitic acid \((HC_{16}H_{31}O_{2})\); 2, sperm oil, a small quantity.

PREPARATION.

Unguentum Cetacei. (B. P.)

Spermaceti, white wax, and olive oil. Made by melting and mixing.

Action and Uses.—Spermaceti resembles wax. It is used as an emollient and as a basis for plasters, ointments, and cerates. It is rarely used alone.

Mel. Honey. (U. S. & B. P.)

Synonym.—Miel, Fr.; honig, G.

A saccharine secretion deposited in the honeycomb by the bee, Apis mellifica Linné (Fam. Apidae).

Properties.—A thick, syrupy liquid of a light yellowish or yellowish-brown color; translucent when fresh, but gradually becoming opaque and crystalline; having a characteristic odor, and a sweet, faintly acid taste. Nearly soluble in water.

Constituents.—1, grape sugar (dextrose); 2, fruit sugar (glucose); 3, a volatile oil; 4, wax; 5, formic acid, a trace. Fresh honey contains sucrose or cane sugar, which is changed into grape and fruit sugars.

PREPARATION.

Mel Depuratum. Clarified Honey. (U. S. & B. P.)

Synonym.—Mel depuratum, P. G.; miel despumé, mellitate simple, Fr.; gereinigter honig, G.

Derivation.—Melt honey with two per cent. of its weight of paper-pulp in water bath; skim, strain, and add five per cent. of its weight of glycerin.

Dose.—Ad lib.

Honey is employed as an excipient in electuaries and confections. It is a demulcent and mild laxative for young animals. Oxymel (clarified honey, 8 parts; water and acetic acid, each 1 part) is a soothing preparation for the throat.

Saccharum Lactis. Sugar of Milk. \((C_{12}H_{22}O_{11}+H_2O)\) (U. S. & B. P.)

Synonym.—Lactose, lactin, milk sugar, E.; sucre de lait, Fr.; milchzucker, G.

Lactose obtained from the whey of cows' milk, by evaporation, and purified by recrystallization.

Properties.—White, hard, crystalline masses, or as a white powder, producing a gritty feeling on the tongue; odorless, and having a faintly sweet taste. Permanent in the air. Soluble in about 4.9 parts of water; insoluble in alcohol, ether, or chloroform.

Dose.—Ad lib.

Uses.—Sugar of milk is less soluble and therefore less sweet than cane sugar. It is harder, and thus assists in the subdivision of drugs, and serves as a vehicle in the making of powders and triturates. It also forms the basis of homeopathic preparations.

Sugar of milk is a considerable diuretic and may be given to dogs in 2 to 4 dram doses daily, in solution in the drinking water, for dropsy of renal or cardiac origin.

Pepsinum. Pepsin. (U. S. & B. P.)

Synonym.—Pepsine, Fr.; pepsin, G.

A mixture containing a proteolytic ferment or enzyme, obtained from the glandular layer of the fresh stomach of the hog \(Sus\ scrofa\, var. domesticus\).
Grain, (Fam. Suidæ). It digests not less than 3000 times its own weight of freshly coagulated and disintegrated egg albumin.

Derivation.—The chopped mucous membrane of a pig’s stomach is macerated for several days in a weak, aqueous solution of hydrochloric acid, with frequent stirring. The pepsin is precipitated from this solution by the addition of sodium chloride and rises to the surface. The floating mixture is skimmed off, drained, pressed and dried. Sometimes the surface of the clean mucous membranes of the stomach of pigs, calves, or sheep is simply scraped off and dried.

Properties.—Lustrous white, pale yellow or yellowish, transparent or translucent scales or grains, or spongy masses, or a fine white or cream-colored amorphous powder, free from any offensive odor, and having a slightly acid or saline taste. It should be more than slightly hygroscopic.

Soluble in about 50 parts of water, the solution being more or less opalescent; more soluble in water acidulated with hydrochloric acid; nearly insoluble in alcohol, ether or chloroform.

Pepsin, when in solution, is incompatible with alkalies, alkaline earths, or alkali carbonates.

Dose.—D., calves and foals, gr.x-.5i, (.6-4).

Preparations.

Glycerinum Pepsini. (B. P.)

(Contains hydrochloric acid, 3i=gr.v pepsin.)

Dose.—D., 5i-ii.

Action and Uses.—Pepsin is of some value in the treatment of dogs and young animals. It assists the digestion of proteids in the stomach, but has no action on fat or carbohydrates of the food. The drug should usually be given along with hydrochloric acid, which converts any pepsinogen, in the gastric tubules, into pepsin. Pepsin contains the unorganized digestive ferment of the gastric juice, but is not by any means the pure ferment, which has never been isolated.

Much of the commercial pepsin is inert, or is composed largely of mucus, albumin and peptone, which later gives the preparation a musty odor and causes it to absorb moisture when exposed to the air, and to become sticky.

Pepsin is serviceable in gastric indigestion of young animals, which is sometimes accompanied by diarrhea, and in dyspepsia and feeble digestion caused by acute illness. Its use must not be long persisted in, as the normal functions of the stomach will fail from lack of use. Pepsin is administered in pill, or solution with hydrochloric acid.

Pancreatinum. Pancreatin. (U. S. P.)

Synonym.—Zymine, B. P.; pancreatina, Fr.; pankreatin, G.

It contains enzymes, consisting principally of amylolysin, trypsin, and steapsin, found in the pancreas of warm-blooded animals, and obtained from the fresh pancreas of the hog (Sus scrofa var. domesticus Gray) (Fam. Suidæ), or of the ox (Bos taurus Linné) (Fam. Bovidë). It converts not less than 25 times its own weight of starch into soluble carbohydrates when assayed as directed U. S. P. Pancreatin of a higher digestive power may be brought to this standard by admixture with sugar of milk. Preserve it in well-closed containers.

Derivation.—Chopped hog’s pancreas is macerated in a dilute aqueous solution of hydrochloric acid for 48 hours, and pancreatin, which is separated by adding a saturated solution of sodium chloride, rises to the surface and is skimmed off, drained, washed, and when nearly dry, is diluted with sugar of milk until 10 grains will exactly emulsify 2 drams of cod-liver oil.

Properties.—A yellowish, yellowish-white or grayish, amorphous powder; odorless, or having a faint, peculiar, not unpleasant odor, and a somewhat meat-like taste. Slowly and almost completely soluble in water; insoluble in alcohol.

Dose.—D., gr.v-xv, (.3-1).
Action and Uses.—Pancreatin fulfills a fourfold function by virtue of the four ferments contained in it. It digests proteids by means of the ferments, trypsin and myosin; it decomposes and emulsifies fat owing to the ferment, steapsin; it converts starch into sugar by reason of the ferment, amyllopsin; it coagulates milk through the action of a milk-curdling ferment. Pancreatin is thus more useful than pepsin on account of its more extended actions.

It does not digest food in an acid medium, but may aid digestion in the stomach, before much gastric juice has been secreted, during the first half hour after the ingestion of food. Pancreatin acts more efficiently in intestinal indigestion because of the presence of an alkaline secretion. For this reason pancreatin is commonly prescribed with sodium bicarbonate, and, if given for intestinal indigestion, it is administered in pill or tablet to dogs one or two hours after feeding. It is indicated in diarrhea, when the fecal movements contain particles of undigested food (especially fat), and in other forms of deficient digestion due to general disease. Pancreatin is more especially valuable to digest food previous to its administration by the mouth or rectum (see Artificial Feeding, p. 490). For this purpose a good preparation can be made extemporaneously by washing and cutting up a fresh pig’s pancreas, soaking it in absolute alcohol for 24 hours, pressing out the alcohol, macerating it in ten times its weight of glycerin for 48 hours, and filtering. The filtered glycerin extract is added in the proportion of 5i to the pint of warm milk, with a little sodium bicarbonate, to artificially digest it.

Fel Bovis. Oxgall. (U. S. P.)

Synonym.—Bile (fiel) de boeuf, Fr.; ochsengalle, G.
The fresh bile of the ox, Bos taurus Linné (Fam. Bovidae).

Properties.—A brownish-green or dark green, somewhat viscid liquid, having a characteristic odor, and a disagreeable, bitter taste. Spec. gr. 1.015 to 1.025. It is neutral, or faintly alkaline.

Preparation.

Extractum Fellis Bovis. Powdered Extract of Ox Gall. (U. S. P.)

Synonym.—Fel bovinum purificatum, B. P.; fiel de boeuf purifié. Fr.; gerenigte ochsengalle (rindsgalle), G.
Macerate ox gall, 800; with alcohol, 1000, and decant liquid portion. Wash remainder with alcohol, 500. Decant liquid portion and add to first, and filter mixture. Distill alcohol from filtrate; evaporate and dry residue. Add starch to make product weigh 100 Gm.

Dose.—Same as for oxgall.

Dose.—D., gr. v-xv, (3-1).

Actions and Uses.—Purified oxgall contains all the active elements of bile,—biliary acids, coloring matter and cholesterol. One part of oxgall represents about fifteen parts of bile. Most of the bile ingested is absorbed from the stomach (where it may act as a simple bitter), and small intestines, and is carried to the liver. From the liver it is not only excreted again into the bowel but it also stimulates the secreting cells of the liver (by means of bile acids) and increases the secretion of bile. Bile is in fact the only certain cholagogue known.

Bile has but a feeble antiseptic action, yet it excites the secretion of the pancreatic fat-splitting ferment and aids the absorption of fat in the food. In thus aiding digestion it prevents the fetid feces seen in
biliary obstruction. Bile, moreover, assists the solubility and action of certain cathartics, viz., podophyllum, rhubarb, scammony, aloes and jalap—and has a laxative action itself, probably through the irradiation of bile acids on the large intestines. Bile is indicated medicinally in obstruction to the normal flow of bile—to aid intestinal digestion—and also to facilitate the action of the cathartics noted above. It may be used also to advantage in enema for dogs with chronic constipation and impacted feces (2 drams to 2 ounces of water). Internally it is given to dogs in pills 2 hours after meals.

Papain. (Non-official.)

(Not of animal origin, but therapeutically related to above.)

Synonym.—Papayotine, papaya, papayine, papoid.

A digestive ferment obtained from the juice of the unripe fruit of Carica papaya (Papaw), an herbaceous tree growing in the East and West Indies. Papain or papayotine is often used to describe the dried juice itself, which exists in the form of a powder similar to that of gum arabic. Papain occurs in the form of a white, or greyish-white, nearly tasteless powder, soluble in glycerin and water. Papain is said to digest both proteids and carbohydrates, in either an acid or alkaline medium, and is recommended in gastric or intestinal indigestion in pill or powder. It has also been used to destroy pyogenic membrane of fistulae and abscess, in per cent. solution; or tumors and malignant growths, injected into the tissues in 10 per cent. solution. This latter use is accompanied by pain and febrile temperature, although the substance is said to merely dissolve diseased tissues without caustic effect. Papain may be given to dogs, foals, or calves in doses of gr.ii-x, (.12-6).

Oleum Morrhuæ. Cod Liver Oil. (U. S. & B. P.)

Synonym.—Oleum jecoris ascelli, P. G.; cod oil, E.; huile de morue, huile de foie de morue, Fr.; leberthran, stockfischleberthran, G.

A fixed oil obtained from fresh livers of Gadus morrhua Linné and other species of Gadus (Fam. Gadidae).

Habitat.—North Atlantic Ocean.

Properties.—A pale-yellow, thin, oily liquid, having a peculiar, slightly fishy, but not rancid odor, and a fishy taste. Spec. gr. 0.918 to 0.922. Slightly soluble in alcohol, but soluble in ether, chloroform or carbon disulphide, or ethyl acetate. Brown oils are not desirable therapeutically.

Constituents.—1, glycerin oleate (or olein), 70 per cent; 2, palmitin and stearin, 25 per cent.; 3, oleic, margarin, palmitic, stearic, butyric, and acetic acids, in small quantities; 4, binary matter, as cholic, folicin and bilifellinic acids; 5, gaduin (C₂₆H₄O₃); 6, morrhoul, a crystalline substance containing iodine, phosphorus and bromine; 7, traces of iron, lime, and magnesia; 8, decomposition products or cadaveric alkaloids, in brown oils.

Dose.—H. & C., iii-v, (60-120); Sh. & Sw., iss-i, (15-30); D. & C., i-iii, (4-12).

Action Internal.—Cod liver oil resembles other oils in aiding nutrition, the accumulation of fat, and the maintenance of bodily heat, but surpasses them in three particulars: 1, cod liver oil is more easily absorbed; this has been proved comparatively by injecting various oils into separate ligated portions of the living animal bowel; 2, cod liver oil is more readily oxidized after absorption; this is shown by the fact that it reduces and therefore changes the color of potassium permanganate solutions more quickly than other oils; 3, cod liver oil increases the number of red blood corpuscles in anemia; this has been demonstrated by blood-counts, but not by comparison with the effect of other oils. The ease of absorption is thought by some to be due to biliary principles which
aid the diffusion of substances through a mucous membrane (osmosis) when the latter is moistened by bile; by others it is attributed to the presence of free acids in the oil which would tend to saponify and emulsify the drug. The medicinal superiority of cod liver oil has led many writers to classify it as an alterative, and special properties have been referred to the minute traces of iodine, phosphorus, and bromine in the oil. These agents exist in too infinitesimal an amount to exert much therapeutie action.

It is probable that no one constituent, or group of constituents, yet separated from the oil truly represent its medicinal effect. Cod liver oil is inferior to other oils in one respect, however, and this consists in its liability to cause nausea, indigestion, diarrhea and vomiting, in large doses and in some patients.

Administration.—Cod liver oil may be given pure, or if this does not agree, it may be exhibited in various ways: 1, with an equal quantity of lime water and a little syrup; 2, with ether (mlx), small animals; 3i to large animals; or with whisky; 3, shaken with white of an egg, or mucilage of tragacanth, and a few drops of oil of peppermint; 4, to dogs, in one of the proprietary emulsions, or with malt extract. The oil should be given after feeding and administration begun with the smaller doses as recommended above.

Uses.—Cod liver oil is indicated generally in conditions of malnutrition occurring primarily; in the course of chronic diseases; or following acute diseases. It is especially indicated in diseases of the respiratory tract, when it improves the nutrition of the mucous membranes, as well as the general nutrition. Thus cod liver oil is one of the best remedies in tardy convalescence from canine asthma and distemper; from influenza, bronchitis, pneumonia and strangles in horses; also in “heaves,” emphysema, or broken wind in horses. Carron oil is cheaper and very efficient in the latter disorder, given on the food.

Cod liver oil is valuable in the treatment of chronic bronchitis, chronic eczema, and chorea of dogs; and in rickets, anemia, weakness, and emaciation in all young animals. It often proves curative in various forms of muscular and chronic articular rheumatism, and facilitates the absorption of chronically enlarged glands. The use of cod liver oil is contra-indicated in hot weather, and in animals suffering from indigestion or acute diarrhea. It is often beneficial, however, in chronic diarrhea.

Linseed oil, oil cake, and cottonseed meal may often be conveniently and properly substituted for cod liver oil, in the case of the large patients; while morrhul (gr.iii—1 teaspoonful cod liver oil?) given in pills, or lipanin (oleic acid, 6; olive oil, 100) may be exhibited in dram doses to dogs when cod liver oil does not agree.

Ichthylum. Ichthyol. (Non-official.)

Synonym.—Ammonium ichthyol sulphonate, E.; housenblase, G.; colle de poison, Fr.

Derivation.—A bituminous quartz occurring in the Tyrol Mountains, containing the fossil remains of fish, is distilled with strong sulphuric acid, and sulphurous acids are removed from the distillate by sodium chloride, while sulphonic acid separates out. The latter is usually saturated with ammonia, forming ichthylol;
ICHTHYOL

but similar preparations are made by the combination of sulphonic acid with sodium, lithium and zinc.

Properties.—A thick, dark, reddish-brown liquid, of a tarry consistency, and possessing a peculiar, disagreeable odor and hot, bituminous taste. It is soluble in water, glycerin, alcohol, benzol, fats and fixed oils.

 Constituents.—Ichthyol contains about 15 per cent. of sulphur; also an inseparable volatile oil, to which its disagreeable odor is due.

Action and Uses.—Ichthyol is one of the most widely used drugs recently introduced into medicine. It is employed in the treatment of acute and chronic diseases of the skin and subadjacent tissues, accompanied with inflammation, pain, swelling, and induration; also in epidermal proliferation. Ichthyol is supposed to readily permeate the skin, and there act to relieve inflammation and pain, and aid resolution. It is one of the most commonly prescribed remedies in chronic eczema and urticaria; in erysipelas, muscular and articular rheumatic disorders; and in bruised and strained muscles, tendons and ligaments. The drug is commonly used in the treatment of frost bites, burns, and in causing absorption of lymphatic enlargements. Ichthyol is recommended as a cure for sarcoptic mange and scab. The drug is somewhat antiseptic, and is a stimulant, anodyne and resolvent to the skin, locally. Ichthyol is most satisfactorily applied to the unbroken skin in 25 to 50 per cent. ointment, with lanolin or lard. Solutions in water, glycerin, oils or alcohol, are sometimes employed of various strengths. Ichthyol is rarely given internally for chronic rheumatism.

Thiol is a substitute for ichthyol, lacking the unpleasant odor of the latter medicament. Thiol is derived from brown-colored paraffin or gas-oils, by a complicated process, and consists of a mixture of sulphurated hydrocarbons. The drug exists in two forms: 1, thiolum liquidum, a thin, brownish-black liquid, soluble in water and glycerin; 2, thiolum siccum, occurring in lustrous scales. Thiol is cheaper than ichthyol and is said to be as efficacious as the latter. This remains to be proved. Liquid thiol is employed in 10 per cent. aqueous solution or in ointment; and thiolum siccum in powder, dusted on inflamed parts, as in acute moist eczema.
DOSES OF DRUGS.

In the following table three doses are usually given for each drug. The first dose is for horses and cattle, in both the apothecaries’ and metric systems of weights and measures. The second dose is for sheep and swine, in both the apothecaries’ and metric systems of weights and measures. The third dose is for dogs (and also cats) in both the apothecaries’ and metric systems of weights and measures.

Letters are used to signify the name of the animal for which the dose is intended. Thus: H., Horses; C., Cattle; Sh., Sheep; Sw., Swine; D., Dogs (which also includes cats in most cases).

The following abbreviations are also employed: lb., pound; pt., pint; oz., ounce; dr., dram; m., minim; gr., grain; Gm., gram; mil, milliliter (cc., cubic centimeter). These doses are suitable for animals of average weight.

Dose Table.

Acetanilid.—H. & C., dr. 2-4, (Gm. 8-15). Sh. & Sw., dr. $\frac{1}{2}$-1, (Gm. 2-4). D., gr. 3-7, (Gm. 2-5).

Acetum Ophi.—H., oz. 1-2, (mils 30-60). C., oz. 2-3, (mils 60-90). Sh. & Sw., dr. 2-6, (mils 8-24). D., m. 3-20, (mils 2-1.3).

Acid. Abscens.—H. & C., gr. 2-3, (Gm. .12-.2), single dose, gr. 5-10, (Gm. .3-.6). Sh. & Sw., gr. 1-2, (Gm. .06-.12). D., gr. 1/30-1/10, (Gm. .002-.006).

Acid. Benzoic.—H., dr. 2-4, (Gm. 8-15). D., gr. 5-15, (Gm. .3-1).

Acid. Carbolic.—H., dr. 2-4, (Gm. 8-15). D., gr. 5-15, (Gm. .3-1).

Acid. Parahydruric.—H., oz. 1-2, (Gm. 8-15). D., gr. 5-10, (Gm. .3-6). D., gr. $\frac{1}{2}$-1, (Gm. .08-.06).

Acid. Citric.—H., dr. 2-4, (Gm. 8-15). D., gr. 10-20, (Gm. .6-1.3).

Acid. Gallic.—H. & C., dr. 2-4, (Gm. 8-15). Sh. & Sw., dr. $\frac{1}{2}$-1, (Gm. 2-4). D., gr. 5-20, (Gm. 3-1.3).

Acid. Hydriodic (syrup of).—D., dr. 1, (mils 4).

Acid. Hydrochloric (dilute).—H., dr. 1-2, (mils 4-8). C., dr. 2-4, (mils 8-15). Sh. & Sw., m. 15-20, (mils 1-1.3). Sw. & D., m. 5-20, (mils 3-1.3).

Acid. Hydrocyanic (dilute).—H. & C., m. 20-40, (mils 1.3-2.6). Sh., m. 10-15, (mils .6-1). Sw., m. 2-5, (mils .12-.3). D., m. 1-3, (mils .06-.2).

Acid. Lactic.—H. & C., dr. 2-4, (mils 8-15). D., gr. $\frac{1}{2}$-1, (mils 2-4).

Acid. Nitruric (dilute).—H., dr. 1-2, (mils 4-8). C. dr. 2-4, (mils 8-15). Sh., dr. $\frac{1}{2}$-1, (mils 2-4). Sw. & D., m. 5-30, (mils 3-2).

Acid. Nitrohydrochloric.—H., m. 20-40, (mils 1.3-2.6). D., m. 3-5, (mils 2-3).

Acid. Nitrohydrochloric (dilute).—H., dr. 1-2, (mils 4-8). C., dr. 2-4, (mils 8-15). Sh., dr. $\frac{1}{2}$-1, (mils 2-4). Sw. & D., m. 5-30, (mils 3-2).

Acid. Phosphoric (dilute).—H., dr. 1-2, (mils 4-8). C., dr. 2-4, (mils 8-15). Sh. & Sw., dr. $\frac{1}{2}$-1, (mils 2-4). D., m. 5-30, (mils 3-2).

Acid. Salicylic.—H. & C., dr. 2-8, (Gm. 8-30). Sh., dr. 1-4, (Gm. 4-15). Sw., dr. $\frac{1}{2}$-1, (Gm. 2-4). D., gr. 5-30, (Gm. 3-2).

Acid. Sulphuric (dilute).—H., dr. 1-2, (mils 4-8). C., dr. 2-4, (mils 8-15). Sh., dr. $\frac{1}{2}$-1, (mils 2-4). Sw. & D., m. 10-30, (mils 6-2).

Acid. Sulphuric, Aromatic.—H, dr. $\frac{1}{2}$-1, (mils 2-4). C., dr. 2-4, (mils 8-15). Sh., m. 15-30, (mils 1-2). Sw. & D., m. 5-15, (mils .3-1).

Acid. Sulphurous.—H. & C., oz. 1-2, (mils 30-60). Sh. & Sw., dr. 1-2, (mils 4-8). D., gr. $\frac{1}{2}$-2, (mils 2-8).

Acid. Tannic.—H. & C., dr. $\frac{1}{2}$-4, (Gm. 2-15). Sh. & Sw., dr. $\frac{1}{2}$-1, (Gm. 2-4). D., gr. 1-15, (Gm. .06-.1).

Acid. Tartaric.—H. & C., dr. 2-4, (Gm. 8-15). D., gr. 10-30, (Gm. .6-2).

Aconite.—H., gr. 9-20, (Gm. 2-1.3). D., gr. $\frac{1}{2}$-2, (Gm. .006-.12).
Aconite, Extract of Leaves.—H., gr. 3-6, (Gm. .2-4). D., gr. ½-1, (Gm. .03-06).
Aconite, Extract off.—H., gr. 1-3, (Gm. .06-2). D., gr. ½-4, (Gm. .006-015).
Aconite, Fluid extract off.—H., m. 9-20, (mils .2-1.3). D., m. ½-2, (mils .006-12).
Aconite, Tincture of.—H., m. 20-60, (mils 1.3-4). C., dr. ½-1½, (mils 2-6). Sh. & Sw., m. 10-20, (mils .6-1.3). D., m. 2-10, (mils .12-6).
Aconitine Nitrate (Squibb).—H., gr. 1/30, (Gm. .002). D., gr. 1/400-1/200, (Gm. .00015-0003).

Adrenalin Solution.—(By mouth), H., dr. 2-4, (mils 8-15). D., m 10-60, (mils 0.6-4).

Aloes.—H., oz. ½-1, (Gm. 15-30). C., oz. 1-2, (Gm. 30-60). Sh., oz. ½-1, (Gm. 15-30). Sw., dr. 2-4, (Gm. 8-15). D., gr. 20-60, (Gm. 1.3-4).

Aloin.—H. & C., dr. 2-3, (Gm. 8-12). D., gr. 2-20, (Gm. .12-1.3).

Alum.—H. & C., dr. 2-4, (Gm. 8-15). Sh. & Sw., gr. 20-60, (Gm. 1.3-4). D., gr. 5-10, (Gm. 3-6). Emetic, dr. 1, (Gm. 4).

Ammonia, Spirit of.—H. & C., oz. ½-1, (mils 15-30). Sh. & Sw., dr. 1-2, (mils 4-8). D., m. 10-20, (mils .6-1.3).

Ammonia, Water of.—H. & C., oz. ½-1, (mils 15-30). Sh. & Sw., dr. 1-2, (mils 4-8). D., m. 10-20, (mils .6-1.3).

Ammonia, Stronger Water of.—H. & C., dr. 2-6, (mils 8-24). Sh. & Sw., dr. 1 (mils 4). D., m. 5-10, (mils 3-6).

Ammonium, Solution of Acetate.—H. & C., oz. 2-4, (mils 60-120). D., dr. 2-8 (mils 8-30).

Ammonium Benzoate.—H., dr. 2-4, (Gm. 8-15). D., gr. 5-15, (Gm. 3-1).

Ammonium Carbonate.—H., dr. 2, (Gm. 8). C., dr. 3-6, (Gm. 12-24). Sh. & Sw., gr. 15-40, (Gm. 1.2-6). D., gr. 3-10, (Gm. 2-6). Emetic, D., gr. 15 (Gm. 1).

Ammonium Chloride.—H., dr. 2, (Gm. 8). C., dr. 3-6, (Gm. 12-24). Sh. & Sw., gr. 15-40, (Gm. 1.2-6). D., gr. 3-10, (Gm. 2-6).

Ammonium Valerate.—D., gr. 2-5, (Gm. 12-3).

Amyl Nitrite.—H., dr. ½-1, (mils 2-4). D., m. 2-5, (mils .12-3), by inhalation.

Anise.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 2-3, (Gm. 8-12). D., gr. 10-30, (Gm. .6-2).

Anise, Oil of.—H., m. 20-30, (mils 1.3-2). D., m. 1-5, (mils .06-3).

Anise, Spirit of.—D., m. 1-2, (mils 4-8).

Antimony and Potassium Tartrate.—H., dr. 2-4, (Gm. 8-15). Sw., emetic, gr. 4-10, (Gm. .24-6). D., gr. ½-1½, (Gm. .006-008). Emetic, D., gr. 1-2 (Gm. .006-12).

Antimony, Wine of.—D., m. 5-60, (mils .3-4).

Antipyrin.—H. & C., dr. 6, (Gm. 24). Sh. & Sw., dr. 1, (Gm. 4). D., gr. 5-20, (Gm. 3-1.3).

Anti-Strangles Antitoxin.—H., 30 mils.

Antistreptococcus Serum.—H., 20-50 mils.

Antitoxin Anti-Strangles.—H., 30 mils. Influenza—H., 30 to 90 mils. Tetanus—H., 10 mils as prophylactic.

Apomorphine Hydrochloride.—Subcutaneously—H., gr. ¾, (mils 0.045). Foals, gr. ½, (mils 0.08). Calves & Sheep, gr. ½, (mils 0.08). Cows, gr. 1½, (mils 0.09). D., gr. ½ to ½, (mils 0.006-0.012), as emetic. By the mouth, as expectorant—D., gr. 1/40 to 1/25, (mils 0.0015-0.0024).

Areca Nut.—H., oz. ½-1, (Gm. 15-30). Lamb, dr. 1, (Gm. 4). D., gr. 15-60 (Gm. 1). Fowl, gr. 10-40.

Areca, Fluid extract of.—Dose same as nut.

Arecoline Hydrobromide.—H. & C., gr. ½-1½, (0.04-0.09); average dose subcutan., gr. i, (Gm. 0.06).

Arsenical.—See Acid, Arsenous.

Arsenic, Fowler’s Solution of.—H. & C., dr. 2-8, (mils 8-30). Sh. & Sw., dr. 1-2, (mils 4-8). D., m. 2-10, (mils .12-6).

Arsphenemine.—H. & C., gr. 45-75, (Gm. 3-5). D., gr. 5-10, (Gm. 0.3-0.6).

Asafetida.—H. & C., oz. ½-1, (Gm. 15-30). Sh. & Sw., dr. 1-2, (Gm. 4-8). D., gr. 9-10, (Gm. .2-6).

Asafetida, Emulsion of.—D., oz. ½-1, (mils 15-30).

DOSE TABLE 465
<table>
<thead>
<tr>
<th>Name</th>
<th>Dose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asafetida, Pill</td>
<td>D,</td>
<td>(1-4)</td>
</tr>
<tr>
<td>Asafetida, Tincture</td>
<td>H, C</td>
<td>oz 2-4, (mils 60-120)</td>
</tr>
<tr>
<td>Aspidium, Fluidextract</td>
<td>B, P</td>
<td>H, C, dr 3-6, (mils 12-24)</td>
</tr>
<tr>
<td>Balsam of Peru</td>
<td>H, C</td>
<td>oz 1-2, (mils 30-60)</td>
</tr>
<tr>
<td>Barium Chloride</td>
<td>H</td>
<td>dr 1-2, (Gm 4-8)</td>
</tr>
<tr>
<td>Belladonna, Alcoholic</td>
<td>H, C</td>
<td>gr 10-20, (Gm 6-1.3)</td>
</tr>
<tr>
<td>Belladonna, Tincture</td>
<td>D,</td>
<td>m 15-30, (mils 1-2)</td>
</tr>
<tr>
<td>Belladonna Root</td>
<td>H, C</td>
<td>m 2-3, (mils 8-12)</td>
</tr>
<tr>
<td>Benzoin, Tincture</td>
<td>H, C</td>
<td>oz 1, (mils 30)</td>
</tr>
<tr>
<td>Betula, Oil of</td>
<td>D</td>
<td>gr 5-10, (Gm 3-6)</td>
</tr>
<tr>
<td>Bismuth Salicylate</td>
<td>D</td>
<td>gr 10-30, (Gm 6-2)</td>
</tr>
<tr>
<td>Bismuth Subcarbonate</td>
<td>H,</td>
<td>dr 10-30, (Gm 6-2)</td>
</tr>
<tr>
<td>Bismuth Subnitrate</td>
<td>D</td>
<td>m 15-30, (mils 1-2)</td>
</tr>
<tr>
<td>Brandy</td>
<td>H, C</td>
<td>oz 2-4, (mils 60-120)</td>
</tr>
<tr>
<td>Buchu, Fluidextract</td>
<td>H</td>
<td>oz 1-2, (mils 30-60)</td>
</tr>
<tr>
<td>Buckthorn, Syrup</td>
<td>D</td>
<td>oz 2-4, (mils 30-60)</td>
</tr>
<tr>
<td>Caffeine</td>
<td>H</td>
<td>gr 1/2-3, (Gm 0.08-2)</td>
</tr>
<tr>
<td>Caffeine, Citrated</td>
<td>H</td>
<td>dr 2-4, (Gm 8-15)</td>
</tr>
<tr>
<td>Caffeine Sodium-Benzoate</td>
<td>H</td>
<td>dr 1-2, (Gm 4-8)</td>
</tr>
<tr>
<td>Calamus</td>
<td>H, C</td>
<td>oz 1-2, (Gm 30-60)</td>
</tr>
<tr>
<td>Calamine</td>
<td>H</td>
<td>dr 1-2, (Gm 8-12)</td>
</tr>
<tr>
<td>Calamus, Fluidextract</td>
<td>D</td>
<td>m 15-30, (mils 30-60)</td>
</tr>
<tr>
<td>Calcium</td>
<td>H, C</td>
<td>oz 1-2, (Gm 30-60)</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>H, C</td>
<td>oz 1/2-1, (Gm 15-30)</td>
</tr>
<tr>
<td>Calcium Lactophosphate</td>
<td>H</td>
<td>dr 1-2, (Gm 4-8)</td>
</tr>
<tr>
<td>Calomel</td>
<td>See Mercury</td>
<td></td>
</tr>
<tr>
<td>Calumba</td>
<td>H, C</td>
<td>oz 1/2-1, (Gm 15-30)</td>
</tr>
<tr>
<td>Calumba, Fluidextract</td>
<td>D</td>
<td>m 15-30, (mils 30-60)</td>
</tr>
<tr>
<td>Camphor</td>
<td>H, C</td>
<td>oz 2-4, (mils 60-120)</td>
</tr>
<tr>
<td>Camphor, Monobromated</td>
<td>D</td>
<td>gr 2-10, (Gm 12-6)</td>
</tr>
<tr>
<td>Camphor, Liniment</td>
<td>H</td>
<td>subcut, oz 1/2-i, (mils 15-30)</td>
</tr>
<tr>
<td>Cannabis Indica, Fluidextract</td>
<td>H</td>
<td>dr 4-6, (mils 15-24)</td>
</tr>
<tr>
<td>Cannabis Indica</td>
<td>H, C</td>
<td>gr 1-2, (Gm 4-8)</td>
</tr>
<tr>
<td>Name</td>
<td>Dose</td>
<td>Form</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Capsicum</td>
<td>1-4 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Capsicum oleoresin</td>
<td>3-6 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Capsicum fluid extract</td>
<td>Dose same as Capsicum</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cardamom</td>
<td>2-4 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cardamom compound tincture</td>
<td>Dose same (non-official)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cascara sagrada</td>
<td>5-30 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cascara sagrada fluid extract</td>
<td>Dose (non-official)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cerium oxalate</td>
<td>5-10 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Chaulk mixture</td>
<td>60-120 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Chaulk prepared</td>
<td>60-120 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Charcoal (Wood, animal, purified)</td>
<td>20-60 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Chenopodium oil</td>
<td>3-6 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Chloral</td>
<td>60-120 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Chloroform</td>
<td>15-30 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchona bark</td>
<td>1-2 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchona compound tincture</td>
<td>60-120 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchona extract</td>
<td>5-30 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchona fluid extract</td>
<td>5-30 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchonine sulphate, tonic dose</td>
<td>20-60 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cinchonine sulphate, antipyretic dose</td>
<td>2-4 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cocaine hydrochloride</td>
<td>5-10 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Cod liver oil</td>
<td>60-120 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Codeine</td>
<td>15-30 (m)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Colchicine</td>
<td>1/6-1/2 (g)</td>
<td>Tincture</td>
</tr>
<tr>
<td>Compound</td>
<td>Dose Table</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Colchicum Corm.</td>
<td>H. & C., dr. 1/2-2, (Gm. 2-8). Sh., gr. 10-20, (Gm. .6-1.3). Sw. & D., gr. 2-8, (Gm. .12-5).</td>
<td></td>
</tr>
<tr>
<td>Colchicum Corm. Fluidextract of.</td>
<td>Dose same as Colchicum.</td>
<td></td>
</tr>
<tr>
<td>Colchicum Corm. Tincture of.</td>
<td>H. & C., dr. 3-8, (mils 12-30). D., m. 10-30, (mils .6-2).</td>
<td></td>
</tr>
<tr>
<td>Colchicum Corm. Wine of.</td>
<td>H. & C., dr. 3-8, (mils 12-30). D., m. 10-30, (mils .6-2).</td>
<td></td>
</tr>
<tr>
<td>Collargol (Colloidal Silver).</td>
<td>See p. 143.</td>
<td></td>
</tr>
<tr>
<td>Conium.</td>
<td>D., gr. 3-8, (Gm. .2-5).</td>
<td></td>
</tr>
<tr>
<td>Colocynthik.</td>
<td>D., gr. 1/4-1, (Gm. .015-0.06).</td>
<td></td>
</tr>
<tr>
<td>Colocynth.</td>
<td>D., gr. 1/4-1, (Gm. .015-0.06).</td>
<td></td>
</tr>
<tr>
<td>Colchicum.</td>
<td>D., gr. 1/30-1/12, (Gm. .002-0.005).</td>
<td></td>
</tr>
<tr>
<td>Conium.</td>
<td>H. & C., dr. 1-2, (Gm. 4-8). Sh. & Sw., gr. 10-20, (Gm. .6-1.3). D., gr. 2-5, (Gm. .12-3).</td>
<td></td>
</tr>
<tr>
<td>Conium Fluidextract of.</td>
<td>Dose same as Conium.</td>
<td></td>
</tr>
<tr>
<td>Conium Extract of.</td>
<td>H. & C., gr. 12-24, (Gm. .72-1.5). Sh. & Sw., gr. 2-4, (Gm. .12-24). D., gr. 1/4-1, (Gm. .015-0.06).</td>
<td></td>
</tr>
<tr>
<td>Convallaria.</td>
<td>Sh., gr. 5-10, (mils 3-6).</td>
<td></td>
</tr>
<tr>
<td>Cotton.</td>
<td>Sh., gr. 5-10, (mils 3-6).</td>
<td></td>
</tr>
<tr>
<td>Cotton Root Bark.</td>
<td>(See Gossypium.)</td>
<td></td>
</tr>
<tr>
<td>Cresote.</td>
<td>H., m. 15-30, (mils 1-2). C., dr. 1/2-1, (mils 2-4). Sh. & Sw., m. 5-15, (mils .3-1).</td>
<td></td>
</tr>
<tr>
<td>Creoln.</td>
<td>H. & C., dr. 1-2, (mils 4-8). D., m. 1-5, (mils .06-3). Single dose as anthelmintic. H., oz. 1/2-1, (mils 15-30).</td>
<td></td>
</tr>
<tr>
<td>Croton Oil.</td>
<td>H., m. 15-30, (mils 1-2). C., dr. 1/2-1, (mils 2-4). Sh. & Sw., m. 5-10, (mils .3-6). D., m. 1/2-3, (mils .08-2).</td>
<td></td>
</tr>
<tr>
<td>Digitalein.</td>
<td>H., gr. 1/8-1/4, (Gm. .008-.015). D., gr. 1/100, (Gm. .0006).</td>
<td></td>
</tr>
<tr>
<td>Digitalin.</td>
<td>H., gr. 1/8-1/4, (.008-.015). D., gr. 1/200-1/100, (.0003-.0006).</td>
<td></td>
</tr>
<tr>
<td>Digitalinum Purum, German.</td>
<td>H., gr. ss-i, (.08-.006). D., gr. 1/60-1/30 (.001-.002).</td>
<td></td>
</tr>
<tr>
<td>Digitalis.</td>
<td>H., gr. 10-60, (Gm. .6-4). C., gr. 1/2-1/2, (Gm. 2-6). Sh. & Sw., gr. 5-15, (Gm. .3-1). D., gr. 1/2-3, (Gm. .08-2).</td>
<td></td>
</tr>
<tr>
<td>Digitalis Fluidextract of.</td>
<td>Dose same as Digitalis.</td>
<td></td>
</tr>
<tr>
<td>Digitalis Extract of.</td>
<td>H., gr. 5-10, (Gm. .3-6). D., gr. 1/8-1/2, (Gm. .008-.08).</td>
<td></td>
</tr>
<tr>
<td>Digitalis Infusion of.</td>
<td>H. & C., oz. 2-6, (mils 60-180). Sh. & Sw., oz. 1/2-1, (mils 15-30). D., m. 1/4, (mils 4-15).</td>
<td></td>
</tr>
<tr>
<td>Digitalis Tincture of.</td>
<td>H. & C., dr. 2-4, (mils 8-15). Sh. & Sw., dr. 1/2-1/2, (mils 2-6). D., m. 5-30, (mils 3-2).</td>
<td></td>
</tr>
<tr>
<td>Digitalone, subcut.</td>
<td>H., dr. 2-4, (mils 8-15). D., m. 5-20, (mils 0.3-1.3).</td>
<td></td>
</tr>
<tr>
<td>Digitoxin.</td>
<td>H., gr. 1/8-1/4, (.008-.015). D., gr. 1/250-1/50, (.00025-.00125).</td>
<td></td>
</tr>
<tr>
<td>Diuretin.</td>
<td>D., gr. 20, (Gm. 1.3).</td>
<td></td>
</tr>
<tr>
<td>Dover's Powder.</td>
<td>H., oz. 1/2-1, (Gm. 15-30). D., gr. 5-10, (Gm. 3-6).</td>
<td></td>
</tr>
<tr>
<td>Dover's Powder Liquid.</td>
<td>H., oz. 1/2-1, (mils 15-30). D., m. 5-10, (mils 3-6).</td>
<td></td>
</tr>
<tr>
<td>Elaterin.</td>
<td>D., gr. 1/200-1/12, (Gm. .0003-.005).</td>
<td></td>
</tr>
<tr>
<td>Ergot.</td>
<td>H. & C., oz. 1/2-1, (Gm. 15-30). Sh. & Sw., dr. 1-2, (Gm. 4-8). D., dr. 1/2-1, (Gm. 2-4).</td>
<td></td>
</tr>
<tr>
<td>Ergot Fluidextract of.</td>
<td>Dose same as Ergot.</td>
<td></td>
</tr>
<tr>
<td>Ergot Extract of (Ergotin).</td>
<td>H. & C., gr. 20-60, (Gm. 1.3-4). D., gr. 2-10, (Gm. 12-6).</td>
<td></td>
</tr>
<tr>
<td>Eserine.</td>
<td>(See Physostigmine.)</td>
<td></td>
</tr>
<tr>
<td>Ether.</td>
<td>H. & C., oz. 1-2, (mils 30-60). Sh. & Sw., dr. 2-4, (mils 8-15). D., m. 10-60, (mils .6-4).</td>
<td></td>
</tr>
<tr>
<td>Ether, Nitrous, Spirit of (Sweet Spirit of Nitre).</td>
<td>H. & C., oz. 1-4, (mils 30-120). Sh. & Sw., dr. 2-4, (mils 8-15). D., m. 10-60, (mils .6-4).</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus, Fluidextract of.</td>
<td>H., oz. 2-3, (mils 60-90). D., dr. 1/2-2, (mils 2-8).</td>
<td></td>
</tr>
</tbody>
</table>
DOSE TABLE

Eucalyptus, Oil of.—H., dr. 2-4, (mils 8-15). D., m. 5-20, (mils .3-1.3).
Eucalyptol.—Dose same as Oil of Eucalyptus.

Fennel.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 2-3, (Gm. 8-12). D., gr. 10-20, (Gm. .6-1.8).

Fel Bovis.—(See Oxgall.)

Fenugreek.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 2-3, (Gm. 8-12). D., gr. 10-30, (Gm. .6-2).

Fibrolysin.—H., 11.5 mils subcut.

Frangula, Fluidextract of.—D., dr. ½-1, (mils 2-4).

Gamboge.—H., oz. ½-1, (Gm. 15-30). C., oz. 1-1½, (Gm. 30-45). Sh. & Sw., gr. 20-60, (Gm. 1.3-4). D., gr. 5-10, (Gm. .3-6).

Gaultheria, Oil of.—H. & C., dr. 2-oz. 1, (mils 8-30). Sh. & Sw., dr. ½-2, (mils 2-8). D., m. 5-15, (mils .3-1).

Gelsemium.—H., gr. ½-½ (Gm. 0.015-0.03). D., gr. 1/60-1/20, (Gm. .001-0.003).

Gelsemium.—H., gr. 1-2 (Gm. 4-8). D., gr. 5-10, (Gm. .3-6).

Gelsemium, Fluidextract of.—Dose same as Gelsemium.

Gentian.—H., oz. ½-1, (Gm. 15-30). C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 1-2, (Gm. 4-8). D., gr. 5-30, (Gm. .3-2).

Gentian, Fluidextract of.—Dose same as Gentian.

Ginger.—H., dr. 2-oz. 1, (Gm. 8-30). C., oz. 1-4, (Gm. 30-120). Sh. & Sw., dr. 1-2, (Gm. 4-8). D., gr. 5-15, (Gm. .3-1).

Ginger, Fluidextract of.—Dose same as Ginger.

Ginger, Oleoresin of.—One-fifth dose of Ginger.

Glycyrrhiza.—See licorice.

Granatum (Pomegranate).—D., dr. ½-1½ (Gm. 2-6).

Granatum, Fluidextract of.—Dose same as granatum.

Granati Radicus Cortex, Fluidextract of.—D., dr. ½-2, (mils 2-8).

Hematoxylin, Extract of.—H. & C., dr. ½-4, (Gm. 2-15). Sh. & Sw., dr. ½-1, (Gm. 2-4). D., gr. 5-15, (Gm. .3-1).

Hamamelis, Water of.—Same doses as fluidextract.

Hydrastis.—H., gr. 15-30, (Gm. 1-2). D., gr. 3-5, (Gm. 2-3).

Hydrastina Hydrochloride.—H., gr. 5, (Gm. 0.3). D., gr. ½, (Gm. 0.03).

Hydrastis, Fluidextract of.—H. & C., dr. 2-oz. 1 (mils 8-30). Sh. & Sw., dr. 1-2, (mils 4-8). D., m. 5-60, (mils 3-4).

Hydrastis, Glycerite of.—Dose same as Fluid Extract.

Hyoscynamine Hydrobromide.—H., gr. ¹⁄₈-¹⁄₄, (Gm. .01-.015). D., gr. 1/150-1/100 (Gm. .0004-.0006).

Hyoscynamine Hydrobromide and Sulphate.—H., gr. 1-2, (Gm. .06-.12). D., gr. 1/60-1/30, (Gm. .001-.002).

Hyoscynamus.—H. & C., oz. ½-1, (Gm. 15-30). D., gr. 5-15, (Gm. .3-1).

Hyoscynamus, Fluidextract of.—Dose same as Hyoscynamus.

Hyoscynus, Fluidextract of.—H. & C., gr. 20-60, (Gm. 1.3-4). D., gr. ½-2, (Gm. .03-12).

Hyoscynus, Tincture of.—D., dr. 1-2, (mils 4-8).

Hyoscynus, Succus of.—D., dr. 1-2 (mils 4-8).

Hydrosphites, Compound Syrup of.—D., dr. 1 (mils 4).

Influenza Antitoxin.—H., 30 to 90 mils.

Iodine.—H. & C., dr. ½-1, (Gm. 2-4). Sh. & Sw., gr. 10-20, (Gm. .6-1.3). D., gr. 2-5, (Gm. .12-3).
DOSE TABLE

<table>
<thead>
<tr>
<th>Item</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine, Compound Solution of</td>
<td>H., dr. 2-4, (mils 8-15)</td>
</tr>
<tr>
<td>Iodine, Tincture of</td>
<td>H., dr. 2-4, (mils 8-15)</td>
</tr>
<tr>
<td>Ipecac - H., dr. 1-2, (Gm. 4-8)</td>
<td>C., dr. 2-4, (Gm. 8-15)</td>
</tr>
<tr>
<td>Licorice - H., dr. 1/2-1, (Gm. 2-4)</td>
<td>Sh., dr. 1/2-1, (Gm. 2-4)</td>
</tr>
<tr>
<td>Iron, Iron, Lithium</td>
<td>Sh. & Sw., gr. 15-30, (Gm. 1-2)</td>
</tr>
<tr>
<td>Krameria, Krameria</td>
<td>Sh. & Sw., gr. 15-30, (Gm. 1-2)</td>
</tr>
<tr>
<td>Jalap - H., C., oz. 1-2, (mils 30-60)</td>
<td>Sh. & Sw., m. 20-30, (mils 1-3-2)</td>
</tr>
<tr>
<td>Jalap, Fluidextract of</td>
<td>H., oz. 1/2-1, (mils 4-15)</td>
</tr>
<tr>
<td>Jalap, Resin of</td>
<td>Sw., dr. 1/2-1, (Gm. 2-4)</td>
</tr>
<tr>
<td>Kamala, Oil of</td>
<td>H. & C., oz. 2-4, (mils 60-120)</td>
</tr>
<tr>
<td>Kinin, Fluidextract of</td>
<td>H. & C., oz. 1-2, (mils 30-60)</td>
</tr>
<tr>
<td>Lead Acetate</td>
<td>H. & C., oz. 1-2, (mils 30-60)</td>
</tr>
<tr>
<td>Limesol of (Lime Water)</td>
<td>H. & C., oz. 4-6, (mils 120-180)</td>
</tr>
<tr>
<td>Linseed Oil - H., pt. 1/2-1, (mils 250-500)</td>
<td>Sh. & Sw., oz. 6-12, (mils 180-360)</td>
</tr>
<tr>
<td>Lithium Carbonate - D.</td>
<td>gr. 8-10, (Gm. 2-6)</td>
</tr>
<tr>
<td>Lithium Citrate - D., gr. 5-20, (Gm. 3-1.8)</td>
<td></td>
</tr>
<tr>
<td>Lobelia, Fluidextract of</td>
<td>H., dr. 2-8, (mils 4-30)</td>
</tr>
</tbody>
</table>

Notes:
- Dose same as Ipecac.
- Dose same as Jaborandi.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium</td>
<td>Dose as same as Nux Vomica</td>
</tr>
<tr>
<td>Olive Pepo.</td>
<td>Nux Vomica, dr. 1-2, (Gm. 5-10), (mils 5-10).</td>
</tr>
<tr>
<td>Nux Vomica</td>
<td>Nux Vomica, dr. 1-2, (Gm. 5-10), (mils 5-10).</td>
</tr>
<tr>
<td>Male Fern</td>
<td>Male Fern, Oleoresin and Fluid Extract of.—H. & C., dr. 3-6, (mils 12-24).</td>
</tr>
<tr>
<td>Menthol</td>
<td>Dose as same as Magnesia.</td>
</tr>
<tr>
<td>Magnesium Carbonate</td>
<td>Magnesium Carbonate.—Dose same as Magnesia.</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td>Magnesium Sulfate.—H. (laxative), oz. 2-4, (Gm. 60-120).</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Nicotine—(red).—Dose same as Corrosive Chloride.</td>
</tr>
<tr>
<td>Mercury Corrosive</td>
<td>Mercury Corrosive Chloride of.—H. & C., gr. 5-8, (Gm. 3-5).</td>
</tr>
<tr>
<td>Morphine</td>
<td>Morphine and its Salts.—H. & C., gr. 3-10, (Gm. 2-6).</td>
</tr>
<tr>
<td>Morphine Iodide</td>
<td>Mercury Iodide of.—Dose same as Corrosive Chloride.</td>
</tr>
<tr>
<td>Mustard</td>
<td>Mercury, Mass of (Blue Pill).—D., gr. 1-10, (Gm. 0.6-6).</td>
</tr>
<tr>
<td>Lobeline</td>
<td>Mercury, Mild Chloride of.—H., dr. ½-1, (Gm. 2-4).</td>
</tr>
<tr>
<td>Menthol</td>
<td>Mercury with Chalk.—Foals and Calves, gr. 10-15, (Gm. 0.6-6).</td>
</tr>
<tr>
<td>Methyl Salicylate</td>
<td>Dose as same as Nux Vomica</td>
</tr>
<tr>
<td>Morphine D.</td>
<td>Morphine D.—H., dr. 1, (2-4).</td>
</tr>
<tr>
<td>Naphthalin</td>
<td>Naphthalin.—H., dr. 2-4, (Gm. 8-15).</td>
</tr>
<tr>
<td>Naphitol</td>
<td>Naphitol.—H., dr. 2-3, (Gm. 8-12).</td>
</tr>
<tr>
<td>Nicotine D.</td>
<td>Nicotine—(red).—Dose same as Nux Vomica.</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>Nitroglycerin (1 per cent. solution).—H. & C., dr. ½-1, (mils 2-4). D., m. 1-2,</td>
</tr>
<tr>
<td>Nux Vomica D.</td>
<td>Nux Vomica, dr. 1-2, (Gm. 4-8).</td>
</tr>
<tr>
<td>Opium</td>
<td>Opium, Camphorated Tincture of (paregoric).—D., gr. 1-2, (mils 4-5).</td>
</tr>
<tr>
<td>Opium Extract</td>
<td>Opium, Extract of.—H. & C., dr. ½-1, (Gm. 2-4).</td>
</tr>
<tr>
<td>Opium Powder</td>
<td>Opium Powder.—H., dr. 1-2, (Gm. 4-8).</td>
</tr>
<tr>
<td>Peppermint Oil</td>
<td>Peppermint, Oil of.—H. & C, m. 15-30, (mils 1-2).</td>
</tr>
<tr>
<td>Pepsin</td>
<td>Pepsin.—Dogs, Foals and Calves, gr. 10-60, (Gm. 6-4).</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>Phenacetin.—H., dr. 4, (Gm. 16).</td>
</tr>
<tr>
<td>Phenolphthalein</td>
<td>Phenolphthalein.—H., dr. 1-½, (Gm. 4-6).</td>
</tr>
<tr>
<td>Phenol</td>
<td>Phenol.—See Acid Carbolic.</td>
</tr>
</tbody>
</table>
PHOSPHORATED OIL.—H., dr. 2-3, (mils 8-12). D., m. 1-5, (mils .06-.3).
PHOSPHORUS.—H., gr. 1-2, (Gm. .06-.12). C., gr. 2-3, (Gm. .12-.2). Sh., Sw. & D., gr. 1/100-1/20, (Gm. .0006-.009).
PHOSPHORUS, Spirit of.—D., m. 7-20, (mils .5-1.3).
PHYSISOTIGMA.—H., gr. 15-30, (Gm. 1-2). D., gr. 1/4-1, (Gm. .015-.06).
PHYSISOTIGMA, Fluidextract of.—Dose same as Physostigma.
PHYSISOTIGMA SULPHATE AND SALICYLATE.—H. & C. By the mouth, gr. 1 1/2-3, (Gm. .09-.18). D., gr. 1/60-1/10, (Gm. .001-.006). H. Subcut., gr. 1-1 1/2, (Gm. .06-.09). Intratracheally, gr. 1/2, (Gm. .03). Foals and Calves subcut., gr. 1/12-1/6, (Gm. .005-.01). D. subcut., gr. 1/100-1/30, (Gm. .0006-.002).
PILOCARPINE and its SALTS.—(Subcut.) H. (purgative), gr. 2-5, (Gm. .12-.3). C. (purgative), gr. 5-10, (Gm. 3-6). H. (diaphoretic; dangerous), gr. 6-12, (Gm. 36-72). Sh., gr. 1, (Gm. .06). D., gr. 1/10-1/3, (Gm. .006-.02).
PILOCARPUS.—H. & C., dr. 2-4, (Gm. 8-15). Sh. & Sw., dr. 1/2-1, (Gm. 2-4). D., gr. 5-60, (Gm. 3-4).
PILOCARPUS, Fluidextract of.—Dose same as Pilocarpus.
PITUITRYN.—H., dr. 1-4, (Gm. 4-15). D., m. 10-60, (Gm. 0.6-4).
PODSOPHYLLIN.—H. & C., dr. 1-2, (Gm. 4-8). D., gr. 1/6, (Gm. .006-.12).
POMEGRANATE.—See Granatum.
POTASSIUM ACETATE.—H. & C., oz. 1/2-1, (Gm. 15-30). Sh. & Sw., dr. 1/2-1, (Gm. 2-4). D., gr. 5-20, (Gm. 3-13).
POTASSIUM BICARBONATE.—Dose same as Acetate.
POTASSIUM BITARTRATE.—H. & C., oz. 1/2-1, (Gm. 15-30). Sh. & Sw., oz. 1/2, (Gm. 15). D., gr. 1 1/2-1, (Gm. 2-4).
POTASSIUM BROMIDE.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 2-4, (Gm. 8-15). D., gr. 5-60, (Gm. 3-4).
POTASSIUM CARBONATE.—H. & C., oz. 1/2-1, (Gm. 15-30). Sh. & Sw., dr. 1/2-1, (Gm. 2-4). D., gr. 5-20, (Gm. 3-13).
POTASSIUM CHLORATE.—Dose same as Carbonate.
POTASSIUM CITRATE.—Dose same as Carbonate.
POTASSIUM HYDROXIDE, Solution of.—H. & C., oz. 1/2-1, (mils 15-30). Sh. & Sw., dr. 1/2-1, (mils 2-4). D., m. 5-20, (mils 3-13).
POTASSIUM IODIDE.—H., dr. 2-4, (Gm. 8-15). C., dr. 6, (Gm. 24). Sh. & Sw., gr. 15-30, (Gm. 1-2). D., gr. 2-10, (Gm. .12-.6).
POTASSIUM NITRATE.—Dose same as Carbonate.
QUASSIA, Extract of.—H., dr. 1-2, (Gm. 4-8). D., gr. 1/2-3, (Gm. .03-.2).
QUASSIA, Tincture of.—H. & C., oz. 2-4, (mils 60-120). D., gr. 1/2-2, (mils 2-8).
QUASSIN.—D., gr. 1/2-1/3, (Gm. .008-.02).
QUERCUS ALBA.—H., oz. 1/2-1, (Gm. 15-30). C., oz. 1-2, (Gm. 30-60). Sh. and Sw., dr. 1-2, (Gm. 4-8). D., gr. 10-30, (Gm. .6-2).
QUERCUS ALBA, Fluidextract of.—Dose same as Quercus Alba.
QUININE.—Tonic dose—H., gr. 20-60, (Gm. 1-3). C., gr. 3/4-1 1/2, (Gm. 3-6). Sh. & Sw., oz. 6-15, (Gm. 36-1). D., gr. 1 1/2-2 1/2, (Gm. 1-.15). Antipyretic dose—H., gr. 2 1/2-5, (Gm. 10-20). Sh. & Sw., gr. 20-40, (Gm. 1.3-2.6). D., gr. 7-15, (Gm. .5-1).
QUININE and its SALTS.—Tonic dose—H., gr. 15-60, (Gm. 1-4). C., gr. 1 1/2-1 1/2, (Gm. 2-6). Sh. & Sw., oz. 5-10, (Gm. 3-6). Dogs and Cats, gr. 1-2, (Gm. .06-.12). Antipyretic dose—H, & C, gr. 2-4, (Gm. 8-15). Sh. & Sw., gr. 20-40, (Gm. 1.3-2.6). Dogs and Cats, gr. 5-10, (Gm. 3-6).
QUINOMIDIN.—Dose three or four times that of Quinine.
RESORCIN.—H., dr. 4-6, (Gm. 15-24). Foals and Calves, dr. 1/2-1, (Gm. 2-4). D., gr. 2-5, (Gm. .12-.3).
RHAMNUS CATHARTICUS, Syrup of.—D., oz. 1-2, (mils 30-60). Cats, oz. 1 1/2-1, (mils 15-30).
RHAMNUS CATHARTICUS, Fluidextract of.—D., gr. 1/2-1, (mils 2-4).
RHUBARB.—Stomachic—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 1, (Gm. 4). D., gr. 5-10, (Gm. 3-6). Purgative—Foals, Calves and Dogs, dr. 1-2, (Gm. 4-8). Powl, gr. 5-7 in pill.
RHUBARB, Fluidextract of.—Dose same as Rhubarb.
RHUBARB, Compound Powder of.—Foals and Calves, oz. 1 1/2-1, (Gm. 15-30).
SABINA, Fluidextract of.—H., oz. 1-2 (mils 30-60). D., m. 5-15, (mils .3-1).
SABINA, Oil of.—H. & C., dr. 2-4, (mils 8-15). D., m. 1-5, (mils .06-3).
SALICIN.—H. & C., dr. 2-8, (Gm. 8-80). Sh., dr. 1-4, (Gm. 4-15). Sw., dr. ½-1, (Gm. 2-4). D., gr. 5-30, (Gm. .3-2).
SALOL.—H., dr. 3-6, (Gm. 12-24). D., gr. 5-10, (Gm. 0.3-0.6).

Savin.—See Sabina.

SCAMMONY.—D., dr. 1-2, (Gm. 4-8). Cats, dr. ½-1, (Gm. 2-4).
SCAMMONY, Resin of.—D., dr. ½-1, (Gm. 2-4). Cats, gr. 15-30, (Gm. 1-2).
Senna.—H. & C., oz. 4-5, (Gm. 120-180). Sh. & Sw., oz. 1-2, (Gm. 30-60). D.,

dr. 1-4, (Gm. 4-15). Fowl, gr. 15-20 in pill.

Senna, Fluidextract of.—Dose same as Senna.

Senna, Syrup of.—D., dr. 1-4, (mils 4-15).

Silver Nitrate.—H. & C., gr. 5-10, (Gm. 3-.6). Sh. & Sw., gr. 1-2, (1/120-

.12). D., gr. ½-½, (Gm. .008-.03).

Sodium Bicarbonate.—H. & C., oz. ½-2, (Gm. 15-60). Sh. & Sw., dr. ½-1, (Gm. 2-4). D., gr. 5-30, (Gm. 3-2).

Sodium Carbonate.—H. & C., dr. 2-6, (Gm. 8-24). Sh. & Sw., gr. 20-40, (Gm. 1.3-2.6). D., gr. 5-20, (Gm. 3-13).

Sodium Chloride.—Purgative—Cattle, lb. ½-1, (Gm. 250-500). Sh., oz. 1-2, (Gm. 30-60).

Sodium Bromide.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw., dr. 2-4, (Gm. 8-15). D., gr. 5-30, (3-4).

Sodium Hydroxide, Solution of.—H. & C., oz. ½-1, (mils 15-30). Sh. & Sw., dr.

½-1, (mils 2-4). D., m. 5-20, (mils 3-13).

Sodium Phosphite.—C., lb. 1-1½, (Gm. 500-750). H. & Sh., oz. 2-4, (Gm. 60-

120). D., dr. 1-2, (Gm. 4-8).

Sodium Salicylate.—H. & C., dr. 2-8, (Gm. 8-80). Sh., dr. 1-4, (4-15). Sw.,

dr. ½-1, (Gm. 2-4). D., gr. 5-30, (Gm. 3-2).

Sodium Sulphate.—C., lb. 1-1½, (Gm. 500-750). H., oz. 2-4, (Gm. 60-120). Sh.,

oz. 2-4, (Gm. 60-120). D., dr. 1-4, (Gm. 4-15).

Sodium Sulphite, Bisulphite and Thiosulphate.—H. & C., oz. 1, (Gm. 30). Sh.

& Sw, dr. ½-1, (Gm. 2-4). D., gr. 5-30, (Gm. 3-2).

Spigelia, Fluidextract.—D., dr. 1, (mils 4).

Spigelia and Senna, Fluidextract.—D., dr. 2, (mils 8). Puppies, dr. ½.

Squill.—H., dr. 1-2, (Gm. 4-8). C., dr. 2-4, (Gm. 8-15). Sh., gr. 15-30, (Gm. 1-

2). D., gr. 1-5, (Gm. .06-3).

Squill, Fluidextract of.—Dose same as Squill.

Squill, Tincture of.—H., dr. 6-12, (mils 24-48). C., oz. 1½-3, (mils 45-90). Sh.,

dr. 1½-3, (mils 6-12). D., m. 5-30, (mils 3-2).

Squill, Syrup of.—H., oz. ½, (mils 15). D., dr. ½-1, (mils 2-4).

Squill, Compound Syrup of.—D., m. 5-30, (mils 3-2).

Strophanthus, Tincture of.—H. & C., dr. 1-4, (mils 4-15). D., m. 2-10, (mils

.12-.6).

Strophanthin.—H., gr. ½-½, (Gm. .012-.08). D., gr. 1/200, (0.0003).

Strychnine and Its Salts.—H., gr. ½-2, (Gm. .03-.12). C., gr. 2-3, (Gm. .12-2).

Subcutaneously—H. & C, gr. ½ to 1. Sh., gr. ¼-1, (Gm. .015-.06). D., gr.

1/120-1/60, (Gm. .0005-.001).

Sulphur.—H. & C., oz. 2-4, (Gm. 60-120). Sh. & Sw., oz. 1-2, (Gm. 30-60). D.,

dr. ½-4, (Gm. 2-15).

Tannalbin.—H. & C., dr. 1-4, (Gm. 4-15). Foals and Calves, gr. 20-40, (Gm. 1-

3.2-6).

Tannin.—Foals and Calves, gr. 30, (Gm. 2).

Taraxacum.—H. & C., oz. 1-2, (Gm. 30-60). Sh. & Sw, dr. 2-4, (Gm. 8-15).

D., dr. 1-2, (Gm. 4-8).

Taraxacum, Fluidextract of.—Dose same as Taraxacum.

Taraxacum, Extract of.—H. & C., dr. 1-4, (Gm. 4-15). D., gr. 5-30, (Gm. 3-2).

Terebene.—H. & C., dr. 2-6, (mils 8-24). D., m. 5-15, (mils 3-1).

Terpin Hydrate.—H., dr. ½-2, (Gm. 2-8). D., gr. 5-20, (Gm. 3-1.3).
<table>
<thead>
<tr>
<th>Substance</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetanus Antitoxin</td>
<td>H., 10 mils prophylactic dose.</td>
</tr>
<tr>
<td>Thymol</td>
<td>H., dr. ¼-2, (Gm. 2-8). Sh. (single dose), dr. ½-2½, (Gm. 2-10). D., gr. 1-15, (Gm. .06-1).</td>
</tr>
<tr>
<td>Thyroid Gland, Desiccated</td>
<td>D., gr. ½-2, (Gm. .03-.12), twice daily.</td>
</tr>
<tr>
<td>Valerate of Ammonium</td>
<td>D., gr. 2-5, (Gm. .12-3).</td>
</tr>
<tr>
<td>Valerate of Iron</td>
<td>D., gr. 1-3, (Gm. .06-2).</td>
</tr>
<tr>
<td>Valerate of Zinc</td>
<td>D., gr. 1-3, (Gm. .06-.2).</td>
</tr>
<tr>
<td>Valerian</td>
<td>Fluidextract of.—Dose same as Valerian.</td>
</tr>
<tr>
<td>Valerian, Ammoniated Tincture of</td>
<td>D., dr. ½-2, (mils 2-8).</td>
</tr>
<tr>
<td>Valerian, Oil of</td>
<td>H., dr. ½-1, (mils 2-4). D., m. 2-5, (mils .12-.3).</td>
</tr>
<tr>
<td>Veratrine</td>
<td>H., gr. ½-2, (Gm. .03-.12). C., gr. 2-5, (Gm. .12-3). D., gr. 1/50-1/10, (Gm. .0012-.006).</td>
</tr>
<tr>
<td>Veratrum</td>
<td>H. & C., dr. ½-1, (Gm. 2-4). Sh. & Sw., gr. 20-30, (Gm. 1.3-2). D., gr. ½-1, (Gm. .006-.06).</td>
</tr>
<tr>
<td>Veratrum, Fluidextract of</td>
<td>Dose same as Veratrum.</td>
</tr>
<tr>
<td>Veratrum, Tincture of</td>
<td>H. & C., oz. ½-1, (mils 15-30). Sh. & Sw., dr. 2-4, (mils 8-15). D., m. 5-10, (mils .3-.6).</td>
</tr>
<tr>
<td>Wild Cherry, Syrup of</td>
<td>D., dr. 1-4, (mils 4-15).</td>
</tr>
<tr>
<td>Wintergreen, Oil of</td>
<td>See Gaultheria.</td>
</tr>
<tr>
<td>Yohimbine Hydrochloride</td>
<td>H. & C., gr. ¼-1½, (Gm. 0.045-0.1). Sh. & Sw., gr. ½, (Gm. .03). D., gr. 1/12-1/6, (Gm. 0.005-0.01).</td>
</tr>
<tr>
<td>Zinc Acetate</td>
<td>H. & C., dr. 1-2, (Gm. 4-8). Sh. & Sw., gr. 10-30, (Gm. .6-1.3). D., gr. 2-3, (Gm. .12-2).</td>
</tr>
<tr>
<td>Zinc Oxide</td>
<td>H. & C., dr. 1-2, (Gm. 4-8). D., gr. 5-10, (Gm. .3-.6).</td>
</tr>
<tr>
<td>Zinc Phosphide</td>
<td>D., gr. ½, (Gm. .006).</td>
</tr>
<tr>
<td>Zinc Sulphate</td>
<td>H. & C., dr. 1-2, (Gm. 4-8). Sh. & Sw., gr. 10-20, (Gm. .6-1.3). D., gr. 2-3, (Gm. .12-2). Emetic—D., gr. 10-15, (Gm. .6-1).</td>
</tr>
</tbody>
</table>
POISONS AND ANTIDOTES.

Note.—In poisoning, the chemical antidote should be given first—if it is at hand. The next thing is to evacuate the stomach. Washing out the stomach is practically always done in human medicine, except in convulsions of strychnine poisoning and in poisoning by acids and caustic alkalis. This is readily performed in the case of the dog with assistance and may be accomplished in the horse. Where facilities for lavage are not at hand, an emetic should be given the dog, cat and pig. Mustard is the emetic usually at hand. The dog and cat take 1 tablespoonful, and the pig two, in water. Zinc sulphate is more effective; D. & C., gr. v; Sw. gr.xv, in two ounces of water. Apomorphine hydrochloride, hypodermically, is the most certain of all; D., gr. 1/10 to gr. 1/2; cats, gr. 1/12.

Acetanilid, Antipyrin, Phenacetin.
Strychnine sulph. H. gr.ii; D. gr. 1/100 to gr. 1/40. Atropine sulph. H. gr. 1 1/2; D. gr. 1/40 subcut.

Acetic Acid, See Acids.

Acids.

Acetic, Hydrochloric, Nitric, Oxalic, Phosphoric, Sulphuric, Tartaric.
Antidotes.—Magnesia, chalk, plaster scraped off the walls, soap—one of these, with demulcents as eggs, milk, and oil. Large quantities of water by the mouth.

Aconite.
Empty stomach with tube; emetics put too much strain on the heart. Atropine under the skin is most valuable. Also digitalis, strychnine, alcohol, ammonia and ether are useful.

Tannic acid is partial antidote. Keep the patient quiet and do artificial respiration if necessary.

Alcohol.
Emetic or stomach lavage. Strong coffee by the mouth. Give subcutaneously, Caffeine with equal amount of sodium salicylate, H. gr.xxx; D. gr.ii. Strychnine nitrate under the skin, H. gr.i, D. gr. 1/100 to gr. 1/40. Inhalation of ammonia. Camphorated oil subcut. H. 5i; D. m. xv.

Alkalies, Caustic.
Ammonia Water, Quick Lime, Potassium and Sodium Hydrate and Carbonate.
Antidotes.—Vinegar or lemon juice in water, or weak solutions of citric or tartaric acids. Do not evacuate the stomach. Demulcents as egg white, milk. External heat and mustard paste. Camphorated oil subcut. H. 5i; D. m. xv.

Ammonia Water, See Alkalies.
Anesthetics, Ether, Chloroform.
Hold small animals upside down. Do artificial respiration. Try rhythmic traction of the tongue. Pour ether from a height of several feet on epigastrium. Adrenalin solution (1 to 1,000) injected into vein, H. 5ss; D. m. xxx. Atropine sulph. subcut. H. gr. 1 1/2; D. gr. 1/60. Strychnine subcut. H. gr. 1; D. gr. 1/100 to gr. 1/60. “Digitalone” subcut. H. 5ss; D. m. xx to m. xxx.

Antimony, Tartar Emetic.
Antidote.—Strong tea or tannic acid. Magnesia, slacked lime. Emetic or lavage if vomiting has not occurred. Give cathartic of salts or oil. Inject subcut. “digitalone,” H. 5ss; D. m. xx to xl. Give under the skin strychnine sulph. H. gr. i; D. gr. 1/100 to gr. 1/40. Heat and mustard paste externally.

Antipyrin, See Acetanilid.
Arsenic.
Antidote.—Freshly prepared “arsenic antidote” or hydrated sesquioxide of iron in large amount by the mouth. Perform lavage if possible or give emetic. The antidote is of little value. Caffeine, with equal amount of sodium benzoate, H. gr. xxx; D. gr.ii subcut. “Digitalone” subcut., H. 5ss; D. m. xx to m. xl. Morphine subcut., H. gr.iii, D. gr.ss. Heat and mustard paste externally.
AMYL NITRITE. NITROGLYCERIN.

Inhalation of Ammonia. Alcohol subcut. H. 3i; D. 3i to ii. Atropine sulph. subcut. H. gr. 1½; D. gr. 1/60. Strychnine sulph. subcut. H. gr.i; D. gr. 1/100 to gr. 1/40. Injectio ergotin. hypoderm. H. 3ii; D. m. x.

ATROPINE. BELLADONNA.

BARIUM CHLORIDE.

Antidote.—Magnesium or sodium sulphate. Lavage with same.

BELLADONNA, See Atropine.

CANTHARIDES.

Egg white, gruel, linseed tea, barley water; avoid oils. Lavage or emetic. Tinc. opium for pain. H. 3ii; D. m x to xv. Give large amount of sodium bicarbonate in drinking water. High emceta of 5% sodium bicarbonate solution.

CARBOLIC ACID, See Phenol.

CARBON MONOXIDE, See Gas Poisoning.

CARBONIC ACID, See Gas Poisoning.

CHLORAL.

CHLOROFORM, See Anesthetics.

COAL GAS, See Gas Poisoning.

COCAINE.

If swallowed give emetic or lavage. Ether inhalation if convulsions present. Morphine sulph. subcut. H. gr.v; D. gr.ss. Alcohol by mouth. H. 3ii; D. 3ii. Strychnine sulph. for collapse, H. gr.i; D. gr. 1/100 to gr. 1/40 subcut.

COLCHICUM.

Antidotes.—Tannic acid, oil, milk, linseed tea, barley water. Give emetic or lavage. Tinc. opium, H. 3ii; D. m x to xv. Atropine sulph. subcut. H. gr. 1½; D. gr. 1/60. Caffeine subcut., with equal amount sodium salicylate, H. gr.xxx; D. gr.ii. Camphorated oil subcut. H. 3i; D. m. xv. Heat and mustard paste externally.

CONIUM.

Emetic or lavage. Strychnine sulph. subcut. H. gr.ii; D. gr. 1/100 to gr. 1/40. "Digitalone," subcut. H. 3ss; D. m. xx to xl. Camphorated oil subcut. H. 3i; D. m. xv. Heat and mustard paste externally.

COPPER SULPHATE and Other Soluble Salts.

Antidote.—Potassium ferrocyanide, magnesia, egg white, milk. Emetic or lavage. Morphine subcut. H. gr.iii; D. gr.ss. Mustard paste rubbed on belly.

CROTON OIL.

Egg white, milk, linseed tea. Emetic or lavage. Tinc. opium H. 3iii; D. m. x to xv. Alcohol, H. 3ii; D. 3i. Heat and mustard paste externally.

CREOSOTE, See Phenol.

DIGITALIS.

Antidote.—Tannic acid. Give emetic or lavage. Keep the patient quiet. Tinc. aconite, H. 3i; D. m. x. subcut. Camphorated oil, subcut., H. 3i; D. m. xv. Caffeine, subcut. with an equal amount of sodium salicylate, H. gr.xxx; D. gr.ii. Heat and mustard paste externally.

ESERINE, See Physostigmine.

ETHER, See Anesthetics.

GAS POISONING, CARBON MONOXIDE, COAL GAS, MARSH GAS, CARBONIC ACID.

Artificial respiration, direct transfusion of blood. Cold douches on the head. Apply mustard paste to body.
GELSEMIUM.

Give emetic or lavage. "Digitalone" subcut., H. 5ss; D. m. xx to m. xl. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/40. Mustard paste and heat externally. Artificial respiration.

HYDROCHLORIC ACID, See Acids.

HYDROCYANIC ACID, See Prussic Acid.

HYOSCYAMUS, See Atropine.

IODINE.

Flour or starchy substance mixed with water. Give emetic or lavage. "Digitalone" subcut., H. 5ss; D. m. xx to m. xxx. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/40. Heat and mustard paste externally.

IODOFORM.

Absorption from skin or internally. Give sodium bicarbonate internally in large doses. Saline intravenous infusion. Alcohol subcut., H. 5ii; D. 5i. Hot blankets to cause sweating.

JABORANDI, See Pilocarpine.

LEAD ACETATE AND SOLUBLE LEAD SALTS.

Antidotes.—Magnesium or sodium sulphate, or milk and eggs. Give emetic or lavage. Morphine sulph. subcut., H. gr.iii; D. gr.ss. Chronic Poisoning. Potassium iodide, H. & C. 5ii to 5iv thrice daily. Linseed oil.

LIME, See Alkalis.

LOBELIA.

MERCURIC BICHLORIDE AND OTHER SOLUBLE SALTS OF MERCURY.

MORPHINE AND OPium.

Antidote.—Potassium permanganate, H. 5ii to 2 qts. of water. D. gr.xv in half a pint of water. Give emetic. Lavage most important whether drug swallowed or injected. Caffeine subcut., with an equal amount of sodium salicylate, H. gr.xxx; D. gr.ii. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/40. General faradic stimulation of the skin, or whipping of the animal. Artificial respiration.

NITRATE OF SILVER, See Silver Nitrate.

NITRIC ACID, See Acids.

NITROGLYCERIN, See Amyl Nitrite.

NITROHYDROCHLORIC ACID, See Acids.

NUX VOMICA, See Strychnine.

OPium, See Morphine.

OXALIC ACID, See Acids.

PHENACETIN, See Acetanilid.

PHENOL, CARBOLIC ACID, CREOSOTE.

Antidote.—Magnesium or sodium sulphate; benefit doubtful. Give emetic or better lavage with 10 per cent. solution of alcohol. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/40. Atropine sulph. subcut. H. gr. 1½; D. gr. 1/60. Camphorated oil subcut., H. 5i; D. m. xv. Artificial respiration. Saline intravenous infusion. Mustard paste and heat externally.

PHOSPHOROUS ACID, See Acids.

TARTARIC ACID, See Acids.
POISONS AND ANTIDOTES

TOBACCO.

ANTIDOTES.

Antidotes.—Potassium permanganate, H. ʒii in 2 qts. of water; D. gr.xv in half pint of water, or hydrogen dioxide, or copper sulphate, H. ʒii; D. gr.x in solution. Give emetic or lavage. Avoid oil and fats. Give large doses of sodium bicarbonate for secondary symptoms.

PHYSOSTIGMINE, ESERINE, CALABAR BEAN.

Atropine sulph. subcut. H. gr. 1½; D. gr. 1/60. "Digitalone," subcut., H. ʒss; D. m. xx to m. xl. Alcohol subcut. H. ʒiv; D. ʒii. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/60. Artificial respiration.

PILOCARPINE. JABORANDI.

Atropine sulph. subcut. H. gr. 1½; D. gr. 1/60.

POTASSIUM CARBONATE, See Alkalies.

POTASSIUM CYANIDE, See Prussic Acid.

POTASSIUM HYDRATE, See Alkalies.

PRUSSIC ACID. HYDROCYANIC ACID. POTASSIUM CYANIDE.

SAVIN.

Give lavage or an emetic. Cathartics, as Epsom salt, or castor, or linseed oil. Morphine sulph. subcut., H. gr.v; D. gr.ss.

SILVER NITRATE.

Give emetic or lavage with salt and water. Salt is the antidote and must be given freely. Demulcients, egg white, sweet oil, milk, soap and water. Morphine sulph. subcut., H. gr.iii; D. gr.ss. Mustard paste and heat externally.

SNAKE BITE.

Ligature about limb between wound and heart. Excise wound or cauterize it with a hot iron. Inject about bite 1% solution chlorinated lime, or 1 to 1000 solution potassium permanganate. Calmette’s antivenin. Strychnine sulph. subcut., H. gr.i; D. gr. 1/100 to gr. 1/40.

SODIUM CARBONATE, See Alkalies.

SODIUM HYDRATE, See Alkalies.

STRAWBERRY. NUX VOMICA.

Lavage with tannic acid solution under influence of ether inhalation. If convulsions are already present give ether inhalation and normal salt solution intravenously, together with artificial respiration or intratracheal insufflation.

SULPHATE OF COPPER, See Copper.

SULPHURIC ACID, See Acids.

TARTAR EMETIC, See Antimony.

TURPENTINE, OIL OF.

Give emetic or lavage. Give demulcients:—egg white, gum arabic solution, linseed tea. Epsom salt, linseed oil. Intravenous saline infusion.

ZINC SALTS, SOLUBLE.

Lavage if emesis is not copious. Cathartics, as linseed or castor oil, or Epsom salt. Morphine sulph subcut., H. gr.v; D. gr.ss. Stimulants. Mustard paste and heat externally.
GENERAL THERAPEUTIC MEASURES.

Food and Feeding

In order to comprehend the rationale of feeding in disease it is essential to know something of the principles of feeding in health. A food has been defined as "that which, being innocuous in relation to the tissues, is a digestible, absorbable substance that can be oxidized in the body and decomposed in such a way as to give up to the body the forces it contains."

A complete food is composed of organic and inorganic constituents. The inorganic matters, with the exception of common salt, and rarely phosphate of lime and sodium, are usually present in sufficient quantity in ordinary food. The organic components of vegetable food stuffs are divided into nitrogenous and non-nitrogenous classes. These are analogous to the constituent parts of the animal body into which they are transformed. The greater portion of animal tissue is made up of nitrogenous elements, while the larger part of plants is composed of non-nitrogenous material. Among the nitrogenous elements the most important are the proteids. Gluten of flour is an example of a vegetable proteid; while white of egg, casein of milk, and fibrin of blood represent animal proteids. Fat exists as such in both plants and animals. A single, chemical compound, as protein, is known as a nutrient in relation to feeding. The nutrients of importance are proteids, fat, and carbohydrates. The first two are common to animal and plant structure; the latter to plants alone. A complete food contains the three nutrients just mentioned and inorganic substances. Carbohydrates include such bodies as sugar, starch, and cellulose, or woody matter of plants. Proteids consist of carbon, hydrogen, oxygen, nitrogen, and sulphur, united in different proportions. Carbohydrates are composed of carbon, hydrogen and oxygen. Fat is similar in composition to carbohydrates but in its combustion outside the body yields two and a quarter times as much heat as that produced by an equal weight of carbohydrate. Fat as a nutrient is therefore empirically regarded as equivalent to two and a quarter times the same weight of carbohydrate material.

Very recent experiments have revolutionized our ideas concerning the feeding of animals. These have shown (by feeding pure protein, carbohydrates, fat and salts) that a food containing proteids, carbohydrates, fat and salts is very far from being complete as has hitherto been accepted.

To begin with there are two essentials in every complete food without which animals not only cease to grow and thrive but sicken and die. These until very lately were unknown quantities.

1. There is a soluble, organic substance essential for growth, health and life, which exists in fresh meat, milk, eggs, vegetables (especially in growing parts), in the kernel or germ of grains and in fruit. It is absent in pure starch, sugar and fats. It is destroyed by heating, drying
and curing, and is wanting therefore in sterilized, boiled, dried, canned and processed food products and in boiled milk and many commercial cattle foods. The substance is known as a vitamine and has not yet been isolated as an entity but is rather appreciated by its absence. Thus when animals or man live on food in which vitamines are wanting malnutrition, scurvy, rickets and pellagra result. The seeds of plants or grains do not contain sufficient vitamine to form a complete food although it is contained in the germ of grains. But an admixture of grains with the leaves or growing tops of plants (roughage), containing vitamines, makes a complete food—as polished rice (germ removed) and alfalfa. Vitamines are obtained in animal feeding by making watery solutions of grains. In man orange or lime juice and raw vegetables or fruit are used for the vitamine content and prevent and cure scurvy, etc. 2. A special soluble fat is a second essential in a complete food. This is absent in some food containing fat but is especially active in the form of the soluble fat in egg and milk. The vitamines are more abundant in such roughage as clover and alfalfa hay, and corn fodder. The watersoluble vitamines are more abundant in seeds. Roughage without much leafy portion, as straw, is a poor food from lack of vitamines. A ration of wheat straw and wheat grain, or of wheat straw and corn grain, may lead to the production of weak or dead calves from mal-nutrition. Neither may oat straw be fed in too large amounts to breeding cows. Where wheat or oat straw is fed cows it should be combined with corn silage or alfalfa or clover hay to supply vitamines. The corn plant may be used as a complete food for growth and reproduction.

Proteids in various foods have very dissimilar values. Proteids are split into amino-acids in the intestines and are absorbed and used to build up the various tissues in this form. Proteids are valuable according to their yield of amino-acids (18 varieties). Some are necessary for the construction of some tissues, others for other tissues. Skim milk proteid has three times the value of cereal proteid. But by combining cereals as corn and oil meal we may get such a favorable mixture of amino-acids that the combination has double the value for building animal tissue that either has singly. The addition of a small amount of animal product to cereal food greatly increases its value because meat scraps contain the essential soluble fat, valuable proteids and the most essential salts.

This brings us to the fourth discovery that the proportion of necessary salts in food (sodium, potassium, lime and magnesium) is of greater importance than their mere presence, which has hitherto been thought all that was necessary. The absence of the proper proportion of salts in food is shown by unthrifty and stunted growth, and especially by abortion, or dead or dying fetus at birth. Such trouble, especially among swine, results from the lack of proper salts and the essential soluble fat in the food. These experiments mark the beginning of a tremendous advance in scientific feeding.

Hitherto computation of the food requirements has been based simply on the pounds of digestible nutrients and the proportion of proteids to carbohydrates, this proportion being known as the nutritive ratio. Now scientific feeding is founded on the fuel value or energy value
of food. The fuel value means the amount of heat that is given out by food in its combustion in the body. There is much less heat formed by the combustion of food within the body—on account of losses in food undigested and fermented in the bowels and escaping incompletely burned in the urine—than would occur in food burned outside the body. The heat or energy value of food is measured in calories or therms. A calory is the quantity of heat necessary to raise 1 gram of water 1° C. A therm is the amount of heat required to raise 1 kilo. of water 1° C. Tables based on the most elaborate experiments showing the actual amount of fuel or energy value of foods, together with the amount of digestible protein and dry matter contained in them, must be consulted in calculating daily rations.

Thus, for maintenance of animals of 1,000 lbs. live weight per diem, it has been found that cattle require 0.5 lb. of digestible protein and food of the energy value of 6.0 therms. Horses require 1.0 lb. of digestible protein and food of a fuel value equal to 7.0 therms.

The daily food requirements of grown cattle are such that for each pound of digestible protein there should be 8 to 10 lbs. of carbohydrates and 20 to 30 lbs. of total dry matter. More important still, it has been found that there are necessary—in addition to the maintenance requirements of cows—0.05 lbs. of digestible protein and 0.3 therm in energy value in the daily ration for each pound of milk produced.

As a practical application of the foregoing, suppose that we compute a ration for cows giving 25 lbs. of milk daily and weighing 850 lbs. Consulting a table showing maintenance requirements, we find that 0.45 lb. of digestible protein and food of energy value of 5.6 therms are necessary. Multiplying the additional requirements for each pound of milk produced (as above) by 25, we find that 1.25 lbs. of protein and 7.5 therms are necessary for this milk yield—beside the maintenance requirement. Adding the requirements for maintenance to those for milk yield we get the total daily requirements for cows weighing 850 lbs. and yielding 25 lbs. of milk as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For maintenance</td>
<td>0.45</td>
<td>5.6</td>
</tr>
<tr>
<td>For 25 lbs. of milk</td>
<td>1.25</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>1.70</td>
<td>13.10</td>
</tr>
</tbody>
</table>

We shall now have to consult a table* showing the energy value, protein content, and dry matter in all ordinary fodders, and combine them so that they shall possess in the daily ration 1.7 lbs. of digestible protein, energy value of 13.10 therms, and dry matter equal to 20 to 30 lbs.

The particular food stuffs must be selected so that they shall be the cheapest in the locality in which the feeding is done.

The mechanism of the animal body is always "running," and an animal at rest is like a motor car at a stand-still with the engine moving.

*Armsby, Bull. 346 and 459, U. S. Dep't. Agric.
Therefore no more protein is required by a horse at light work than at rest, for repair of the machine. More fuel for working* the machine is, however, needed. The requirements for working horses are: For light work, digestible protein, 1.0 lb.; therms, 9.8. For moderate work, digestible protein, 1.4 lb.; therms 12.40. For heavy work, digestible protein, 2.0 lbs.; therms, 16.00.

Horses doing hard work, growing and pregnant animals, and all animals supplying nitrogenous products, as wool and milk, demand more nitrogen in their food. The proteids, as we have seen, constitute a large proportion of the solids and fluids of the body. The protein absorbed into the blood is utilized in two ways. One part is energy-forming, the circulatory protein of Voit. The other is tissue-building, or the organic protein of Voit.

That part which is devoted to energy-producing is not transformed into tissue but is split up (katabolized) by the cells, or enzymes within the cells (chiefly of muscles), and thus produces heat or energy.

The other part is directly built into living protoplasm. If the amount of circulatory protein is deficient, then the organized protein is called upon, the tissues are robbed of their substance, and the body emaciates. When a larger amount of protein is contained in the blood, we have a proportionately larger elimination of nitrogenous matter in the urine, as equilibrium is soon established in the adult animal of constant weight, so that the amount of nitrogen eliminated equals that ingested. In young and growing animals a portion of the nitrogen does not reappear in the urine, but is utilized in tissue formation. This also applies to previously starving animals on being well fed. An excess of circulating protein, besides being wasteful economically, is harmful in causing various disordered conditions, resulting in the formation of products of imperfect oxidation.

The vegetable proteids are transformed into bodies of simpler chemical composition in the stomach and are there converted in part by the gastric juice, but chiefly by pancreatic (trypsin), biliary and intestinal ferments in the intestines, into peptone, proteoses, and possibly acid and alkali and native albumin.

The epithelial cells of the intestines possess the power to transmute peptones and proteoses into amino-acids. All proteids are absorbed into the blood as amino-acids. It was formerly thought that they were absorbed as proteoses and peptones but these are transformed in the intestinal mucous membrane into amino-acids. The amino-acids in the blood serve to build up all the forms of protid tissue peculiar to the various organs needed to supply waste or growth. The remaining unused portion of the amino-acids in the blood is decomposed or de-aminized in the liver into nitrogenous and non-nitrogenous constituents. The nitrogen escapes from the kidneys in the form of urea and the carbon molecule is split up (like that of carbohydrates) by the muscles cells to form heat and energy, with CO₂ as the end product. During starvation amino-acid is found in the blood and tissues and evidently it is the only available form in which proteids can be utilized in the body, whether in the building up (anabolism) or breaking down of tissue (katabolism). It
is the circulating medium or currency of proteids, as glucose is the currency of carbohydrates. Proteids in excess are not stored as amino-acids but as body protein or tissue.

The following rôle is played by protein as a nutritive:

1. It is the building material for cell protoplasm of tissues of all kinds.
2. It forms energy directly by undergoing destruction without tissue-building.
3. It may be transformed (through its CHO) into sugar or glycogen but can not form fat in the body contrary to former belief.

Carbohydrates of the food, as starch and sugar, are converted by the enzymes of the intestinal mucosa into sugars—as dextrose, levulose and galactose, which pass into the portal circulation to the liver where they are converted into glycogen, and stored as such, except a part of the sugars which are carried to the muscles and there converted into glycogen.

The glycogen undergoes combustion in the liver and muscles with a production of heat equal to 4.18 calories for each gram of carbohydrates. CO₂ and water are end-products. Sugar metabolism is under the control of the internal secretions of the pancreas, adrenal, thyroid and pituitary glands.

These either aid in the storage of sugar as glycogen in the liver (pancreas), or, in excessive and abnormal amount (adrenal, pituitary and thyroid glands), hinder this action and allow sugar to pass through the liver unchanged and escape into the blood and urine, thus causing diabetes. The heat production, as in the case of the combustion of proteids, is of great importance in sustaining nerve action.

Fat in the food is emulsified by the bile and by the pancreatic and intestinal secretions and is absorbed as fatty acids, glycerol and soaps by special cells of the intestinal mucous membrane and passes into the lymphatics as emulsions of fat; thence into the thoracic duct, and is finally oxidized into carbonic dioxide and water with production of heat and energy. In what part of the body oxidation of fat occurs is unknown. In the combustion of 1 gram of fat heat equal to 9.4 calories is liberated.

Carbohydrates do not directly furnish tissue elements, but do so indirectly in preventing decomposition (to some extent) of protein in the body, and in lessening its consumption. In this way the comparatively inexpensive carbohydrates will compensate for an insufficient ration of costly proteids.

It is asserted that this action of carbohydrates is explained by the fact that these nutrients have a greater affinity for oxygen than proteids and so are the first to undergo combustion.

The term albuminoid was formerly used as synonymous with proteid, but is now employed to include nitrogenous bodies (gelatin) derived from protein in the body but not convertible into proteids. These bodies do not take the place of proteids, but appear to fulfil the functions of circulating protein, and, like carbohydrates, conserve protein consumption, but are not tissue builders.
Carbohydrates aid directly in the production of fat. Fat in the food may be directly assimilated as such if there is a sufficient carbohydrate and proteid ration to protect it from decomposition. The rôle carbohydrates play includes:

1. The formation of tissue indirectly by protecting the proteid elements from combustion with an insufficient nitrogenous diet.
2. The generation of heat, energy, or mechanical work.
3. The production of fat.

Carbohydrates cannot be relied upon as sole articles of food. The fat of the body is derived from the decomposition of proteids and carbohydrates, and directly from fat contained in the food. Fat lubricates the tissues, and a reasonable accumulation serves as a store of potential energy to be called upon in time of need, when its action is similar to that of carbohydrates. The main source of muscular energy, movement, or mechanical work, is thought to reside in the carbohydrates, because with excessive muscular work there is increased evolution of heat, carbonic dioxide and water, but no material increase in excretion of nitrogen in the urine. In so far as muscular energy and power depend upon a good machine, in so far do the proteids aid the work of the machine by keeping it in good repair and working order. From this point of view the proteids represent the mechanism by which the work is done; the carbohydrates the fuel necessary for its performance. It must be kept in mind that this is but a general statement, since muscular work is also done by protein, and may be wholly done by it, as shown by dogs living on lean meat. The exact relative value of carbohydrates and proteids in the production of the vital forces is still sub judice.

The classes of food stuffs for the larger animals embrace both green and dry fodder, consisting of the whole plant minus the roots; parts from which the more valuable portions have been removed, as straw; tubers and roots containing a large percentage of water; the seeds or grains, constituting the most concentrated food; and the seed coverings or chaff. Refuse and by-products of manufacture are extensively used, as bran, cottonseed meal, linseed meal, and brewers' grains. In addition, animal matter, as flesh meal, bone meal, and dried blood, are sometimes of value. Pasture grass may be taken as a standard of comparison for green fodders. In 100 lbs. of grass there are approximately digestible:

Protein	1.04 lbs.
Fat	0.5 lbs.
Carbohydrates	10.34 lbs.

Green clover contains considerably more, green rye slightly more, and green oats somewhat less protein; while in green corn fodder there is only about half as much protein. Roots, as compared with green pasture grass, possess only one-third the quantity of protein and solids. Potatoes, however, have double the nutritive value of roots. Comparison is made in reference to protein, as that is by far the most valuable nutrient, and the amount of carbohydrates and fat do not vary much in similar kinds of fodder.

Meadow hay, including such common varieties as timothy and red
top, may be taken as a standard of comparison for dry fodder. In 100 lbs. of timothy hay there are approximately digestible:

<table>
<thead>
<tr>
<th>Protein</th>
<th>3.65 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>0.78 lbs.</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>45.8 lbs.</td>
</tr>
</tbody>
</table>

Clover hay has double the amount, and rowen or aftermath about one-third more protein than is contained in ordinary meadow hay. Alfalfa represents clover hay. The latter should be bright and free from dust to avoid heaves in horses, or it should be moistened. Alfalfa should not be fed to the extent of more than two-thirds of the roughage for horses; it should be chopped and timothy hay makes the best combination with it. Corn with equal weight of alfalfa makes a good balanced ration for horses. Oats may be selected as a standard of comparison for grains. 100 lbs. of oats contain of digestible nutrients as follows:

<table>
<thead>
<tr>
<th>Protein</th>
<th>8.36 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>0.45 lbs.</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>45.0 lbs.</td>
</tr>
</tbody>
</table>

Corn yields slightly less protein and considerably more carbohydrates and fat, while cottonseed meal contains nearly three times as much protein, and four times as much fat as are found in oats. If corn is fed horses it should be combined with chopped alfalfa or a small quantity of cotton seed oil meal, not more than a lb. daily to 1000 lbs. of live weight, to add protein. The change to corn from oats should be gradual to avoid colic. Bran (or shorts) has approximately the same chemical composition as oats. The straw of wheat, barley, rye, oats, and corn has a somewhat similar value. In 100 lbs. of wheat straw there are digestible:

<table>
<thead>
<tr>
<th>Protein</th>
<th>0.37 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>0.3 lbs.</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>36.00 lbs.</td>
</tr>
</tbody>
</table>

In order to compare the composition of food with that of the tissues into which it is converted, we submit the following:

PERCENTAGE COMPOSITION OF LIVE ANIMAL.

IN 100 LBS. OF WELL FED LIVE OX THERE ARE:

<table>
<thead>
<tr>
<th>Protein</th>
<th>15.8 lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>7.1 lbs.</td>
</tr>
<tr>
<td>Ash</td>
<td>4.9 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>54.3 lbs.</td>
</tr>
<tr>
<td>Contents of digestive tract</td>
<td>18.0 lbs.</td>
</tr>
</tbody>
</table>

Certain of the fodders are especially adapted or otherwise for the various domestic animals. Green clover is prone to fermentation and the formation of flatulence if given in large quantities to any animal. A sudden change from dry to luxuriant green food is always undesirable for a similar reason. Green grass cut short by a lawn mower should not be given horses, as it is swallowed in an unmasticated condition and leads to indigestion and colic. Corn chop is a frequent cause of colic and alfalfa of impaction of the colon in horses. Pasturing on the tops of sugar beets, after the beets have been removed is responsible for colic in horses and
gastro-enteritis in cattle, sheep and swine in parts of this country. Potatoes and roots are more suitable for ruminants than for horses; yet upon the latter they act as natural and agreeable laxatives, and form a palatable addition to dry fodder, particularly carrots. The best variety of hay for horses consists of good bright timothy or herds grass with a slight admixture of red top and clover. Carrots should be sliced longitudinally to prevent choking when given to horses. Clover hay is dusty and apt to provoke "heaves" in horses, and that, together with rowen, is more appropriate for ruminants.

Bran is but poorly digested by horses, yet acts favorably as a laxative when given once or twice a week mixed with boiling water and plenty of salt, constituting a "bran mash." Bran takes the place of oats as a nitrogenous food for ruminants, and is less expensive. Cottonseed meal, being extremely rich in nitrogen, and usually in oil or fat, is not easily digested by any animal, but may be given in quantities of a quart or two to ruminants, and from half a pint to a pint to horses, daily. Cottonseed meal is supplied cattle to compensate for a deficiency of nitrogen in the food, while in horses it acts as a slight laxative and may improve the general condition. Straw and corn fodder are not readily digested by horses unless cut and steamed, but are suitable for ruminants and are often preferable to a poor quality of hay. The demands of the system for food vary in relation to tissue change, which is diminished by rest, increased by work, and either accelerated or decreased by disease. The requirements for nutriment are greater during the growing period and for the formation of the various natural products, as milk or wool. The state of the digestive organs and assimilative powers guide us in selecting the kind and quantity of food desirable. In acute disease it is advisable to feed little and often, the food being prepared in the most digestible and palatable form, and in as great a variety as attainable. We may restrict the diet as a whole or in part. Starving diminishes circulatory protein, increases tissue waste, weakens an animal, and lessens the natural resistance against disease. Restricting the diet is useful in controlling unmanageable animals, in diminishing sexual excitement, and in the treatment of plethora when combined with proper exercise. In most acute inflammatory diseases, as in acute laminitis, a restricted laxative diet is desirable, as steamed oats with bran and salt, roots and green fodder. In acute indigestion, or in acute inflammation of the alimentary tract, and in acute nephritis, all food should be withheld for at least 24 hours. In acute peritonitis all food is contra-indicated, by the mouth. In the milder forms of acute gastro-enteritis we must restrict the diet to small quantities of easily digested food, as cracked or steamed oats, chopped hay and gruels, with the addition of a little green fodder or roots for horses; while carnivora are given milk and lime water. In chronic digestive disorders the food must be readily digestible and assimilable, and of a nitrogenous character, since anemia and malnutrition follow the defective digestion and absorption. In chronic indigestion or gastro-enteritis of horses, Zuill recommends oats (boiled, scalded or steamed, and allowed to stand 12 hours), 2 parts; bran, 1 part; and malted barley, 1 part. The addition of salt and a little green fodder to this ration is palatable
and desirable. The dietary for constipation in horses should consist of bran mashes twice a week with plenty of salt; roots and green fodder at frequent intervals, combined with suitable exercise and appropriate drug treatment. Dogs suffering from constipation may be given raw liver twice a week, or may be put on an occasional or exclusive diet of one of the commercial dog breads or biscuits. These are laxative and are invaluable in eczema of dogs. Avoid oatmeal, and feed bread, soup and milk in acute eczema. If constipation is very obstinate, total abstinence from all food, water excepted, for a time, followed by the use of lean meat with salt and beef tea, is indicated till the bowels are emptied manually or by enemata. The ration for diarrhea embraces the partial restriction of water, which increases the bulk and fluidity of the intestinal contents and so stimulates the movements of the bowels. If the diarrhea is so severe as to endanger life, an abundance of pure or boiled water should be allowed in order to compensate for the loss of fluid from the blood.

Theoretically, an albuminous diet is indicated in diarrhea because of the loss from the blood and tissues, and because intestinal digestion is disordered and starchy food would be undigested and cause fermentation, etc. Practically, a certain amount of starchy food seems to be serviceable in the treatment of diarrhea. Horses and cattle should be given cooked flour or barley gruel and roasted oatmeal and cracked oats. Coarse foods, as bran and straw and green fodder, are not allowable. Swine should be supplied with gruels of boiled milk and barley, flour or oatmeal (strained).

Fowl with diarrhea may be fed on boiled rice and given a few drops of laudanum two or three times daily. Dogs and cats should have boiled milk, boiled rice or strained rice gruel, cooked lean meat and crackers. Beef juice and white of egg in water are of value. Young calves, with diarrhea, should receive whey, broths and rice flour gruel. These dietaries should be employed in conjunction with other measures, as the preliminary use of a laxative, rest, the avoidance of too rich milk, quiet, and external heat and drug treatment. Young suckling animals, as foals and calves, may be fed on cooked and strained oatmeal or barley gruel made with milk if the mother's milk does not agree. In severe attacks of gastro-enteritis, or in gastric or intestinal ulceration with hemorrhage from the stomach or bowels (after preliminary starving), the food should be bland and fluid, as soaked bread, oatmeal, barley or flour gruels, linseed tea (made by boiling linseed in a muslin bag immersed in water), and small quantities of green fodder for the larger animals; while milk and lime water, white of egg and water, broths and beef juice are indicated for carnivora. In the latter animals we may have to resort to predigested food given by the mouth, or, if vomiting is persistent, by the rectum.

The diet in cases of catarrhal jaundice should be easily digestible, bland, and such as will not require much bile for its digestion. The larger patients should be given gruels, steamed cracked oats, young and tender green food, cooked potatoes, together with alkalies and other appropriate remedies. Dogs are allowed milk and lime water, crackers, bread and
cooked lean meat. Feeding in hemoglobinuria or “black water” of horses must be restricted to the use of gruels, green fodder and a little hay in the early stages of the disorder. Food is usually withheld 12 hours before surgical operations, and this, in addition to the administration of a cathartic, will prevent injury in casting the larger animals, which might follow were the digestive tract overfull. It will also lessen the danger of intestinal fermentation and absorption of toxins from the bowels, which may occur after operation, owing to an enfeebled digestive action. If dogs are starved before surgical operation, vomiting is prevented during or after etherization. Water alone may be restricted to advantage in obesity, cardiac disease with edema, or in the treatment of chronic exudations, as in hydrothorax. Water may be allowed in these conditions only once daily, or even every other day; and this treatment may be combined with the use of saline cathartics in strong animals. The specific gravity and density of the blood and the tendency to absorption from the tissues and cavities are increased. By the same process the quantity of blood is diminished and the load put upon the heart is lessened, both of which may prove beneficial in cardiac diseases.

A full, or restorative diet should be especially rich in protein. Generous feeding is distinctly in order in the treatment of general debility, malnutrition, anemia, weakness of the digestive organs, convalescence from acute diseases and in animals particularly sensitive to cold, or in those which sweat easily. A full diet is also useful in overworked animals and in those subject to losses from increased secretion, excretion, or exudation, as in chronic suppuration, diarrhea, albuminuria, ascites and edema. A restorative diet for herbivora includes grain, as corn, bran, oats and cottonseed meal; hay and grass with occasionally beef meal, milk and eggs. For omnivora, corn, potatoes, blood, beef meal, milk and soups. For carnivora, meat extracts, cream, milk, eggs, broths and meat juice. In most wasting diseases, fat, protein and water are the food elements especially needful. An abundance of water stimulates the appetite, secretions, excretions, tissue changes and vital processes generally. Salt should be given freely as an aid to digestion in increasing the formation of hydrochloric acid, and indirectly that of pepsin. Alcohol, being a nutritive and capable of easy absorption, assimilation and decomposition in the body, forms a most valuable adjunct to a restorative diet. A deficiency of lime in the food is occasionally the cause of rickets in the young, and fragilitas ossium in the old, but more frequently these diseases are due to defective digestion, assimilation, or excessive lactation. Bone meal may be fed to advantage in such affections. It contains both lime and phosphoric acid and should be given in small quantities (1 tablespoonful to large animals; 1 teaspoonful to small patients) on the food in connection with the administration of hydrochloric acid and bitters.

In fever a restricted diet is often necessary in the more acute stages, with loss of appetite, diminished secretions, and movements of the stomach, but as soon as convalescence sets in the increased tissue waste produces an excessive demand for food and the digestive organs may become overtaxed. The initial dietetic treatment of fevers consists in the use of
oats, bran mashes, and gruels, with the addition of a small quantity of grass or roots for horses. The change from this diet should be very gradual to a dry, coarse fodder, in order to avoid digestive disorders. The bitters, alcohol, hydrochloric acid, and salt, together with a copious supply of water, will furthermore aid convalescence. Carnivora, with fever, should be fed milk, beef juice, broth, bread, oatmeal and a small quantity of cooked lean meat.

Obesity is treated most advantageously by proper feeding. A certain amount of fat is essential in the body in lubricating the tissues, in acting as a protection against cold, in serving as an enveloping and shielding cushion to the underlying tissues, and finally in supplying a store of nutrition. Animals living in cold climates are covered symmetrically by fat, but those indigenous in hot countries have accumulations of fat in masses to avoid over-heating the body. This is seen in the hump of the camel, zebu and Brahmin bull. When the camel is severely taxed, the fat is consumed and the hump becomes loose and flabby. House dogs overfed and insufficiently exercised, horses, and other animals kept for breeding purposes, are those most commonly afflicted with obesity. Fat in the body may be formed from fat, albuminoids, and carbohydrates of the food. Carbohydrates, if in excess of the needs of the economy, protect the fat in the food from decomposition and so enable it to be stored in the body. Protein may also protect the consumption of fat of the food, for it is broken up into nitrogenous and non-nitrogenous elements, and the latter may be transformed into body fat. The accumulation of fat proceeds most readily when there is an abundance of fat in the food, in addition to the other nutrients; less so when the ration consists of fat and albuminoids, or of carbohydrates and albuminoids; and least of all with a diet consisting of pure protein. The latter, then, is the food to be approached as near its purity as advisable. If a proteid ration is followed too closely, digestive disorders, loss of strength and nervous disturbances are likely to occur. The fat resulting from the decomposition of a pure protein fodder is usually not sufficient to supply the needs of the body, and the organized fat is gradually called upon to supply the deficiency in the food.

Exercise, cathartics, diuretics and diaphoretics, together with venesection, are synergistic measures. As emaciation proceeds, we must add more and more non-nitrogenous material to our ration. Fat is said to accumulate most readily in the vicinity of vascular areas where the flow of blood is retarded, and therefore oxidation, combustion, and molecular activity diminished. Exercise, on the other hand, stimulates the circulation, while deprivation of water makes the blood-current more rapid by decreasing the amount of blood. Both therefore favor the destruction of fat. Vogel has reported good results in reducing obesity by the use of the following rations. From 19 to 26 weeks are required for a cure.

DAILY RATION FOR THE HORSE.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oatmeal</td>
<td>7 lbs.</td>
</tr>
<tr>
<td>Straw</td>
<td>3.5 lbs.</td>
</tr>
<tr>
<td>Hay</td>
<td>7 lbs.</td>
</tr>
<tr>
<td>Linseed meal</td>
<td>1 lb.</td>
</tr>
<tr>
<td>Salt</td>
<td>5 per cent. of above</td>
</tr>
</tbody>
</table>
GENERAL THERAPEUTIC MEASURES

DAILY RATION FOR DOG WEIGHING 115 LBS.
Cooked oatmeal .. 3 lbs.
Fat .. ¼ lb.

SAME LATER.
Oatmeal .. 1 lb.
Flesh meal .. ½ lb.
Fat .. ¼ lb.
Salt ... 1 teaspoonful.

DAILY RATION FOR FAT SETTER OF POINTER.
Lean meat .. 1½ lbs.
Bread .. 1½ lbs.
Fat .. 3 oz.

Animals suffering from fatty degenerative changes do not stand such a rigid diet as the foregoing. These animals are affected with a weak heart due to fatty degeneration of the myocardium, with atrophy of its muscular fibres. They have dyspnea on exertion. The cardiac insufficiency leads, in its turn, to secondary troubles, as catarrh of the digestive and respiratory organs, and disorder of the liver and kidneys, following general passive congestion. The treatment should be directed in such cases to lessening the amount of blood and the work put upon the heart, by limiting the ingestion of water, and by strengthening the heart with appropriate stimulants. The activity of the skin should be excited by frequent grooming and the use of diaphoretics, while the activity of the kidneys should be enhanced by the employment of diuretics. We are prevented from feeding an exclusively nitrogenous diet in these cases, as the oxidizing power of the blood is not sufficient to decompose it. Neither is it safe or advisable to quickly remove the fat, as cardiac failure might ensue. Small quantities of water are allowed, given two hours after feeding. The general ration should be rich in proteids and also contain a moderate amount of fat and carbohydrates.

ARTIFICIAL FEEDING.

Artificial feeding consists in the introduction of food into the body other than in the ordinary way by the mouth. Rectal feeding is the only procedure of much value. The agents employed must be bland, and capable of easy absorption and assimilation. If the food is at all irritating, tenesmus and ejection quickly occur. From two to four ounces of liquid nourishment may be given to small or medium-sized dogs; from four to eight ounces to large dogs. One quart may be employed for horses. The nutrient enema should be introduced into the bowel through a flexible rubber tube carried up into the colon. An hour before the enema is given the bowel is to be washed out thoroughly with cold water. The nutrient injection should not be given oftener than once in six hours, and if the bowel is irritable, not oftener than once in twelve hours. The absorptive power of the rectum is slight, but that of the colon is considerably greater. Predigested food is most valuable. Leube’s Beef Peptone may be used. A bullock’s pancreas is finely chopped and rubbed up with eight ounces of glycerin. This extract will keep fresh several weeks in a cold place. To one-third of the extract are added five ounces of finely
chopped beef, and the mixture is ready for immediate use. The peptonizing powders of Fairchild Brothers & Foster are most convenient in preparing digested food. Each powder consists of five grains of pancreatic extract and fifteen grains of sodium bicarbonate.

A useful nutrient enema for a large dog may be made of two eggs and six ounces of milk. Four to six eggs may be added to a quart of milk for use as an enema for a horse. The mixture is then to be peptonized and introduced into the rectum at the temperature of the body. Milk pancreatinized for 24 hours, with the addition of glucose to the extent of 5%, is said to be most efficient as a nutritive enema (Short & Bywaters). In using the peptonizing powders, one is placed in a quart glass jar together with a teacupful of cold water. Then a pint of the mixture to be peptonized is poured into the jar, and the latter placed in a vessel containing water as hot as the hand will easily bear. The jar is kept in the hot water for twenty minutes and put on ice. When the mixture is used it should be heated to 100° F. If predigested food is to be given by the mouth, it is well not to keep the glass jar immersed in hot water more than five minutes, as otherwise the taste will be bitter and disagreeable. A small dose of laudanum is always useful to prevent the expulsion of enemata. Brandy may be added in the proportion of one ounce to the pint of milk after peptonizing. The addition of salt to egg-albumin greatly facilitates absorption. Panapeptone and brandy, each one ounce, in six ounces of normal salt solution form a good substitute for the peptonized milk enema. Gruels of all kinds, and broths, may be peptonized, as well as milk. The digestive powers of the large intestines are but slight. Sugar is absorbed unaltered; undigested proteids (with certain exceptions) and fat are not absorbed. Peptones, soluble proteids, as milk, meat juice, egg albumen, and emulsified fat are absorbed.

Antiperistalsis, shown by X-ray, may carry bland enemata of milk and eggs up into the bowels as far as the cecum, or large enemata may even reach the small intestines—if given slowly—without being injected high up (Cannon).

In tetanus, paralysis of muscles of deglutition, fracture of the jaw in horses, persistent vomiting and convulsions in dogs, and in all animals refusing food, rectal feeding is indicated. It is possible to feed animals through a stomach tube (or catheter), and, in hospital cases, this method may be preferable.

Counter-Irritants.

A counter-irritant is an irritant which acts counter, or against an existing irritation, result of irritation, or pain. In applying a "twitch" to a horse, we are inflicting an irritation to relieve some other source of irritation elsewhere. It is taken for granted that the damage and pain caused by the artificial irritant are not so severe as those already existing. The amount of injury produced by an irritant depends upon the nature of the material, its strength, the duration of its action, the mode of application, and the part to which it is applied. We may consider the effects occasioned by a mild and increasing action following the continued use of a single agent, or representing the action of materials of different
degrees of potency. There first appears redness of the skin, accompanied by some burning or pain (rubefacient action), and if the irritation progresses there is a serous exudate poured out into the mucous layer of the skin. This leads to swelling and edema. Greater irritation causes more exudation of serum and an elevation of the epidermis in a circumscribed area or areas, and the formation of blebs or blisters (vesication). If the irritation ceases at this point, the blisters break open and their contents dry on the surface, covering the parts with a thick scab. Synchronous with vesication we observe a similar process attacking the hair follicles. The hairs are loosened and fall, but as the papillae are usually unaffected, the growth of hair is soon renewed. The recovery of hair is facilitated by the application of grease to parts. Certain agents cause circumscribed inflammation of the gland orifices of the skin, with the formation of pustules (pustulants), as croton oil, and these create necrosis of the hair papilla, and, therefore, permanent loss of hair. If the irritant is severe, suppuration follows vesication; or, if an ordinary irritant is applied with violent friction, is covered with a bandage, or placed over an already inflamed part, the same result happens. The terms referring to the degree of action inherent in agents are as follows:

1. A rubefacient, causing hyperemia.
2. A vesicant, or epispastic, inducing blistering.
3. A pustulant, creating pustules.
4. An escharotic, or caustic, occasioning death of the tissues.

The same agent, as has already been pointed out, may produce one or more of these actions according to circumstances. The inner aspect of limbs and the flexures of joints are peculiarly sensitive, owing to the thinness of the skin over these areas. If a counter-irritant is rubbed properly into the skin it may penetrate into the mucous layer.

Reference has been made to the local influence of irritants. We will now direct attention to their remote effect. It is certainly known that irritation of the surface decidedly affects distant organs. Brown-Séquard noted contraction of vessels in one arm when the other was immersed in cold water. Severe burns of the surface are followed by duodenal ulcers.

The influence of counter-irritants may be partially summed up in reflex action; i.e., the production and conduction of an impulse from the periphery to nerve centres, thereby modifying the nerve functions and blood supply in distant parts.

The skin is commonly the point of application. It normally is an organ of protection, respiration, secretion and special sense, and, through its medium, a regulator of temperature, responding to such natural stimuli as heat, cold, moisture and dryness. Such an unnatural and considerable stimulation as is produced by counter-irritants consequently creates very sensible alterations in the bodily functions. Extensive counter-irritation causes the breathing to become slower and deeper by reflex stimulation of the respiratory centre, and also by making the respiratory movements more painful, if the application be made to the chest wall. The circulation is likewise affected by stimulation of the vagus and vasomotor centres, and both the force of the heart and blood pressure are increased,
unless the irritation is very widespread and severe, when the reverse happens. The abdominal vessels are those constructed; the vessels of the skin and limbs are unanected. In accordance with the foregoing remarks, the use of considerable heat, together with mustard or turpen-
tine, is of great value in conditions of vital depression, surgical shock, collapse and coma. Moreover, the effect on local blood supply is still greater and full of importance, since it may explain the beneficial action obtained in the ordinary use of counter-irritants. In experiments conducted upon animals, it has been observed that when sinapisms are placed over the head, the blood vessels in the pia mater are first dilated, but soon contract and remain in that condition for some time. Likewise there was seen, following energetic counter-irritation of the chest, anemia of the underlying parts, including the muscles, pleura, and even the pulmonary tissue. It is essential to bear in mind, then, that while counter-irritants induce local congestion in their immediate vicinity, they also cause reflexly vascular contraction in more remote areas. In accordance with this demon-
stration, the importance of these agents in remote inflammation lies not so much in their bringing blood to the surface, as in forcing it out of distant parts. This fact is not generally appreciated. The use of the word “drawing” signifies the common idea of a counter-irritant, and implies the first proposition.

Temperature is not materially affected by the therapeutic use of counter-irritants, and they are not necessarily contraindicated in fevers. Experiments, however, appear to show that mild counter-irritation may lead to a slight elevation of body-heat, owing to stimulation of the calorifacient centres, while extensive and prolonged action lowers temperature by depression of the heart and heat centres, and because more blood flows through the peripheral vessels owing to constriction of the vessels in the abdominal organs.

Counter-irritants notably relieve pain. This result is not only due to overcoming congestion, but occurs when pain is purely neuralgic. The phenomenon is not altogether explicable. The subduing influence of a twitch in the case of pain inflicted upon a horse is an analogous example. Wechsberg, in some late experiments, notes, as a most striking effect of counter-irritants, edematous infiltration of the skin, subcutaneous tissue and muscle in sub-adjacent parts, with compression of blood vessels in the deeper-lying structures. He attributes the relief of pain afforded by counter-irritants to anemia and rapid compression brought to bear on the nerves in these underlying parts. The viscera supplied by the sympathetic nerves have no pain sense. Pain attributed to the viscera is really “referred pain” felt in the cerebro-spinal nerves through reflex action. Thus pain and tenderness are felt in the belly wall when the viscera are inflamed.

In disease of internal organs Head has constantly found certain corresponding areas of skin tenderness. This because both the internal organ and the skin area are innervated from the same segment of the brain or cord. Theoretically and practically counter-irritation of a skin area affects the internal organ corresponding (by nervous connection) to this area more than other parts. These areas of skin tenderness for dis-
eased internal organs, and for application of skin irritants to relieve these conditions, have been mapped out in man. In the case of the chest and belly they are situated pretty nearly over the site of the internal organ. In the head the sensitive skin-sites are not over the diseased part.

Pain is usually referable to the peripheral ends of an affected nerve. It is good practice to apply counter-irritation directly over a deep-seated inflammation or seat of pain (see above), but in assuaging superficial pain it is found, that where the treatment can be made over the root of the painful nerve, better results are obtained. In pain in the chest wall a blister should be placed next the spine over the root of the spinal nerve involved; in pain in the head in man, counter-irritation is applied over the back of the neck. Counter-irritation should be done over the temple, in pain in the eye (iritis); behind the ear, for pain in that organ.

In the treatment of enlarged glands and in acute inflammations, as abscess, boils and carbuncles, by counter-irritants, the application should be about the lesions rather than directly upon them.

Among other actions accomplished by counter-irritants are: possible stimulation of trophic nerves and nutrition of a part; augmentation of tissue change, locally and generally, and dilatation of vessels (when applied after the subsidence of acute inflammation or in chronically inflamed parts), with renewed activity of the circulation and consequent absorption of inflammatory exudations. The local action of skin irritants increases the leukocytes and opsinins in the inflammatory area (acted upon) and leads to bacterial destruction. The toxins are also more rapidly removed by their influence. Furthermore, counter-irritants reflexly overcome spasm and pain occurring in colic, by stimulating and replacing normal peristaltic action in place of abnormal localized contractions. In like manner they excite uterine contractions by stimulation of the involuntary muscular fibres of the womb. To briefly summarize:—

the therapeutic action of counter-irritants may be due to: 1. Alteration of the circulation. 2. To the nervous relation between the skin and viscera. 3. To the “counter”-ing effect of a superficial over a deep pain.

INDICATIONS FOR COUNTER-IRRITANTS.

1. To overcome congestion and inflammation in remote parts.
2. To promote absorption of inflammatory products locally.
3. To relieve pain.
4. To stimulate the heart, respiration and nervous functions.

Rubefacients.—In this class are included the volatile oils—turpentine, oil of wintergreen, etc.—alcohol, chloroform, balsams, resins, iodine, tincture of camphor, tincture of cantharides, mustard, and heat. These agents are used when it is desirable to stimulate the nervous system rapidly, and to relieve pain and congestion. To attain this end, we employ comparatively mild agents in order that we may apply them over an extensive surface without causing serious or permanent results. Mustard is rubbed with warm water into a thin paste (a sinapism), and rubbed over the chest of horses in congestion of the lungs, in acute bronchitis, or in the first stage of pleuritis, to obtund pain and lessen congestion. Sinapisms also relieve obstinate cough, revive failing respiration,
and stimulate reflexly the vital functions in collapse, shock and narcotic coma. Applied over the cardiac region, they avert syncope. To assist the action of mustard, we often cover the application with hot, wet blankets, and then with dry ones. Stimulating liniments are sometimes preferred. One volume of oil of mustard may be combined with fifteen volumes of oil of turpentine, or ammonia water, thirty parts, and oil of turpentine, fifteen parts, are added to spirit of camphor and soap liniment, each fifty parts.

Turpentine is more valuable in abdominal disorders in horses. It is sprinkled on hot blankets, and applied as a suppe to stop pain, spasm, and stimulate normal peristalsis in colic; and to relieve pain and congestion in enteritis, peritonitis, diarrhea and other difficulties. The beneficial result accruing from the use of external counter-irritants in bowel troubles is often facilitated by the injection of hot (115° F.) rectal enemas.

Stimulating liniments are serviceable in aiding resolution of swelling, following the acute stage of cellulitis, lymphangitis, neuritis, mambinitis, rheumatism, strains and bruises. They are often employed in laryngitis. In chronic skin diseases, as eczema, mild counter-irritants (tar, oil of cade, Peruvian balsam, etc.) substitute an active reparative process, tend to aid absorption of exudation and induration, and relieve pain and itching. The tincture of iodine may abort incipient inflammatory lesions, as boils and abscess, by means of its counter-irritant and antiseptic properties.

VESICANTS AND THE ACTUAL CAUTERY.

Cantharides, red iodide of mercury, and croton oil, are more commonly used in veterinary medicine to cause blistering. Reference will be had, hereafter, to cantharidal blisters. Blisters and the cautery are especially indicated to cause resolution of inflammatory products and modification of inflammatory processes; to secure fixation and rest of parts, and to relieve pain. It is impossible to enumerate all the conditions in which they are useful. In the treatment of severe sprains, as curb and "breakdown"; and in exostoses, as ringbone and spavin, the actual cautery (firing) is used before and in conjunction with blistering to exaggerate the counter-irritant effect. Absorption is attained in the foregoing conditions by the production of an acute inflammation, with increase of vascularity, tissue change and fatty degeneration. In "breakdown," the formation of scar tissue is thought (without reason) to assist in supporting the limb. Sometimes, on the other hand, osseous deposit is unabsorbed, but ankylosis and freedom from pain in a diseased joint are secured by the enforced maintenance of rest and fixation of the joint, together with the production of new bone.

In exudative diseases of serous membranes, as pleuritis, pericarditis, peritonitis, meningitis, arthritis, and synovitis, blisters facilitate absorption and recovery after the acute stage is over. This favorable result is not due to loss of serum, but to modification of the inflammatory process. In the first three diseases named above, blisters—fly-blisters—may be applied in spots every few days in different places over the affected area.

Blisters reflexly stimulate the nerve centers in meningitis, in addition to their action on the inflammatory lesion. They should be applied over
the poll or spine according to the location of the trouble. Absorption in chronically enlarged glands is assisted by blisters. They also hasten “ripening” of suppurating glands or abscess when this process is slow, and hasten their resolution after evacuation of pus. The blister should be rubbed on about the inflamed area in these lesions.

Vesicants are also valuable in pharyngitis and laryngitis for severe cases, when stimulating liniments are ineffectual; and, in lessening pain, exudation and swelling of the throat, may avert the necessity of tracheotomy. A blister applied about the coronet in diseases of the feet is serviceable in stimulating the growth of the hoof and promotes repair in navicular disease, laminitis, and cartilaginous quittor, after the acute stage is passed. In arthritis and synovitis, the whole diseased area, with the exception of the flexure of the joint, is covered with a blister. Since it is often impossible to immobilize a part, in veterinary practice, by splints, blisters are sometimes employed for this end after reduction of dislocations.

The hair should be clipped from an area to be blistered, the skin washed with soap and water, and the animal tied up or restrained in some way from biting the part. It is the custom to cover immediately the surrounding parts with grease, but protection from the acrid discharge can be secured more effectively by frequent sponging with soap suds and water; or painting the skin, under the blistered surface, with a solution of rosin in alcohol. Grease is not so good a protective, since it is a solvent for cantharides. Vaseline should be applied following the active stage.

Caustics or Escharotics are agents which destroy tissue. They comprise such substances as the caustic alkalies, mineral acids, silver nitrate; iron, zinc and copper sulphates; ferric, zinc and mercuric chlorides; carabolic acid, arsenic, together with the actual cautery. They are indicated in the treatment of exuberant granulations, morbid growths, septic, sloughing and necrotic parts, pyogenic membranes, fistulous tracts, and for the destruction of poisons, as in rabid dog and snake bite. Escharotics stimulate and modify nutrition in unhealthy wounds and ulcers. Many form chemical compounds with the tissue elements. Heat oxidizes animal tissues, and also coagulates albumin and abstracts water from them.

The alkalies produce greasy compounds with the proteids, saponify the fats and withdraw water from the tissues. They are the most widely destructive agents. Silver nitrate forms an insoluble albuminate with the tissues to which it is applied, and protects the underlying structures from further action. It is most superficial in its action, but possesses specific properties in altering the condition of unhealthy wounds for the better. Extreme heat, exemplified by the white-hot iron, acts as a counter-irritant in stimulating reflexly the nervous system; in increasing the vascularity of surrounding parts, and in favoring revulsion of blood; in aiding absorption and resolution, and in relieving pain apart from its direct destructive effect. Caustics may be applied in either the solid or liquid state, and in various forms, as the stick, powder, paste and ointment. Caustics are sometimes employed to stop hemorrhage. The reader is referred to articles on special agents for further details.

Suppurants.—Any of the more active counter-irritants, as croton oil,
Cold and Heat

Cold.—Cold and heat are only relative terms. As used here, they refer, respectively, to a thermal intensity below or above that of the body. Cold is usually applied by means of water in some form. In veterinary practice we are limited in the employment of cold air, as a medium, to the use of free ventilation and protection of animals from the solar heat.* Cool air is especially desirable in the treatment of most febrile affections by lowering temperature and serving as a stimulus to the respiratory, circulatory and nervous functions generally. Locally, cold causes contraction of the peripheral vessels and muscles of the skin, forcing out fluids from the part and reducing local temperature. This is more distinctly noticeable in congested areas. If the application is very severe or long continued, the vessels lose their tone, become paralyzed, and we have passive congestion, inflammation, and finally death.

Ordinarily, reaction sets in after the use of cold, more particularly if followed by heat, when an active hyperemia is substituted for the ischemia. This is brought about both by reflex stimulation of the heart by the cold, and local dilation of the vessels. Therefore, when we wish to constringe parts, we use moderate cold continuously; but, by alternating cold and heat we may accelerate the blood supply, and by first forcing out, and then bringing back the fluids of the tissues, we can maintain such an activity of the circulation that even solid exudations are absorbed. Cold, locally, lessens nervous irritability and pain directly, and, also, by contracting the afferent vessels, it diminishes the impact of the blood on sensitive parts. Moderate heat is said, nevertheless, to produce much the same result by relaxing the capillaries of the collateral circulation, thus draining off the blood and relieving tension in the inflamed part. Tissue change is diminished, locally, by the action of cold. Suppuration

*The cold air treatment—of lobar pneumonia, especially—is now exceedingly popular in human medicine. The patients are kept outdoors even in the coldest weather under shelter and well-covered. Reduction of fever and stimulation of the vital centres are among the chief advantages accruing. The same treatment applies to animals. In pneumonia of horses an abundance of fresh, cold air should be secured with the animal well blanketeted and the limbs bandaged.
and sloughing proceed but slowly under its retarding influence. Acute abscess is converted into what might be logically termed a "cold abscess" in the most literal sense of the word. Remotely, moderate cold applied to the body for a short period actually increases general temperature by stimulating reflexly the heat centres, increasing oxidation and lessening radiation from the contracted superficial vessels. If cold is in contact with the whole body for a longer time, the temperature gradually sinks and the reduction continues for some hours when, in healthy animals, the temperature rises above normal. Such effects are much more pronounced in pyrexia. The action upon the nervous system is exceedingly important therapeutically. The most powerful stimulating action is exerted upon the centres of innervation controlling the circulatory, respiratory, digestive and excretory organs. In fever, this treatment invigorates the failing digestive functions, relieves the nervous irritability by cooling the blood going to the great nerve centres in the medulla, and strengthens and stimulates the entire nervous organization. Cold applications and drinks stimulate the circulation reflexly, increase blood tension, and, therefore, the secretion of urine in fever, which is very important for the elimination of toxins. Locally, heat and cold are often used interchangeably in medicine. In human practice it is a rule to be guided in the choice of one or the other by the desire of and effect upon the patient, and this should apply, as far as possible, in veterinary practice. Cold is employed, locally, in congestions of superficial parts, and tends to abort inflammation and relieve pain.

In meningitis, rubber ice bags or continual irrigation of the head and spine are used. Laryngitis may be successfully treated by ice poul- tices (cracked ice and sawdust in linen bags) or by thin rubber ice bags surrounding the throat. In the same way are treated sprained tendons, capped hocks, broken knees, recent curbs, and lymphangitis. In fact, most superficial inflammatory surgical affections are benefited by cold applications. Ice and ice water are useful in checking venous or capillary hemorrhage, although hot water is often more serviceable. Cold water enemata are valuable in atonic constipation, diarrhea, and to reduce temperature in fever. In the uterus, ice in small lumps will arrest metrorrhagia, and, in the rectum, aid in reducing prolapse. Ice bags, placed along the spine over the sympathetic ganglia, will cause dilatation of arterioles in regions corresponding to the point of application.

Modes of Employing Cold Water.

Ablution is the simplest method of applying water to the surface of the body. It is merely bathing. Water at the temperature of 50° to 60° F. is applied by a rough, coarse cloth. The water is thrown on in considerable quantities, beginning with the head and going rapidly over the neck, trunk and limbs successively, rubbing the skin briskly all the while with the cloth. Two attendants are required for the application of an ablation to the larger animals. The patient is finally dried and warmly blanketed. The process may be repeated each half hour in fever, or twice daily as a tonic measure in chronic diseases. The rationale consists in the stimulus afforded by the cold to the nervous system, accompanied by con-
traction and subsequent dilatation of the peripheral blood vessels, with consequent cooling of the blood and increased radiation of heat from the surface. In most hydriatic methods for reducing temperature in fever, friction of the skin should be the sine qua non, as otherwise the physical cooling of the body is confined entirely to the periphery, the contraction of the surface vessels driving the blood inward to the vital organs. The superficial muscles then act as non-conductors, and heat production being stimulated reflexly by the cold, an actual increase of internal temperature may obtain.

It is only by securing dilatation of the superficial vessels by friction that the result first described can be prevented, for after the first shock the peripheral vessels dilate, an increased supply of blood is brought to the surface, is rapidly cooled and courses inward, only to be replaced by more over-heated blood. The internal temperature is thus lowered, and instead of an internal congestion being brought about, as may happen when the skin is simply exposed to cold, we have a constant withdrawal of heated blood from the interior. In this perpetual interchange not only does cooling of the blood and body occur, but the circulation is equalized and congestions are overcome.

The Sheet Bath.—Whole baths are impracticable for our larger patients, and the sheet bath may be substituted to advantage for antipyretic and other purposes to which the cold bath is adapted. A cloth soaked in cold water, or ice poultice, is placed on the poll to prevent determination of blood to the head, and a linen sheet, wet in water, of from 50° to 80° F., is placed over the animal, the surface being rubbed, while dashing on the sheet water at the temperature of 50° to 60° F. This process is continued for fifteen or twenty minutes, unless rigor is induced. The method is valuable in the treatment of fever and insolation. The general rationale is the same as in the case of ablutions, but the antipyretic effect is more marked and permanent. The sheet may be covered, while wet, by blankets, and converted into a wet pack.

The Wet Pack is applicable for general or local use, and for various purposes. A linen sheet is dipped in water at a temperature of 50° to 70° F., and wrung out very thoroughly. A cold application is put on the head and the sheet applied and covered with dry woolen blankets. The duration of application is from one quarter to three hours, according to the object in view. If it is used as a strictly antipyretic measure, it should be changed frequently. The wet pack differs materially from other hydriatic procedures in that reaction occurs slowly, for there is no artificial stimulus in the shape of friction to accelerate it. The primary contraction of the vessels is succeeded by partial dilatation of them, when the blood from the interior of the over-heated body is cooled on the surface by contact with the sheet and by vaporization of the water. Vascular contraction again occurs owing to the cooling, forcing the chilled blood inward. So there is continual interchange of cooled and heated blood, until the wet sheet has become thoroughly warmed. After the wet pack is removed, the skin should be dried and the patient well blanketed.

The interchange of blood is useful in relieving congestion of the internal organs, in aiding nutrition by bringing to the periphery nutri-
ment absorbed from the gastro-intestinal tract, and for its tonic effect on the nervous system. In fever, it abates cerebral hyperemia, delirium and excitement, and promotes rest and quiet.

The Priessnitz Poultice* is similar to the wet pack, but a waterproof protective is interposed between the wet blanket, sheet, sponges or cloths on the inside and outside woolen coverings. Evaporation is thus prevented, but not vaporization. Such an application may be used with safety in febrile diseases, as pleuritis and pneumonia. If it is not renewed frequently, hyperemia of the surface occurs, and this may be beneficial in aborting or relieving internal congestion. It then acts as an ordinary poultice, and is of value in various local inflammations resulting from strains, blows and bruises; also, in laryngitis. Besides relieving internal congestion, the Priessnitz poultice stimulates absorption, removes induration and hastens suppuration, locally. The wet pack and Priessnitz poultice are more appropriate for practical use than the other methods in veterinary practice, since the evaporation from the hair of animals contraindicates methods suitable in human medicine.

Cold Baths are only practicable for the smaller animals. Dogs may be immersed in water at 90° F., which is rapidly cooled down to 60°. The bath should last about fifteen minutes, the surface of the body being rubbed constantly. Ice water should be frequently poured over the head. After removal from the water, the patient must be thoroughly dried, wrapped in warm blankets, and a stimulant given if necessary. Such treatment may be used as an antipyretic measure if the temperature is over 103° F. in the rectum.

Douches.—A douche is a forcible impact of water against the surface of the body. It is not used for its antipyretic effect, but acts as a stimulant to the nervous system at large, whereby the respiratory action is deepened and strengthened, and the circulation invigorated. The douche is given advantageously in the treatment of coma, of alcohol, chloroform, ether or opium, applied to the head. The water may be dashed from a pail or applied by means of a garden hose or from a tap. Rheumatic lameness and peripheral paralysis are suitable cases for the douche treatment, followed by vigorous rubbing and dry bandaging. Syncope may often be quickly relieved by douching of the head and chest.

Local Baths are good, especially in inflammatory conditions of the feet in horses. Tubs may be employed for the animals to stand in, the water being changed frequently or being kept cool by ice. It is not advisable to allow animals to stand in large bodies of water on account of the danger they incur of "catching cold" from surface evaporation. The value of the local use of water in acute laminitis is worth mentioning here. After the shoes have been removed the extreme pain may be alleviated by standing the horse in quite hot water, sufficient to reach up to or above the fetlocks. Good results are obtained by changing to ice water after the first day and continuing this for several days, in this way caus-

*The Priessnitz'scher umschlag (poultice) of the Germans is often defined as a cold water compress, without waterproof covering. It must be renewed frequently, as it soon dries. Its effect is cooling and not as a poultice in supplying moist heat, and it does not aid phagocytosis.
ing a contraction of the arteries, lessening the amount of blood supplied to the part and the danger of chronic laminitis and dropped sole. If convenient to a running stream, about the same results may be obtained by standing the animal in it.

Irrigation with cold water is done in inflammatory diseases of the joints, tendons and feet. Running water may be permitted to flow continuously through perforated rubber tubes, connected with a tap, or used as siphons and closed at their distal extremities. The holes may be made in the tube with red-hot needles. The rubber tubes should be wound about the limb or part and held in position by bandages. Leiter's expensive block tin tubes are easily bent and rendered useless by the movements of our patients. The treatment of lacerated wounds by means of a stream of water from a convenient hydrant, causes the part to granulate quickly and greatly facilitates the healing process, but care should be taken not to allow the water to run over the wound more than three or four hours at a time each day, otherwise the part will become "waterlogged" and tend to break down and slough rather than to fill in with healthy granulation tissue.

Cold Drinks are both refreshing and antipyretic in action. Cool water should be placed where the patient can take it as he desires. In stomatitis, tetanus and angina, cool water is distinctly grateful and comforting. In the latter two diseases, it should be arranged so that the animal can reach it without bending the neck. The mouth can be rinsed out continually, removing decomposing food and mucus, the thirst be slaked and heat and inflammation relieved.

Cold Enemata are valuable antipyretic agencies. From five to fifteen quarts of cold water may be thrown up through a flexible rubber tube, six feet long, far into the bowel of the horse.

Evaporating Solutions.—Ethyl chloride or ether spray may be applied for a short time by means of an atomizer, to induce local anesthesia of a part, through the powerful refrigeration produced in their evaporation, and is most satisfactorily employed in conjunction with cocaine injections. One turn of a cotton or linen bandage or a single thickness of similar stuff, put about a part and wet continuously with cold water, forms a good evaporating medium in allaying superficial inflammation and pain. A mixture of clay, and equal parts of water, vinegar and diluted solution of lead acetate, makes a cheap and efficient cooling application for external use in the treatment of bruises and sprains. The paste should be removed as quickly as it dries.

Refrigerants.—Certain medicines either produce a subjective feeling of coolness or actually cause it, applied externally or given internally. The subjective sensation is due to some inexplicable action on the local nerve supply. Some are stimulants and astringents, and diminish the circulation in the part. Externally, acetate of lead, chloride of ammonium, nitrate of potash, and vinegar, are used most frequently as refrigerants.

The mineral acids and salts of potassium and sodium, especially potassium nitrate, are administered more commonly, internally, both for their cooling effect and to allay thirst.
Heat.

Water at a moderate degree of heat—what is termed lukewarm—i.e., 86° to 95° F., applied to the body, stimulates the action of the skin, relaxes peripheral vessels and diminishes nervous excitability, pain and spasm in neighboring parts. Water at a temperature of 112° to 120° F. contracts blood vessels of underlying parts, relieving congestion and pain. Such a degree of heat resembles cold in its effect, and they may often be used interchangeably. Still stronger heat has much the same effect as excessive cold, only acting more quickly, causing dilatation of the vessels, pain, inflammation and destruction of tissue. The action of powerful heat on the whole body, or upon single organs is similar to that of counter-irritants. Mild, moist heat is beneficial in the treatment of wounds in poorly vascular parts where there is a tendency to indolent granulation, as about the feet in horses. Again, in low grades of inflammation with induration, as in strains of tendons, where moderate heat tends to stimulate the circulation and hasten absorption. In the treatment of abscess and burns, with destruction of tissue and suppuration, moist heat applied locally macerates the dead tissue, hastens sloughing and relieves pain, and in softening parts prevents the burrowing of pus and the formation of deep-seated pockets and sinuses.

A modern view of poulticing is that it aids the migration of leukocytes, and therefore is productive of good in assisting their phagocytic action. Hot applications increase exudation, congestion, collection of leukocytes and opsinins, locally. All these results are inimical to bacterial growth. The abscess can thus be more speedily formed and more quickly defined. Herein heat differs from cold. In irritable and spasmodic troubles of muscular origin in various organs, heat is distinctly remedial, as in pelvic and abdominal pain and colic, when employed in the form of rectal injections. Heat may, in many conditions, be used interchangeably with, or in the place of, cold, according to the preference of the practitioner or the effect upon the patient. As, for instance, in the case of pneumonia, pleuritis, angina, and in checking hemorrhage. Heat may be utilized in simply preventing the natural radiation of it from the body. Thus, simple, warm, dry blankets, applied all over the surface of the body, may abort catarrhal or rheumatic conditions by merely causing retention of the body heat, dilatation of the peripheral vessels and equalization of the circulation. Covering a portion of the skin with such dense preparations as tar, pitch or collodion, in mild superficial inflammatory lesions, is said to produce favorable results by restraining radiation and increasing heat and blood supply in the part. Even thickened tendons and indurated glands may be benefited thereby. The Priessnitz poultice continuously applied has a similar action. In vasomotor paralysis, seen in collapse, following loss of blood or poisoning, and in shock due to traumatism or surgical operation, heat is eminently a life-saving means. In such conditions the loss of vascular tone and dilatation of the vessels lead to dangerous, and even fatal, cooling of the body. Heated dry blankets, or those wrung out in hot water, should be applied to the larger animals, together with hot rectal injections; while
POULTICES OR CATAPLASMS

the smaller animals may be placed in baths at the temperature of 105° F., till the temperature becomes normal. Such treatment should be combined with the use of vascular and cardiac stimulants, camphor, caffeine, adrenalin, atropine, digitalis and strychnine, and saline infusions.

MODES OF APPLYING HEAT.

Poultices or Cataplasms.*—Cataplasms are compositions for the local application of heat and moisture. They are made commonly of flaxseed meal, bran, oatmeal, bread, potatoes and carrots. One or other of these is stirred up in boiling water until a thick, pasty consistency is produced. This mass may then be applied, while very hot, directly to the part when we wish to produce a softening of the tissues, as in abscess or tender feet in horses, and the whole is covered by a cloth. In poulticing horses' feet the material—usually bran and flaxseed meal, equal parts—is mixed in a pail, with boiling water, and spread on a piece of bagging (double thickness, and about two feet square), in sufficient quantity to surround and cover the entire foot. The bagging is then folded and tied about the pasterns, and over around the front and sole of the foot. The whole should occasionally be immersed in water to prevent drying of the poultice. When a poultice is used merely for its continued heat, in relieving heat and congestion, the material should be enclosed in a flannel bag, in order the longer to retain and radiate its warmth.

A very hot poultice acts as a counter-irritant in contracting blood vessels in more remote parts, besides its effect in abating pain. A warm, moist poultice causes a mild local hyperemia, softens broken down and dead tissues, and aids suppuration and sloughing. Poultices are not employed very much, except in the treatment of horses' feet, as they are clumsy, laborious contrivances, and difficult to keep in place. If long-continued, they cause tissues to become swollen, sodden and macerated, destroying their vitality. Antiseptic poultices are made by soaking sheet cotton, gauze or other absorbent material, in hot antiseptic solutions, as corrosive sublimate, 1-1000; creolin or lysol, 1-100. The material is very lightly wrung out, wrapped about with dry gauze, covered with oil paper, silk or rubber protective, and applied to the part with a bandage. Antiseptic poultices are useful in the treatment of septic injuries, and when there is much pain, destruction of tissue, sloughing and suppuration. Otherwise, poultices are decidedly contraindicated in the case of wounds, as dry antiseptic or aseptic absorbent dressings are far preferable in securing one of the cardinal requirements in the process of healing, i.e., dryness. As substitutes for ordinary poultices, we have spongio-pilene, counter-irritants, stupes and fomentations. Spongio-pilene occurs in sheets, about an inch in thickness, made of a mixture of sponge and felt, backed with a flexible covering of gutta-percha. Its main objection is the expense. It forms, when soaked in water, a cleanly and easily applied poultice for non-suppurating parts.

*Cataplasma Kaolini consists of kaolin, or porcelain clay, and is applied externally as a poultice. It acts to retain the body heat and is very similar to "Antiphlogistine," a substitute for the ordinary poultice.
Counter-irritation, as has been pointed out, is produced by hot poulticing as well as by drugs. A combination of the two is obtained in stupes.

Stupes, Stupa.—A stupe consists of a flannel or other cloth, wrung out in plain or medicated hot water, and applied to the skin. These are often covered by waterproof protection, the better to retain heat. In the veterinary art, hot blankets are often applied over the whole chest or abdomen to relieve internal congestion and pain in pleuritis, pneumonia and colic. Turpentine stupes are more in favor with abdominal troubles. These are made by simply sprinkling oil of turpentine over the hot blankets, or by saturating flannel cloths in turpentine and wringing them out in very hot water. To get a very active counter-irritant effect, a mustard paste may be rubbed over the chest, and then hot blankets applied.

Hot Water Bags, made of rubber, and enclosing water at a temperature of 120° F., may be placed along the spine, and by stimulating the cord and sympathetic ganglia, cause stimulation of vasoconstrictors in regions corresponding to the controlling areas over which the heat is applied. In this manner inflammatory conditions of the throat, chest, and abdomen are said to have been aborted, and internal hemorrhage effectually arrested. Conversely, cold may be used over the spine to dilate distal arterioles.

Fomentations are simply local baths. As technically employed, the word refers to bathing parts with plain or medicated hot water, by means of sponge or cloths. They may be used to cleanse wounds or parts of dried discharges; they act as counter-irritants if very hot, or as mild, stimulating, soothing and softening applications if warm. In order to produce much effect, besides a mere detergent one, they should be applied for a considerable length of time—one-half hour at least—and be followed by drying and bandaging. Fomentations reduce swelling and pain, and hasten repair in bruises, strains and local inflammatory lesions.

Injections of hot water are employed to cleanse wounds, stop bleeding and relieve pain and spasm. Injections may be thrown into the rectum or vagina at a temperature of 115° to 120° F. In the vagina, hot water may stop postpartum hemorrhage, pain and congestion in the pelvis, by producing uterine contractions, and atonic constriction of vessels in neighboring parts, which lasts for several hours following its use. Hot rectal injections (115° F.) subdue abdominal and pelvic pain or spasm, as intestinal or renal colic and spasm of the neck of the bladder. The heat per se in such injections may be invaluable in shock and collapse as noted above.

The water may either be led off through a rubber tube, from a stopcock in a pail or reservoir, placed above the patient, or else siphonage may be done off-hand through a bit of small-sized hose. Having hung a pail filled with water one or two feet above the patient, the hose is filled with water, and, closing the ends to keep it full, the upper part is put into the pail, while the lower, smooth and greased, is passed into the rectum or vagina; or water may be poured through a large tin funnel into the upper end of the tube. The ordinary fountain syringe is the best apparatus for smaller animals.

Dry Heat may be applied by means of hot blankets, hot water bags,
hot salt or sand in cloth bags, a flatiron or hot, wet cloths between waterproof coverings. Dry heat is often preferable to moist heat for simply relieving pain and congestion, as animals are less apt to become chilled by drafts and evaporation from the surface afterwards. It is generally more difficult to obtain, however.

Inhalations of plain or medicated steam are given for their local effect on the mucous membranes of the upper air passages. The moist heat has a soothing action on the nerves, and tends to loosen dry exudations. Agents may be incorporated in the inhalation having a sedative, stimulating or antiseptic action. (Vid. "Agents Acting on the Respiratory Organs," p. 39.)

The technic consists in placing a bucket containing a boiling mash under the horse’s nose, or in pouring cool water over a heated brick or iron in the bottom of a pail. The practice of tying a bag over a horse’s head, and steaming him therein, is bad, if the animal is suffering from respiratory troubles, as insufficient pure air is obtainable. A dog may be placed on the seat of a cane bottomed chair, and covered loosely with a sheet over the whole, the steam being generated in a vessel beneath.

Hot Baths at a temperature of 98° to 110° F. are impracticable for larger animals. They can be given to the smaller animals in collapse, shock, rheumatism, and to abort cold after exposure. Glowing heat is applied by means of heated metal, and is treated under the section on counter-irritation.

Action of Heat Contrasted with that of Cold.

The action of intense heat or cold on animal tissue is very similar in effect, producing vasomotor paralysis, congestion, inflammation, destruction of tissue and death. Even the sensations to which they give rise resemble each other so closely, that coolies on first handling ice said they could not hold it because it burned their fingers. Strong heat (115° to 120° F.) contracts blood vessels in underlying parts and overcomes pain and congestion. Heat of this degree approaches cold in similarity of action. A moderate degree of heat dilates vessels, while cold of like intensity contracts them. Moderate heat relieves pain by relaxing tissue, diminishes vascular tension by dilating efferent vessels of the collateral circulation, and draining off blood from the congested areas. Moderate cold, on the other hand, accomplishes a similar result in numbing nervous sensation and lessening the impact of blood in the painful region by constricting the afferent vessels. Tissue change is increased by moderate heat, but decreased by cold applied locally, or generally in fever. Swelling of tissue is reduced by cold directly; only indirectly by heat, which may, indeed, increase it. Softening and sloughing of parts, suppuration and "ripening" of abscesses and "cleaning off" of wounds, are facilitated by moderate heat, but hindered by cold.

Disinfectants, Antiseptics and Deodorants.

Disinfectants, or germicides, are agents which destroy the microorganisms, causing infectious and contagious diseases, fermentation and putrefaction. Antiseptics are agents which prevent or retard the growth
and development of the micro-organisms occasioning fermentation, putrefaction and disease, more especially the micrococci producing suppuration.

Deodorizers, or deodorants, are agents which destroy or counteract a foul odor. They are not necessarily antiseptics or disinfectants. Considerable confusion exists in relation to the terms disinfectant and antiseptic, because the latter is often described as an agent which inhibits the growth, or destroys the life of the micro-organisms of fermentation, putrefaction, and disease. This definition makes antiseptics synonymous with disinfectants. The distinction exists, however, according to common usage, that while disinfectants may, in dilution, act as antiseptics, antiseptics are not often disinfectants, and in the nature of things are not strong enough to kill germs, although they may hinder their growth. Antiseptics may then be regarded as a subdivision of disinfectants. The two terms are unnecessary and misleading, as either might embrace both interference with the growth and destruction of micro-organisms. Disinfection may fall short of sterilization; i.e., death of all germs. Repeated boiling of a fluid containing micro-organisms wholly kills them; but, while disinfectants may destroy the germs of disease, they often fail to kill more resistant and harmless organisms, as the spores of B. subtilis.

A discrimination between disinfectants and antiseptics may be made in relation to their connection with the body. Those agents employed to kill germs, in matter distinct from the living body, are disinfectants; while those agents applied on the surface, or introduced within the body, may be classed as antiseptics, since they can rarely be used in such strength as to kill all micro-organisms without injuring or killing their host.

DISINFECTANTS AND DISINFECTION.

Air, sunlight, heat and water are naturally the best disinfectants. Air scatters and dilutes micro-organisms, making them pathologically inactive. There is no more effective way to disinfect a stable, in which animals are living, than by free ventilation with pure air. It is well known that animals are less liable to contract infectious diseases in the comparatively pure air of the country than in closely crowded and ill-ventilated city buildings. Likewise, the contagious diseases of children mostly occur in winter, when they are herded together in schools and in poorly ventilated dwellings.

To attempt to disinfect the air surrounding a patient is the height of absurdity. The generation of chlorine and sulphurous acid gases for this purpose, although recommended in text books, is futile, and by irritating the respiratory mucous membrane, accomplishes more harm than good, since a congested surface offers a more suitable field for bacterial growth. Air, on the other hand, may be a medium of infection when contaminated with dust containing pathogenic bacteria (B. tuberculosi). Sunlight is prejudicial to the vitality of bacteria. Whereas the bacilli of tuberculosis will live almost indefinitely in dark, damp places, they quickly succumb to sunlight and dry air. Sunlight and pure air are, then, imperative for both the immediate and preventive treatment of germ diseases. Heat is the most powerful agency for disinfection at
MECHANICAL MEANS OF ASEPSIS

our command. Dry heat, to be efficacious, must be applied at a temperature of 140° C. (284° F.) for three hours to kill all bacteria and spores; but this degree of heat scorches most fabrics and destroys many materials. Boiling water quickly kills all non-spore-bearing pathogenic bacteria, and these include most of the organisms causing the common contagious and infectious diseases (anthrax excepted). Two hours of continuous boiling will not destroy the most resistant micro-organisms—the spores of the hay bacillus—but moist or saturated steam, at 230° F., will infallibly kill any spores whatsoever within a few minutes. Fire is the most complete disinfectant, because it not only destroys germs, but their food and products. Water, like air, dilutes germs and aids oxidation and destruction of organic matter; but, again like air, drinking water may be the source of infection when sufficiently contaminated.

MECHANICAL MEANS OF PROCURING ASEPSIS.

Hitherto the placing of sole reliance on chemical agents to secure surgical sterility of the skin and fresh infected wounds has been a mistake. It has been impossible to render living, infected tissue sterile by merely bathing it in chemical solutions. In other words asepsis has been procured most satisfactorily by mechanical means and the chemical has played a secondary part.

Thus the most efficient method has been to remove the hair from the skin surrounding a wound or operative area, and to shield the wound with sterile gauze meanwhile. Then the skin was actively scrubbed for 10 minutes with green soap and water and followed with 70 per cent. alcohol. The wound was then exposed, foreign matter and loose tissue removed by forceps and scissors, and the wound scrubbed, syringed or douchéd for 10 minutes with normal salt, lysol, or other solution. Now we have learned we can sterilize the skin and infected raw tissue without the scrubbing, and washing, and other laborious methods and with apparently as good results by using iodine (See p. 513).

CHEMICAL AGENTS.

Mercuric bichloride, carbolic acid, quicklime, chlorinated lime, sulphurous acid, and chlorine, are more frequently employed as disinfectants. Corrosive sublimate solutions are decomposed by keeping, and by contact with albumin and ammonia. Acids, or common salt, added to bichloride solutions prevent, in a measure, this decomposition; but, nevertheless, mercuric bichloride is rendered unfit for the disinfection of masses of decomposing albuminous matter, as manure. One of the best solutions, employed by the Paris Disinfection Service, is composed of corrosive sublimate 2 grams; tartaric acid, 4 grams; and water, 1 litre (1-500), colored with 5 drops of a 5 per cent. solution of indigo carminate. An English solution, in common use, consists of corrosive sublimate, 1 ounce; hydrochloric acid, 2 ounces, and water to make 3 gallons (1-768). The usual strength of corrosive sublimate solutions, for disinfection, varies from 1-500 to 1-1000. These solutions are suitable for articles made wholly, or in part, of leather, rubber and fur; for blankets, cotton and woolen fabrics, and for floors, walls, and wood work of stables. Surgical
instruments, and other metallic implements and fixtures, are injured by corrosive sublimate solutions. Carbolic acid is more expensive than corrosive sublimate, and less efficient in cases where the latter is applicable. Carbolic acid can, however, be used to disinfect albuminous material and metallic substances. It is employed on animal excreta in 5 per cent. aqueous solution (about 8 ounces to the gallon of hot water). This solution will cause the hands to dry, crack and fissure if they are immersed in it for any length of time. A two per cent. solution of commercial cresol is as efficient and cheaper than a five per cent. carbolic acid solution; or a four per cent. solution of the U. S. P. compound solution of cresol may be used.

Chlorinated lime and quicklime are good disinfectant agents to mix with animal evacuations. In fact, bleaching powder is probably the best and cheapest disinfectant we possess for use in privies, drains, sinks, cesspools, and sewers, and for the destruction of micro-organisms on floors, and in feces and urine.

A few pounds of this preparation may be thrown into privies or cesspools once a week, and the pure compound, or a saturated solution, may be scattered over floors or mixed with manure. A 5 per cent. solution is used to disinfect harness, which should be washed and greased directly afterwards. Stagnant and putrid water may be rendered safe and drinkable, after some hours, by the addition of \(\frac{1}{2} \) to 1 ounce to each 65 gallons of water. Chlorinated lime is a powerful deodorant as well as disinfectant, but is of no value in either capacity unless the compound contains so much chlorine gas that the face cannot be held near it without the production of great irritation to the eyes. It is used in 5 to 10 per cent. solution in water (or in whitewash) for disinfection of premises and on excreta. Bleaching powder should be placed upon decomposing animal bodies, and sheets wet with a saturated solution should be wrapped about the carcasses of animals dead from contagious diseases, to prevent infection during transportation. Disinfection by sulphurous acid and chlorine gas is done to destroy germs which cannot be reached by other methods. Five pounds of sulphur and two ounces of turpentine or alcohol (to afford moisture and aid combustion) are needful for every 1000 cubic feet of air space. Sulphur is generally burned in an iron vessel placed on sand, or floating in a tub of water. If the building is sufficiently tight to insure proper disinfection, it is difficult to secure combustion of the proper amount of sulphur. To obviate this, the sulphur may be saturated with turpentine, ignited and placed in an iron kettle on a tripod over an alcohol lamp. Chlorine is disengaged from chlorinated lime, to which is added crude muriatic acid, one pound of the former to three of the latter for every 5,000 cubic feet of air space. Buildings must be tightly sealed and made completely irrespirable for animals during the space of three hours. Sulphurous acid disinfection will not kill the spores of anthrax and should never be allowed to replace thorough mechanical cleansing and disinfection with other chemical agents, but may be utilized, as an additional safeguard. Chlorine gas is more reliable. Formaldehyde is now being employed by most boards of health for general disinfectant purposes, and it appears to be the best
means of gaseous disinfection. (See p. 255.) In most barns gaseous disinfection is useless because the premises cannot be made air-tight.

ANTISEPTICS.

It is perhaps well to consider here the sources of infection and the natural defenses or immunity possessed by animals against parasitic invasion. Pathogenic micro-organisms are commonly brought in contact with the body through the agency of the air, drinking water and food, and insects (flies, ticks, lice, and mosquitoes), and gain entrance by means of the air passages, digestive canal and blood; but even in the two former cases, the micro-organisms are in a certain sense outside of the body, since it is not easy for them to penetrate the intact and healthy ciliated mucous membrane of the respiratory tract. But when the mucous membrane is damaged by inflammation, and the cilia become paralyzed, and abnormal secretions are formed, then a favorable opportunity is offered for their growth and entrance into the circulation. In the digestive tract the hydrochloric acid of the gastric juice and bile* acts as a natural antiseptic, while the liver is thought to destroy toxins resulting from bacterial life.

When digestion is in a normal condition, putrefaction and fermentation do not occur; but when its activity is diminished, and the secretion of the digestive juices is lessened, and the hepatic functions are depressed, then a chance is offered for bacterial growth, fermentation and absorption of toxins, or even actual transmigration of micro-organisms through the intestinal walls. To these natural agencies of defense, which may be likened to outlying pickets shielding the animal from bacterial invasion, we must add the intrinsic power of resistance vested in the tissues, blood serum (opsins, bacteriolyins, agglutinins), and leukocytes in combating micro-organisms; and the production of antibodies in the system antagonizing the toxins formed by bacterial action. Micro-organisms are always to be found on the surface of the body and within its natural cavities open to the air, but pathogenic bacteria are less likely to do harm if the animal is in a healthy condition. A limited number of bacteria (micrococci) may even exist within the blood in health, and this fact accounts for suppuration occurring when the tissues are severely injured, without solution of continuity. The internal use of antiseptics is of comparatively little value, even when these agents come in direct contact with germs in the digestive tract. This follows because it is impossible to administer antiseptics in sufficient amount to seriously interfere with bacterial growth in the tissues, without injuring or even killing the patient.

There are certainly known but two instances (quinine in malaria and salvarsan in syphilis) where the exhibition of an antiseptic will inhibit the development of micro-organisms of a general infectious disease, and so absolutely arrest it. It is probable, however, that salicylates in rheumatism, act therapeutically as internal antiseptics. Antiseptics are of benefit in rendering the contents of the digestive tube more or less aseptic,

*Experiments in human patients show that many forms of pathogenic bacteria may live in bile. It is but moderately bactericidal.
and (after absorption) they exert some antiseptic action on the mucous membrane of the respiratory tract (volatile oils), and also on the urinary tract (urotropin), during their elimination. The principal agents used as antiseptics for surgical purposes are: iodine, dichloramine-T, phenol, compound cresol solution, creolin, hydrogen dioxide, corrosive sublimate, potassium permanganate, zinc chloride, iodoform, salicylic acid, aristol, iodol, and boric acid. Those employed internally include naphthol, salol, creolin, carbolic acid, bismuth salicylate and subnitrate, quinine, salicylic acid, and many others. For a more detailed description the reader is referred to special articles on these agents in the preceding pages.

Probably the greatest advance in the treatment of wounds in the great war was the use of chlorine preparations. Dakin's solution was that most successfully employed, consisting of 0.45 to 0.5 per cent. of sodium hypochlorite (NaOCl). The solution must be very accurately made since it is antiseptically inefficient if too weak, and irritating and caustic if too strong. Moreover, it is of the greatest importance that its alkalinity be most precisely determined by titration with sodium thiosulphate by a competent chemist. The solution is unstable and must be made every few days. The treatment is carried out by a most elaborate technic (Carrel-Dakin) in which intermittent or continuous irrigation through a number of small rubber tubes introduced into all the recesses of the wound is the chief feature. Closure of the wound is done when bacterial counts, taken from the wound secretion, show not more than one microbe in 5 or 6 microscopic fields on three successive days.

Dakin's solution gives off all its chlorine and loses all its antiseptic action within an hour. The difficulty of making and using it are so great that it is indicated in surgery only in well appointed hospitals, and by especially trained surgeons.

Dakin has therefore prepared a more stable and non-irritating chlorine compound in dichloramine-T. (toluene parasulfondichloramine). This is a crystalline, slightly yellowish solid, having a strong chlorine-like odor. It is sparingly soluble in water but is soluble in chlorinated eucalyptol and in chlorinated paraffine oil, or better, in chlorosane, a chlorinated oil of paraffin and white wax. To prepare a solution of dichloramine-T, 4.6 grains of dichloramine-T are dissolved in chlorosane (3i) (Squibb) by first gently heating the latter and stirring in the former. The solution will keep about 3 weeks. In the treatment of wounds from 5 to 7.5% solutions of dichloramine-T are used. In the nose and throat, from one to two per cent. solutions.

It is said that dichloramine-T has 20 to 40 times the germicidal strength of other chlorine solutions and shortens wound healing about one-third over ordinary methods. It is applied to fresh accidental wounds, in place of iodine, by spray, swab, medicine dropper or syringe in sufficient quantity to cover the wound, and then gauze is applied and the dressing renewed in 24 hours. As chlorine has a solvent action on dead tissue chloramine-T is very beneficial in putrid or gangrenous wounds applied twice in 24 hours. In cavities it is also most appropriate as it gives out chlorine for 18 to 24 hours and its antiseptic action is thus similarly prolonged. In fistulous withers and poll very encouraging
reports have been given out. It bids fair to supplant all other antiseptics in the treatment of accidental and infected wounds, and of sinuses.

CHLORAZENE.

As a substitute for the unstable and difficult-of-preparation, Dakin's solution, Dakin has prepared chlorazene (para-toluene-sodium-sulphochloramide). This is a stable, non-caustic and non-toxic salt occurring in white, soluble prismatic crystals. It is used commonly in 1 per cent. aqueous solution which gives up its chlorine in contact with animal proteids. It is more powerful than most antiseptic solutions in common use. It may be applied by the Carrel method through small rubber tubes inserted in the recesses of wounds, the whole being covered by sterile gauze, and intermittent irrigation being practiced every 2 hours to saturate the gauze. Or gauze compresses, kept wet with the solution, may be applied to superficial wounds. It is generally applicable as a substitute for the more common antiseptics in use in surgery. Fresh wounds are freed from dirt by swabbing with liquid neutral soap, without water, before applying chlorazene solution on compresses. A 1/4 per cent. solution has been used successfully in infectious mastitis by injection into the udder after emptying the gland of milk. Fistulae of poll and withers, and quittor, are favorably influenced by injections of chlorazene. Also canker of the ear in dogs. Scratches in horses may be cured by compresses wet with chlorazene. It is commonly marketed in tablets. Dichloramine-T is preferred in many cases, not requiring irrigation and drainage, in supplying more prolonged antiseptic action as the chlorine is more slowly set free.

DEODORIZERS OR DEODORANTS.

Deodorants are not of any practical value in simply exchanging one odor for another, but, as in the case of chlorine, they sometimes actually destroy compounds which give rise to the stench. Sewer and other malodorous gases, resulting from foul decomposing matter and excreta, may be freer from bacteria than ordinary air, and are not usually the carriers of micro-organisms, nor the cause of specific infectious diseases. These gases do, however, occasion indefinite symptoms of ill-health. Deodorizers, which are also disinfectants, are of service in destroying noxious emanations and their source; but, to accomplish this, it is necessary that they come into direct contact with putrefying material, and should not be placed about the habitations of man or animals, with the ridiculous idea that they are achieving more than the production of a vile odor.

PRACTICAL DISINFECTION.

The premises occupied by animals suffering from contagious diseases, together with all articles contained therein, such as harness, blankets, stable implements, and evacuations, must be disinfected after the removal of all animals and isolation of the sick. First, all parts of the premises must be cleaned. The woodwork of the floors, ceilings, walls must be swept, and filth removed by scraping if necessary. Floors that are too old to readily clean should be taken up and burned. Manure
and valueless infected objects should be burned or the manure mixed with five per cent. solution of chlorinated lime. Where the floors are of earth, the earth should be removed for a depth of four inches and mixed with the chlorinated lime (5 per cent.) solution, and replaced by fresh earth or, better, concrete.

Blankets and clothing should be boiled or soaked for 12 hours in a solution (1 to 500) of corrosive sublimate. Harness should be washed with soap and water and then with 4 per cent. liq. creolis comp.

The best way to apply the disinfectant is by means of a hand force or spray pump to every part of the building. In some cases, where only a stall or small area requires disinfection, a brush will do. The best outfit consists of a strong spray pump with 20 feet of hose and 5 feet of straight iron pipe connected to the same, to the end of which is attached a spray nozzle. The disinfectants which are most suitable are 4 per cent. solution of compound cresol solution, or 2 per cent. solution of cresol. This is known as liquid carbolic acid in the market and should contain 90 to 98 per cent. of cresylic acid to be efficient. Either of these disinfectants may be used alone or, in the strengths mentioned, in whitewash. Thus one slakes 7½ lbs. of lime with hot water and mixes it to a creamy consistency. Then to this one stirs in either 15 ounces of cresol, or 30 ounces of compound cresol solution, and adds water to make 5 gallons.* A specially liberal application of the disinfectant must be made to feed boxes, gutters and drains. If one uses the disinfectant alone it is well, after it is dry, to apply a coat of whitewash to the premises. A 1 to 500 corrosive sublimate solution may be used in place of the agents recommended when the avoidance of odor is necessary as in the production of milk. This should be followed by a coat of whitewash. Feed boxes, after drying of the disinfectant, should be washed with hot water to avoid poisoning. Gaseous disinfection is now in order, where the stable can be made air-tight and the animals removed, but is not usually necessary. Formaldehyde (p. 255) or sulphur (p. 197) may be employed. Live steam is the most useful when a suitable apparatus for its application to wood-works, haymows, etc., is obtainable. After thorough ventilation healthy animals which have not been exposed to infection may be allowed to return to the disinfected quarters.

Surgical Antisepsis and Asepsis.

It may be fitting, and not out of place, to briefly outline here the use of antiseptics and asepsis in veterinary surgery. Since the days when Lister introduced antisepsis, surgery has advanced in a manner which appears, however, like retrogression. It is now conceded that asepsis can be attained more satisfactorily and safely without the general use of antiseptics. For antiseptics, as has been noted, inflict a certain amount of damage upon denuded surfaces, and, in so far, lessen the resistance of the body to the inroads of bacteria. Modern surgery attempts to secure a comparative asepsis by mechanical cleanliness, which is more efficient, simpler, and harmless to the body. Antiseptics are indicated to assist asepsis in the toilet of the unbroken skin, and when sepsis has already

occurred, or is unavoidable. The gross neglect of aseptic precautions, often seen in the operations of veterinary surgery, would be considered criminal practice in human surgery.

Asepsis is, nevertheless, very difficult to secure in the lower animals living among filthy surroundings and lying on fecal discharges. In addition to these disadvantages the trouble of controlling animal movements during operation, and of keeping dressings in place, make the attainment of asepsis embarrassing and frequently impossible. The more common administration of anesthetics would facilitate asepsis by preventing movements of the patient and contact of the operative field with dirt.

But there are all degrees of infection, and while, with the best methods of securing cleanliness at our command, it is impossible to completely sterilize normal skin and tissues, yet the surgical result may be perfect. Therefore, in surgical operations, we should endeavor to procure as small an amount of infection, or dosage of micro-organisms, as possible, consistent with existing environment and conditions.

The following aseptic technic is especially applicable in the case of any surgical operation undertaken upon a noninfected part. If it is possible to carry out all the details, and the result is successful, healing will take place without suppuration.

To prepare the surface of the body for operations, the hair is first clipped and shaved, the skin is thoroughly scrubbed with a brush, green soap and water for ten minutes, and then with 70 per cent. alcohol. Since tincture of iodine has come into vogue the preceding method has been superseded by iodine with many operators. In this case the hair should be shaved the day before when water and soap may be used. Before the operation the dry skin is cleansed with gasoline, or when this is undesirable on account of its inflammability, ether may be used. Then tincture of iodine is painted all over the operative field and allowed to dry before the operation is begun. On delicate parts the tincture should be diluted with an equal amount of alcohol. After the skin is incised there is no further necessity for antiseptics unless the wound is already infected, or becomes so by exposure to impure air or contact with dirt. The hands of the operator, including the finger nails, should be brushed until clean with green soap and water, and then with 70 per cent. alcohol.

In accidental wounds the tincture of iodine or dichloramine-T is the most efficient agent.

As we have seen the skin must not be wetted with water in order that the iodine penetrate into its "pores." Washing also carries germs into the wound. The hair should be cut from the dry skin with scissors or by shaving the dry skin with a razor. The skin is cleansed by mopping with gasoline or ether and the dirt removed from the wound by forceps and scissors and gauze.

Then a large surrounding area of skin and the wound itself should be swabbed with pure tincture of iodine by means of a brush, or absorbent cotton on a stick. After suturing the wound it is best to swab over the line of sutures with tincture of iodine and allow it to dry before dressing. In burns and all accidental wounds and emergency cases the
iodine treatment (or dichloramine-T) is the thing. On delicate skin and mucous membranes the dilution of the official tincture with an equal amount of alcohol is indicated.

It is well for all participating in an operation to wear thin wet, or better, dry sterilized rubber surgical gloves after thorough hand-disinfection—in pus cases, to prevent contamination of the hands; in clean cases, to avoid infection of the wound from the hands. If gloves are not worn in operating upon clean cases, they are all the more useful in dressing or operating upon pus cases to avoid contamination of the hands which later might give rise to wound infection when the naked hands come in contact with a clean wound. Instruments are thoroughly scrubbed with soap and water, and boiled for ten minutes in an aqueous solution of sodium bicarbonate (1 teaspoonful to the quart), and then placed in a solution of carbolic acid (1-40), or removed to a sterile towel. New sponges only should be employed, which have been previously cleansed, and then soaked in carbolic acid (1-40) solution, or pieces of sterile gauze may be used.

If irrigation is desirable, normal salt solution (1 heaping teaspoonful to the quart of sterile water) is appropriate. Nothing else but this is allowable within the non-infected abdominal cavity. Sutures of silk, and needles, are prepared by boiling in water for thirty minutes. The area about the operative field is to be surrounded with cloths, or towels, which have been boiled or baked, and instruments and sponges may be laid on these.

Dressings may consist of gauze which has been exposed for three hours to dry heat at 140° C. (284° F.), or placed in an oven of an ordinary cooking stove, in closed tin cans, until it becomes scorched and slightly brown. The same gauze may be used for sponges. Unsterilized articles are not to be suffered to come in contact with the operator, or wound, during the operation.

Wound infection from exposure to the air and other media, is prevented by immediate dressing and bandaging, or by collodion applications.

Venesecion.

Venesecion, or blood-letting, formerly abused, has, for that reason, fallen into almost complete disuse. This is unfortunate, since blood-letting is a valuable and often life-saving measure. The indications for venesection are chiefly limited to conditions associated with a general high arterial pressure and local engorgement of some organ.

In such cases venesection very rapidly reduces general blood-tension to a point lower than that existing in the engorged region, so that congestion is relieved. A full, incompressible pulse is said to indicate the desirability of venesection in severe acute disorders—in accordance with the above—but this is not by any means invariably the fact, as will be shown.

Venesecion leads to a reduction of temperature, and vascular tension is lowered for from 3 to 48 hours, according to the quantity of blood withdrawn, but the blood vessels quickly adjust themselves to the smaller mass of blood, and the original quantity of this vital fluid is soon restored
(24 to 48 hours) through absorption from the tissues and alimentary canal. The heart beats more rapidly, owing to the lessened resistance in the vessels, and venesection is accompanied by nausea and prostration.

The blood is less dense and more fluid after blood-letting, and for this reason, if inflammatory processes follow, exudation is more apt to ensue. The fibrin is first regained, then the normal number of white, and finally that of red corpuscles, in from one to five weeks. Circulatory depressants—as veratrum viride—accomplish much the same results as blood-letting, by causing general reduction of vascular tension and relief from local congestion, thus “bleeding an animal into its own veins” without loss of blood, it is true, but with less rapid and certain effect.

Cathartics, diuretics and diaphoretics also lower blood pressure by abstraction of fluid from the vessels, but their action is slow. The following disorders are those most suitable for treatment by venesection when they exist in an alarming form in robust animals:

Cerebral congestion. In isolation and tympanites.
Appoplexy, particularly parturient apoplexy of cows.
Acute cerebral meningitis.
Active pulmonary congestion and apoplexy.
Passive pulmonary congestion in cardiac disease.

Sthenic pneumonia.
Sthenic pleuritis.
Urticaria.
Lymphangitis.
Azoturia.
Toxemia, bacterial.
Toxemia, mineral.
Toxemia, vegetable.
(Followed by saline infusion.)

Venesection from the jugular in cerebral congestion is, in fact, a species of local blood-letting by directly draining blood away from the brain; and it preserves life by preventing pressure on, and paralysis of, the great vital medullary centres controlling the respiration and heart. Moderate blood-letting is sometimes advisable in the early stages of severe inflammatory attacks of the brain or its membranes.

In cerebral congestion, and dyspnea due to gastric tympany and pressure on the diaphragm, bleeding may give relief. Blood-letting was formerly used in the treatment of parturient apoplexy of cows, and, when the disease has once occurred, it may be employed as a prophylactic measure in plethoric animals immediately before parturition. Venesection alleviates dangerous pulmonary congestion, removes the venous load on the right heart, and relieves dyspnea and cyanosis by making it possible for the heart to force a smaller quantity of blood through the less obstructed lungs.

A feeble and easily compressible pulse does not necessarily contraindicate venesection in engorgement of the lungs, for this condition leads to stasis in the pulmonary circulation, prevents the proper flow of blood into the left ventricle, and thus causes arterial anemia. Therefore, so far from contraindicating blood-letting, this condition urgently demands it. Alarming dyspnea, great cyanosis, together with a general plethoric state, should guide us in blood-letting in sthenic pneumonia and pulmonary congestion, rather than the state of the pulse. Venesection is serviceable in advanced cases of cardiac disease in dogs—with failing compensation, venous engorgement of the lungs, and dyspnea—by relieving the obstruc-
tion to the right heart. Moderate blood-letting is occasionally useful in severe cases of acute pleuritis, laminitis, lymphangitis and urticaria in plethoric horses.

Finally, in various toxemias, blood-letting drains away both the blood and its contained poison. The mass of blood removed may be advantageously replaced by injection of normal salt solution into a vein or under the skin. This method is not in prevalent use in veterinary medicine, but is applied with notable success in human practice. Every veterinary practitioner should be competent to bleed an animal. An amount greater than 1/5 of the total quantity of blood should not be withdrawn. The total quantity of blood is equal to about 13.5 per cent. of the body weight in horses; to 2.2 per cent. of the body weight of fat swine; to 6.6 per cent. of the body weight in dogs, and to 7.7 per cent. of the body weight in man. Large horses or cattle may be bled to the extent of from 4 to 6 qts.; smaller subjects, 2 to 4 qts.; sheep, 1/2 to 1 pt.; dogs, 4 oz. to 1 pt.

Blood-letting is generally done to animals in the upright position by shaving the hair and sterilizing the skin over the jugular vein in the upper part of the neck. The vein is made prominent by pressure below the site of operation, and a fleam, or knife carefully guarded, is plunged transversely into the vein, making a good clean incision. The blood should be quickly withdrawn and carefully measured and the effect on the pulse noted, and the blood-letting maintained until there is noticeable reduction in the vascular tension and other symptoms, for the relief of which venesection is employed. The bleeding is arrested by suturing the lips of the wound and by pressure with a bandage.

Local Blood-letting, or Scarification, is often useful in relieving tension and pain in locally congested or inflamed tissues, and may even avert death of the part. Furthermore, stasis is removed and exudation from the engorged vessels may be prevented, while a fresh supply of arterial blood flows in to reinstate the vital processes.

Scarification is practiced by making numerous small, parallel incisions into the skin, fascia or other tissues in the long axis of a limb or part. In inflammation of the periosteum it is necessary to puncture this membrane. Bleeding is facilitated by warm poulticing, and is arrested by packing the incisions with sterile gauze.

INDICATIONS.

Lampas. Mastitis.
Glossitis. Laminitis.
Periostitis. (To secure blood for microscopic ex-
Cellulitis. amination.)
Conjunctivitis.

Sometimes the veins leading from an inflamed area are opened, thus securing local abstraction of blood, *e.g.*, the digital veins in laminitis; the milk veins in mammitis.

Scarification, or puncture, is indicated in the above-mentioned conditions whenever there is great swelling, pain and tension in the affected parts, and not otherwise.
Transfusion

Transfusion is the transfer, directly or indirectly, of blood from one living animal to another. In this process the blood must be obtained from an animal of the same species as the patient. Transfusion has been discarded in the past because of the dangers of sepsis, embolism, destruction of the infused blood corpuscles and nephritis. Within the last few years direct transfusion has been widely done in human surgery and without danger. The simplest form of transfusion consists in bleeding the donor through a large sterile needle (introduced into a vein), into a sterile glass vessel, gradually adding 2 per cent. solution of sodium citrate, while continually stirring the mixture with a glass rod to prevent clotting. At least 6 ounces of citrate solution should be used to the pint of blood. The mixture of citrate solution and blood should be used warm and injected slowly by the use of a sterile funnel connected with rubber tube to a needle, which is introduced into the vein of the recipient.

The chief dangers of transfusion of blood are embolism and hemolysis. The citrate solution prevents the first (by preventing clotting), and hemolysis may be avoided by mixing 5 parts of the serum of the recipient with 1 part of undiluted blood of the donor (Hare) in the excavation of a drop culture slide, oil being placed around it to prevent drying.

If the two bloods be incompatible the red cells of the donor will be clumped and another donor will have to be found. Clumping or agglutination of the red cells of the donor by the serum of the recipient, is often followed by hemolysis of the patient's blood—if transfusion of such incompatible blood is done. The writer has, however, performed direct transfusion on many dogs without ill effects where no tests for compatibility of blood had been made.

Another simple method is by direct transfusion from vein of donor to vein of recipient by paraffine coated glass tubes.

Direct transfusion of blood is life saving in cases of profuse hemorrhage. It is also used with success in shock or collapse from any cause, and in severe anemias and chronic infections.

The injection of warm, normal salt solution (0.9 of 1 per cent.) has been found to fill many of the indications for transfusion of blood, and yet is free from the difficulties besetting the latter.

Saline Infusion.

Saline infusions are intended to replace the normal blood plasma, and, therefore, should contain approximately the amount of sodium chloride—0.9 of 1 per cent.—contained in this fluid. The solutions should be filtered and boiled previous to their use, when this is possible, and are made by adding a teaspoonful (69 gr.) of sodium chloride to the pint of sterile water, which is used at a temperature of usually 103° to 115° F., according to the mode of introduction and circumstances. The injection of a too dilute saline solution will cause the red blood cells to swell and part with their hemoglobin and will lead to great sweating and diuresis in the effort of nature to restore the plasma to its proper composition. If the solution is too strong (hypertonic) it will draw water from the
tissues and injure the blood cells so that they shrivel. If too dilute (hypotonic) the red cells are injured, the blood is laked (hemolysis), and salts abstracted from the tissues.

Calcium salts offset the toxic action of common salt (increased contraction of muscle), and alkalinity is desirable. Elimination from the bowels and kidneys is so rapid that the fluid from an infusion is removed in half an hour in healthy animals. Large infusions, without much loss of blood, tend to cause general and lung edema. It is safer to weigh salt at any rate and not use a rough estimate, as a teaspoonful to the pint. Hare recommends the following which may be bought in dry form sterilized: calcium chloride, 0.25; potassium chloride, 0.1; sodium chloride, 0.9; water, 1000 mils. Locke's solution is considered the best by many authorities: sodium chloride, 0.9; potassium chloride, 0.042; calcium chloride, 0.0024; sodium bicarbonate, 0.03; dextrose, 0.1; and distilled water, to make 1000 mils.

Saline infusions do not increase blood pressure in normal animals as they are so rapidly removed. But after hemorrhage they may maintain normal blood pressure by replacing blood. They favor coagulation of blood in hemorrhage, and so tend to stop bleeding, as well as replacing lost blood. Hogan's solution is almost as immediately successful as a blood transfusion after severe hemorrhage (not permanently so) and incomparably more convenient. It consists of sterile solution of gelatin, sodium chloride and carbonate prepared for immediate use by Squibb. The gelatin is free from tetanus bacilli and is remedial especially in coagulating blood.

Simple distilled and ordinary water are noxious to the tissues.

Mode of Introduction.—Saline infusions are introduced within the body (1) by intravenous injection; (2) by injection into muscular tissue (hypodermoclysis); and (3) by rectal injection (enteroclysis).

Intravenous injection is the most rapid and certain method, but not so simple and practicable as hypodermoclysis.

Any superficial vein which can be readily seen and isolated, may be utilized; preferably the jugular or internal saphena vein in animals; the median basilic, or cephalic, at the bend of the elbow in man.

The apparatus consists of a glass funnel or rubber bag connected by four or more feet of rubber tubing, with a canula or curved piece of glass tubing 4 inches long and ¼ inch in diameter for horses; ½ inch in diameter for dogs. The apparatus should be boiled immediately before using. The vein is made prominent by manual pressure exerted by an assistant, or by a bandage, applied proximally to the seat of operation. The hair is shaved from the part, which is sterilized, and an incision 1½ to 2½ inches long is made by lifting a transverse fold of the skin directly over the vein and snipping off the top of the fold with scissors parallel to its long axis. The sheath of the vein is exposed, raised by dissecting forceps, and divided. The vein is then lifted from its bed with an aneurism needle, and two silk or catgut ligatures are drawn under it about an inch apart. The vein is now incised longitudinally, and, as the blood begins to spurt out, the distal ligature is tied about the vessel. The canula is next passed into the incision in the vein toward the heart and
proximal ligature is tied, with the first part of a surgeon's knot, about the vein and canula, holding the latter in place and preventing leaking of the salt solution from the vessel. When the injection is completed, the tube is withdrawn and the proximal suture is tied on the heart side of the incision, and thus the vessel is occluded on either side of the seat of operation. A simpler method consists in connecting the tubing with a sterile, hollow aspirating needle which is plunged into the vein through the skin or, more certainly, after exposing the vein as above. The apparatus is filled with salt solution—including the funnel, tubing, and canula—at a temperature of 108° F. before its introduction into the vein, and the funnel should be kept full during its use to prevent the entrance of air into the vessel. Any pressure, previously employed between the incision and the heart, should of course be removed before beginning the injection. A little sterile absorbent cotton may be placed at the bottom of the funnel before the salt solution is poured into it, if the solution has not been previously filtered. In using the apparatus the funnel is raised about two feet above the vein. The quantity of salt solution to be injected will vary from a few ounces to two pints in the case of dogs; from 2 to 6 quarts for horses. Considerable quantities of isotonic salt solution may be introduced into the blood without harm, not exceeding 30 mils per kilo live weight (Crile), providing the inflow is not too rapid; i.e., exceeding one fluid dram to the pound of live weight in fifteen minutes. When this amount is exceeded the heart and kidneys cannot take care of the great quantity of fluid in the vessels and tissues. A return to the normal volume, force, and rate of the pulse, and of color to the mucous membranes, will lead us to stop the saline infusion. The use of intravenous saline injections is frequently followed by a reaction within half an hour, characterized by a severe rigor, succeeded by sweating, labored breathing, a strong pulse and increased urinary secretion.

Hypodermoclysis.

Injection of warm (103° to 105° F.) normal salt solution into the subcutaneous tissue of the neck, abdomen or thigh, is done aseptically with the same apparatus employed for intravenous saline infusions, using a large hollow needle to thrust under the skin instead of the glass tube for intravenous injection; or a fountain syringe filled with saline solution and attached to a sterile aspirating needle may be used; or a reversed aspirator apparatus may be utilized: i.e., by filling the jar with salt solution and forcing the air into the jar, thus displacing the fluid. The fountain syringe is the best apparatus. Hypodermoclysis may be employed in the same cases as intravenous infusion, and is simpler but not so effective. We are guided as to the quantity of solution desirable by the same indications noted above as referring to intravenous saline injections. Hypodermoclysis may be done in several places, and absorption is assisted by massage. Salt solutions are injected under the udder in females.

Enteroclysis.

Enteroclysis applies to slow, rectal injection of normal salt solution (105° to 120° F.) to secure absorption. This method may be applied
in cases not so urgent as to demand intravenous saline infusion or hypodermoclysis, more especially moderate degrees of hemorrhage, shock, collapse and circulatory depression, when the intrinsic heat of the injection is valuable in restoring the normal bodily temperature.

Uses.

INDICATIONS FOR SALINE INFUSIONS.

Grave hemorrhage.
Shock, traumatic, operative, and electric.
Suppression of urine.
Severe diarrhea.
Eclampsia. (Venesection most successful.)
Purpura hemorrhagica. Aside from hemorrhage, in collapse or shock from any cause. Give a small infusion of adrenalin. A large injection of saline in such cases may lead to edema of the lungs and body.

Hypodermoclysis, or the intravenous injection of saline infusions, finds its greatest usefulness as a life-saving measure in severe hemorrhage. The indications, following hemorrhage, are to fill up the vessels and to restore vascular tension, since danger is imminent, not from loss of blood corpuscles, but from lack of a circulating medium. There is a sufficient number of red corpuscles to carry on the respiratory and oxygen-bearing functions even after the greatest loss of blood possible from ordinary causes. In fact, respiration is but slightly impaired in human subjects suffering from pernicious anemia, when there is an 80 per cent. reduction in the normal red corpuscles, and one-half of the blood may be withdrawn from animals and replaced with normal salt solutions without serious damage resulting. Notwithstanding the great value of salines in hemorrhage, the transfusion of blood is unquestionably more efficient. Levin found that dogs die from a loss of blood equal to 4.5-5.5% of their body weight. The heart would stop but would start up again shortly with saline infusion. But by replacing the blood lost with blood transfused the animal would be as well as ever within a few minutes. Saline infusions greatly dilute the blood—and, therefore, poisons in the blood—in toxemia, while they increase the activity of the kidneys and elimination of toxins. The restoration of vascular tension is believed to assist the natural bodily resistance of the patient.

A great variety of disorders have been treated successfully in human medicine with saline infusions, on this basis, including: septicemia, pneumonia, uremia, diabetic coma, purpura hemorrhagica,* tetanus, ulcerative endocarditis, pyelitis; acute alcohol, ether, chloroform, carbonic monoxide, arsenic and mushroom poisoning; and toxemias resulting from acute infectious disorders. The same treatment may be applied to hemoglobinuria and other toxemias peculiar to the domestic animals. Venesection for the purpose of removing the poisoned blood may be resorted to prior to prac-

*G. W. Dunphy (Amer. Vet. Review, June, 1905) writes that he treated two cases of purpura hemorrhagica in the horse by injection of 6 liters of normal salt solution following the removal of 5 liters of blood from the jugular (by means of a trocar and canula), and, at the end of twenty-four hours, bled 2 more liters and injected 3 more liters of salt solution with very happy results. He also demonstrates the wonderful life-saving influence of intravenous saline infusion after the loss (by a horse) of 25 liters of blood.
tising saline injection in the toxemias, but recently Levin has found this treatment ineffective in experimentally produced toxemias. Excluding shock and hemorrhage, where heat is invaluable, saline infusions are generally given at the temperature of 103° F. by the rectum, under the skin, or into a vein.

Kunsel's Treatment for Milk Fever in Cows.

Following the Schmidt treatment with his intramammary injections of potassium iodide—which was productive of great diminution of the mortality of milk fever, but was often followed by local injury to the udder—M. Kunsel, of Lucerne, in March, 1903, made his first report of the method under discussion. This consists in the following: A tank of compressed oxygen, which can be had of any of the wholesale drug houses, is connected by rubber tubing six feet in length to a milking tube and firmly wired to the nozzle on the tank and to the tube, which should be boiled previous to use. The udder of the cow affected with milk fever should be stripped of milk and thoroughly washed with warm water and soap and the teats cleansed with 70 per cent. alcohol or some other effective antiseptic. The milking tube is then introduced into one of the upper teats and the oxygen gas is allowed to flow slowly into the teat until the corresponding quarter of the udder is tense and well distended. While pinching the teat to prevent the escape of gas, the tube is withdrawn and a strip of bandage or tape is bound about the lower part of the teat to retain the oxygen. The same procedure is repeated in each of the remaining teats. The ligatures on the teats may be permitted to remain in place for an hour and a half, when they should be removed. The inflation of the udder may be repeated in six hours, if necessary, owing to the non-improvement of the patient. As synergistic measures, the subcutaneous injection of one-half grain of strychnine nitrate, the use of enemata to empty the bowels, and catheterization are important in aiding recovery.

The animal should also be comfortably propped up with bags of hay.

If oxygen cannot be readily obtained, the use of a bicycle pump connected with a milking tube may be employed with much success; the results being probably as good as with the use of oxygen, providing the air is pure which is pumped into the udder. This purity of the air may be attained by blowing the air through a wash bottle containing 2 per cent. carbolic acid solution.

Very convenient arrangements are now commonly sold at a small price for inflating the cow's udder with air. These consist of a rubber bulb and tubing, a chamber containing sterile cotton (through which the air is filtered) and a milking tube for introduction into the teat. They may be used by the laity, and their employment has been as satisfactory as when oxygen was injected. The cow with milk fever should not be milked for ten or twelve hours after inflation of the udder, and only partially milked for several days following this time. Either emptying the udder of air by rubbing, or of milk by milking, within a few hours of inflation, has frequently led to a renewal of the disease in its worst form. The use of the tape for more than half an hour to retain the injected air
is unnecessary, and has led to serious consequences by shutting off the circulation in the end of the teat.

The results of the Kunsel treatment are wonderful. Kunsel reported a series of twenty-two cases of milk fever, without a death, following the use of his method. Similar results have been secured in this country. The rationale of the treatment has yet to be elucidated. Various hypotheses have been advanced, such as the effect of the oxygen on a hypothetical anaerobic bacillus in the udder; the action of the oxygen on the blood and general metabolism in destroying toxic products in the economy; the action of air-compression in the udder in overcoming congestion in this part, and thus preventing anemia of the central nervous system; and a possible stimulation of the secretory function of the mammary gland with elimination of toxins. The hypothesis most in vogue is that of a cerebral anemia following rapid emptying of the udder of milk and resulting udder congestion. The fact that injection of milk into the mammary gland has produced a condition simulating milk fever appears to augur a local cause of the disease.

The latest and most rational theory is that of Healy and Kastle who find the first colostrum of cows with parturient paresis to be extraordinarily toxic when injected into other animals, whereas colostrum from normal cows is inert. They believe the disease to be caused by a toxin elaborated in the udder through faulty metabolism and that inflation cures parturient paresis by preventing the absorption of this toxin.

Lavage.

Lavage is a term applied to washing out the stomach with the stomach tube. This process, while an every-day occurrence in human medicine, was too long neglected in veterinary practice. Fortunately, new interest was awakened in this useful procedure by Phillips, of St. Louis, who perfected a tube and demonstrated the practicability of its use in 1903. The use of the stomach tube in the treatment of indigestion in horses was quickly popularized by Knisely of Topeka, Kansas. Stomach lavage is now a routine procedure with most veterinarians. The stomach tube is also largely used for the administration of oil and other drenches to horses.

The passage of the tube is chiefly of value in acute indigestion of the horse, with gastric flatulence and distention, where pain and danger of rupture of the organ are averted by permitting escape of gas, and by further washing out the stomach in such conditions and in gastritis and engorgement, toxic, fermenting ingesta are immediately removed and the evil results, as tympanites and local inflammation of the stomach and of the intestines, are prevented. In choking, as by oats, the passage of the tube may afford relief, while in poisoning the washing out of the stomach is the one essential treatment. Gastric indigestion and flatulence are shown by colic, distention in the region of the stomach, difficulty in thoracic breathing and eructations of gas by the mouth, or attempts at retching and vomiting.

To pass the tube, the horse may be backed into a stall. The opera-
LAVAGE

523

tor stands to the animal's left and an assistant, holding up the horse's head and the distal end of the tube, to the patient's right.

The tube is placed in warm water and the surface is dusted with powdered slippery elm or smeared with vaseline. The left nostril of the horse is also lubricated in the same way.

The operator pushes the tube gently along the floor of the left nasal fossa with the left hand, while guiding its direction with the right hand.

The first obstruction is likely to be met, when the tube has been entered about a foot, by its contact with the turbinates. The point of the tube should then be held downwards, by the pressure of the right forefinger pushed as far as possible into the nostril, while the outer part of the tube is lifted upward to force the point down into the pharynx. When the tube enters the pharynx attempts at swallowing are likely to occur and these are just what are needed to close the epiglottis over the larynx and to force the tube into the gullet. If swallowing is not evident it may be brought on by pushing the end of the tube gently backward and forward into the pharynx, and, when an attempt at deglutition occurs, the tube should be thrust forward. If the tube goes into the trachea instead of the esophagus, it will meet with little resistance and expired air may be felt coming from it, while coughing often results. If it is in the gullet, the tube will be held more firmly by its walls and only fetid gas may escape with stomach contents. It should by these means be definitely established then that the tube is in the gullet before introducing it farther.

The tube may be passed via the mouth by using a speculum or by tying the mouth shut. For the double tube this route is perhaps best.

The tube should be made with white marks on the rubber to show when it may be expected to have reached the gullet and again the stomach.

During the course of passing the tube it must be well lubricated.

When the stomach is reached the gas may have already escaped and fluid contents may be siphoned off by filling the tube with warm water from a funnel or syringe, holding the distal end tightly closed and lowering it to the ground so as to permit of the escape of stomach contents by siphonage. If the contents are largely solid, the stomach must be repeatedly filled with 2 to 4 quarts of warm water and allowed to escape again by lowering the outer end of the tube to the ground. If the flow stops, owing to choking of the tube, it may be started again by injection of water into the tube with a syringe or pump.

The latter must not be used to suck out the contents of the stomach except so far, if necessary, as to start the siphonage. The stomach should thus be repeatedly washed until the water comes away clear. If the water is injected with a syringe, care must be taken to avoid forcing air into the stomach.

When passage of the tube becomes impossible through one nostril, the other one may be tried. Phillips reported failure to pass the tube in the horse in only 5 per cent. of trials. Many operators experience practically no failures in passing the tube. The tube is best made of red Para rubber and long enough to reach from the stomach to
the ground when in place. Occasionally in impacted stomachs it is impossible to pass the tube through the lower portion of the gullet unless a stilette is used in the tube.

For this purpose a wire bent double has proved satisfactory and is easily carried about. The apparatus consisting of two tubes, a small inlet and a larger outlet tube joined together, while superior for some purposes is not so generally serviceable as the single stomach tube.

Lavage of the stomach of dogs is accomplished by fastening the animal to a table on its side by tying the feet and a band about the body to the table. A gag made of wood is placed in the mouth to hold the jaws apart. Through a hole in the gag a tube is passed. The tube should be about 5 ft. long and different sizes are required. A large human catheter, or small human rectal tube is commonly suitable. To the catheter or rectal tube a funnel is attached by means of a piece of rubber tube and glass tube. After the stomach tube is passed, water is poured into the funnel, to the amount of a pint or so, and the stomach is emptied by lowering the funnel to the floor and allowing the water to siphon off. The tube must of course be filled with water when it is lowered in order to act as a siphon.

Lavage of the stomach and indeed the whole alimentary canal may also be accomplished in dogs by inverting the animals or hanging them up with head downwards and allowing several gallons of warm water to run into the rectum from a tube with funnel attached and raised some six feet above the patient. Water is allowed to flow until vomiting begins. It is well to introduce the rectal tube slowly for several feet and to compress the anus about the tube to prevent the water from escaping. This method is valuable after foreign bodies or poisons have been swallowed and some practitioners use it to free dogs of worms. Here a purge is first given and then the lower bowel is emptied by allowing soap solution (several gallons) to be intermittently rejected. Then the dog is inverted and normal salt solution allowed to flow into the rectum until it flows almost as fast from the mouth. If this does not occur, apomorphine hydrochloride (gr. 1/10 to 1/20 under the skin) will aid the water to flow through. A second treatment given in three days completes the vermifuge treatment. The worms are not always wholly removed and occasionally rupture of the gut occurs. The method is in common use, however, by leading practitioners (Quitman).
BIOLOGICAL THERAPEUTICS.

By A. Eichhorn.

INTRODUCTION.

The fundamental principles underlying biological therapy are intimately connected with the study of immunity. In order to intelligently apply biologic therapeutics to the treatment and prevention of disease, it is essential to be familiar with the principles of immunity. It is true that our knowledge of this intricate subject has not yet been made sufficiently clear in all of its phases, nevertheless, the principles of the phenomena are clearly understood. No doubt the extensive investigations which are being carried out at present in this line will sooner or later disclose a most wonderful activity which is taking place in the body during the struggle between infection and resistance. The principal biologic tests which have played such an important part in immunology will be further advanced. Reference is made especially to the complement-fixation, agglutination, precipitation, and other tests, and particularly to the latest of them all—the Abderhalden test—which has conclusively shown that not only in disease, but also under certain physiological conditions, certain ferments, enzymes, or other products are developed by the body and may be detected by the application of this test. It is therefore of the greatest importance that the subject of immunity should be well understood by all those who apply biologic products to the treatment and prevention of disease.

Immunity.

The study of immunity during the last few years has advanced to such an extent that, not only has our theoretical knowledge of the subject been furthered, but its practical usefulness has been established beyond a doubt. The progress in this line has not been confined to the application of the present knowledge of immunity to the science of human medicine, but many of the reactions are now utilized in veterinary medicine.

Immunity represents the resistance or non-susceptibility to disease, or in other words the ability of the living organism (human or animal) to resist the action of the causes of disease. Immunity is either natural or acquired. The acquired immunity is again subdivided into active and passive immunity.

In glancing over the list of diseases to which various species of animals are susceptible it becomes evident that some animals are never spontaneously infected with many of the microorganisms that cause extensive and fatal ravages in others. Such differences point to variations in the defensive mechanism since the invader in these cases is the same. This non-susceptibility which is congenital or the result of normal growth is called "natural immunity."

Even in susceptible species infectious diseases frequently terminate in recovery and recovered individuals are to a greater or less extent resistant to future attacks of the same diseases. This condition is called "acquired immunity." Acquired immunity may be brought about (1) by inoculation with attenuated virus, as for instance in vaccination against
smallpox; (2) by injecting killed bacteria such as hemorrhagic septicemia; (3) by injecting the specific toxins of bacteria as in the production of tetanus antitoxin; (4) by the injection of antitoxins or immune blood serum of animals that have recovered from disease, or that have been hyperimmunized by the above mentioned methods as for instance in the prophylactic inoculation against tetanus with tetanus antitoxin.

Animals acquire an active immunity to certain diseases when they have survived a natural or modified course of the disease produced either by infection with the particular germs or by inoculation with their specific vaccines, bacterins, or toxins. In this case the animal produces its own immunity either because it had the disease naturally or because it has been intentionally and artificially produced in a changed and less severe form. Artificial or intentional active immunization is ordinarily called “vaccination.”

Passive immunity is produced by the introduction of immunizing substances of an actively immune animal into another animal. This immunity is usually conferred by the injection of blood-serum from immunized animals, such serum carrying with it certain substances by which protection is conferred. The immunizing substances of an actively immunized or a hyperimmunized animal are known as immune bodies or “antibodies.” They comprise two classes: those acting on bacteria are antibacterial, as for instance anti white scours serum, anti anthrax serum; while those acting on toxins are called antitoxic, as for instance tetanus antitoxin.

Active immunity develops only after one or two weeks, while passive immunity is established immediately after the inoculation, but passive immunity does not last and protect animals for a long period as it usually disappears within one to two months. This is due to the fact that just as soon as the injected immune bodies are eliminated from the animal organism, immunity will cease; however, in the active form, the stimulation of the infection upon the body cells causes the continuous development of antibodies (immune bodies), and, therefore, a lasting immunity is produced.

From these brief remarks it can readily be seen that the production of active immunity, whenever its employment is practicable, has a great advantage over passive immunity, and the tendency is to employ this method whenever possible. On the other hand, it frequently becomes necessary to employ means by which the spread of the disease can be immediately checked, and in such instances passive immunity has the advantage over active immunity, inasmuch as it affords the animal immediate protection against infection (in many instances, it exerts also a curative action). Frequently, however, both methods are used as a combined inoculation by which the animal is given immediate and also lasting protection against an infectious disease. This form of immunization is known as the “simultaneous method.” This method was first employed by Lorenz in swine erysipelas. Later it was employed by Kolle and Turner in rinderpest, by Soberheim in anthrax, and by Dorset in hog cholera. The object of the treatment is to stimulate with the material used for immunization, the production of anti-substances which have not existed previously in the body or are present only in very small quantities. These are
the anti-bodies, or immune bodies, and the substances which stimulate the body to the production of such immune bodies are known as anti-gens.

Infectious Diseases.

An infectious disease may be defined as any malady caused by the introduction into the body of minute pathogenic organisms of the vegetable or animal kingdom, having the power to multiply indefinitely and set free certain noxious substances, which are chiefly responsible for the morbid changes. Most of the contagious and infectious diseases of animals are due to the action of bacteria, examples, tuberculous, anthrax, blackleg, tetanus, etc. Others, dourine, rabies, are due to minute forms of animal life—protozoa. Another class are caused by fungi of a higher order than bacteria—examples—actinomycosis and aspergillosis. Lastly, we find a group of infections due to unknown causes. Hog cholera, foot and mouth disease, smallpox, etc., belong to this class and we speak of the organisms that cause them as ultra-microscopic or ultra-visible because we have not been able to detect them by the aid of the most powerful microscope. They are also known as filtrable viruses, since they pass through porcelain filters through which the ordinary microorganisms will not pass.

Bacteria may be defined as minute unicellular organisms of plant-like character. They multiply by cell division or by a process known as spore formation. The spore has analogies to the seeds of higher plants and its development usually occurs when the conditions of growth of the bacteria are unfavorable. It is a great deal more resistant to destructive agents than the bacterium that produces it.

The protozoa, lowly forms of animal life, have a more complex structure than the bacteria and their cultivation under artificial conditions is far more difficult than is the case with the bacteria. To this class belong the trypanosomes causing mal de caderas, dourine, tick fever and malarial or biliary fever of horses.

Mention must also be made of the fungi producing mycotic lymphangitis and streptothricosis of horses.

The infective agents that cause disease may gain access to the body in various ways. They may be swallowed with the food or water—example, anthrax; be inhaled, example, influenza (probably); may infect wounded surfaces, example, tetanus; may find their way through certain natural openings, as the milk ducts of the teats; the genital organs or the eye, examples, abortion disease, hog cholera. Lastly, certain of them may reach the body of the host through introduction by an intermediate bearer, example, the piroplasm of tick fever, which reaches the blood of its bovine host through the bite of the cattle tick. Some infective agents may enter the body by two or more of these channels. Whatever the cause from which they arise, all of these contagia have quite definite incubative periods, varying with the different organisms. Animals suffering from infectious disease are more or less directly a menace to others; they are factories for the production and distribution of disease germs. The infection may be direct—from animal to animal—or indirect, through infections of the feed, pasture, stable, byre, or by intermediate carriers as flies, buzzards, rats, etc., or lastly, as seen above, through introduction into the body by an intermediate host. It is therefore evident that in the
control of infectious disease prevention is the most important procedure. The healthy must be segregated from the sick, and this is best accomplished by removing the healthy animals from the infected ones rather than vice versa. In some cases destruction of the infected animals is imperative. Examples—in tuberculosis of cattle, contagious pleuro-pneumonia of cattle, foot-and-mouth disease, and in countries where diseases appear that have not hitherto gained a foothold, it may become necessary to destroy not alone the infected but also the exposed animals. This is the method herculean adopted in this country in the control of foot-and-mouth disease, and the results have amply justified the means.

Disinfection is important. It consists in the use of certain substances which destroy the bacteria or their spores, or both. Among these are found fresh slacked or unslacked lime, chlorinated lime (bleaching powder), carbolic acid, corrosive sublimate, formalin, formaldehyde gas, creolin, cresol, etc., etc.

The prevention of some infectious diseases is most successfully accomplished by vaccination and without doubt this method of prevention when properly applied reduces the losses to a minimum. Vaccination is effective against blackleg, anthrax, tetanus, influenza, rabies, hemorrhagic septicemia, white scours, hog cholera and rinderpest. It is always essential that the products used for the vaccination should be pure and potent and they should be employed with proper care. The biological products prepared for the cure and prevention of infections are prepared under license of the United States Department of Agriculture.

Parallel with our broader knowledge of the subject of immunity the development of biological therapy is progressing. Since the beginning of progress in the exploitation of products through which infectious diseases may be prevented and cured it has been found that one of the most desirable means of preventing the extension of various infectious diseases is to furnish the susceptible and exposed animals with artificial immunity. This is the case in blackleg, anthrax, rabies, hog cholera, tick fever, and the like. Many animals prove to be naturally immune against some of these diseases, while others must be made immune by treatment with suitably prepared materials before they are able to successfully withstand attacks from a specific organism.

Investigators the world over have expended the greatest amount of their study in attempts to discover and perfect effective and at the same time practical means of immunizing animals against the more destructive of the infectious diseases. Large sums have been appropriated for the use of able investigators for the advancement of these researches, both from governmental sources and from gifts of private wealth. The goal sought by these searchers is the discovery of some means by which immunity may be conveyed to a large number of animals at the least expense. Successful vaccination against some of these diseases consists in giving the animals that are to be protected a mild attack of the disease; to provide the body tissues with such a degree of resistance that no disease germs taken into the system can remain to find lodgment, develop and cause injury. After such vaccination the animal is sufficiently protected and can go with perfect safety into fields that would have proved deadly before vaccination was performed.
Vaccination is especially indicated when we desire to confer an active and therefore lasting immunity to the animals. Of course, there are types of infectious diseases in which it is not the organisms which produce the disease, but their toxins. The ultimate result, however, is the same, since in such cases instead of the germicidal action of the protective substances created in the body, antitoxic substances are produced which take their place.

Taking all of these factors into consideration, it appears natural that the greatest and the surest achievement may be expected from immunization in those diseases in which the specific cause of the disease has been definitely established, and as a matter of fact, the attained successes have proved the most reliable where these conditions have been fulfilled.

Preparations Used in the Production of Immunity and as Diagnostic Agents:

In the production of immunity three principal methods are used. A vaccine is either a living, attenuated or weakened virus of the disease. The reduction of the virulence is accomplished by subjecting the virus to a degree of heat or desiccation or other unfavorable influences, not sufficient to destroy it, but only to weaken it. Good examples of vaccines are anthrax vaccine and blackleg vaccine. In some instances the fully virulent organism is used for immunizing purposes, as, for instance, in abortion; or, again, an unattenuated virus may be used when passed through certain species of animals which increases the virulence for the particular species through which it is passed, but reduces its virulence for other species of animals, as, for instance, suspensions of a brain emulsion of fixed rabies virus, passed through rabbits is used for the immunization against rabies in other species of animals.

Vaccines produce a mild attack of the disease, thereby rendering the animal resistant against subsequent exposure to natural infections.

Bacterins (bacterial vaccines) are standardized suspensions in physiological salt solution (or in oil) of the killed pathogenic bacteria. Vaccination with bacterins against certain diseases such as hemorrhagic septicemia, white scours and other infections is now a procedure of established success. Bacterins are standardized to a definite number of dead organisms per mil either by actual counting of stained organisms in a blood counting apparatus or by mixing a definite amount of blood and the suspension of the bacterin to be counted and then establishing the relative proportion of organisms to the number of red blood cells in the preparation, from which by simple calculation it is possible to establish the number of organisms contained per mil.

Bacterins contain the dead organisms and their products through which immunity is established by a stimulation of the body to the formation of protective substances against the subsequent attacks of the virulent germ.

Sera contain the protective substances and when injected into the body either exert a bactericidal action against the virulent virus or act as antitoxins possessing a neutralizing power over the poisonous products (toxins) of the disease producing organisms.

For the preparation of immune sera usually horses are used, prin-
cipally because their size enables the drawing of large volumes of blood. If the horse is to be treated for the production of antitoxin small amounts of the respective toxin are at first injected. If the animal is to be treated with antibacterial serum, suspensions of the bacteria of the specific disease are injected. Periodical potency tests are made consisting in agglutination, complement fixation test and the ability of the serum to protect other animals. When a suitable potency test is obtained a quantity of blood is drawn from the jugular vein into sterile containers. After standing 24 hours the separate serum is siphoned off, properly preserved, if necessary Berkefeld filtered and filled into final containers.

Immune sera contain either antibodies which have an immediate neutralizing action upon the toxins generated during the course of the disease; or antibodies which have the power of helping to destroy or render inert the living organisms themselves. Hence the term “antitoxic sera” for those sera possessing antibodies which neutralize the toxin; and the term “antibacterial sera” for those which contain antibodies capable of helping to destroy or render inert the organisms causing the disease. Immune sera are assimilated most rapidly if administered intravenously. This applies especially where it is desired to administer for therapeutic action. For prophylactic purposes the injection is made either intramuscularly or subcutaneously. In addition to the foregoing there are other products such as sensitized vaccines, sensitized bacterins, germ free extracts, natural and artificial aggressins and bacterial filtrates, employed for the protection of animals against disease; but with all these products the principle of their action is the same and consists of the production of protective substances against their respective infections.

Taking up the uses to which biological products are put, they may be divided into four groups:

1. Those that are used as prophylactic agents only, such as anthrax, rabies, and blackleg vaccine.
2. Those that are used principally as curative agents, such as various immune sera.
3. Those used for both prophylactic and curative purposes, such as various bacterial vaccines, anti-anthrax serum, tetanus antitoxin.
4. Those used as diagnostic agents, such as mallein and tuberculin.

In the prevention of various infectious diseases in both man and...
animals, biologics stand out pre-eminently and considering them as a unit it may be said that prophylaxis is their most valuable asset. As curative agents some biological products are very efficacious, but there are others which while highly valuable in immunization against certain diseases are of little or no value in the treatment of such affections. In this respect I might mention Pasteur's rabies vaccine, blackleg vaccine and anthrax vaccine.

Biological Products Should Not Be the Sole Reliance in the Control of Disease.

There is a tendency in the prevention and treatment of infectious diseases to rely solely on the biological products employed. It is highly essential in attempting to treat or prevent a disease, to give due consideration to the various factors associated with the condition. Thus in treating a case of fistulous withers we should not merely inject a polyvalent vaccine and sit down and wait for the animal to get well, but the local or surgical treatment should also be given due consideration in addition to the vaccine. Further, in attempting to control a disease by immunization it is not sufficient to limit our activities to vaccination of the exposed and susceptible animals, but it is equally essential to inaugurate the necessary sanitary measures, and, if possible, the source of infection should be looked for and eliminated. Thorough disinfection, and efforts to minimize the danger of exposure to infection, also should be considered.

It must be remembered that in serum or passive immunization, the immunity conferred is only of short duration, lasting in most instances for only a short period, at times not over a month. Therefore in cases of immediate danger when this method of immunization is employed, it is very important to guard against the risk of subsequent infections and losses when the temporary immunity has been lost. In such instances the passive immunization should be followed up if necessary with the active form, which renders the animal non-susceptible for a much greater length of time.

Importance of the Technic of Administration.

Another factor in biological therapy which must be given careful attention, if good results are to be obtained, is the technic of administra-
Testing a Lot of Serum to Discover the Possible Presence of Contaminations

Another important feature to be considered in biological therapy is the method of the keeping of these products. All biological products are very sensitive to exposure to light and to high temperatures. It is necessary to protect these products from light and to keep them at a somewhat cool temperature in order to avoid deterioration. Practitioners have no means of recognizing changes that may have taken place in a product and may, at times, use it after it has become inert. This phase is particularly important in connection with immunization of highly infectious diseases where, with the aid of vaccines, as for instance with anthrax, we desire to check the
spread of the disease, or to prevent its extension in localities where the
disease is very prevalent. When in such cases an inert vaccine is used,
both the veterinarian and stock owner are often at a loss to explain the
reason if the disease appears. Unfortunately such cases are quite num-
berous, and from my personal experience in testing out vaccines from vari-
ous sources I can state that the failure to keep the vaccines under proper
conditions is often responsible for bad results.

While many different biologic products are being prepared for the
prevention and treatment of disease, there are some which stand out
prominently over others in their specific action. Many of these products
now play an important part in the control of animal plagues, whether for
their value as diagnostic agents of obscure or latent disease or as pre-
ventive and curative remedies.

In the following a brief outline is given of the conditions in which
the application of biological products has been especially successful.

ANTHRAX.
(Charbon; Splenic Fever, etc.)

Anthrax is an infectious disease caused by specific bacteria known
as anthrax bacilli (B. anthracis), and is usually restricted by conditions
of soil and moisture to certain geographic localities. All domestic animals
are susceptible to
this disease, al-
though goats and
hogs are much
more resistant
than other species.

The anthrax bac-
cillus is a rod-
shaped organism,
which in the body
of the infected ani-
mals multiplies by
a simple dividing
process, but out-
side of the animal
and under condi-
tions not so favor-
able for this form
of multiplication it
forms spores. The
spores under fa-
vorable conditions
again change into
the disease produc-
ing germs. The
spores are very resistant and are known to retain their infective
qualities for twenty years. In putrid material the bacillus is readily de-
stroyed, but the spores are resistant even against such influences. The in-
fection as a rule, results from the ingestion of spores by susceptible ani-
mals. The spores may be present in infected grounds or may be washed from other localities by inundations or drainage by streams. With the receding of the water they are deposited upon the ground; vegetation in such infected places may also contain them. Animals pasturing in such districts ingest the spores with the feed or water, and since the gastric juice does not destroy all of them, some pass into the intestines where infection takes place. The disease may also be introduced into the animals through the skin by the bite of infected flies, and through the lungs by inhaling the germs. The period of incubation varies from two to fourteen days.

Differential Diagnosis.

It frequently becomes necessary to differentiate anthrax from blackleg. In blackleg the swellings under the skin crackle under pressure of the fingers, owing to the presence of gas in the tissues, while the tumor of anthrax, being due to the presence of serum, is of somewhat doughy consistence. The blood of animals dead from blackleg is normal and the spleen does not appear swollen or darkened as is the case in animals affected with anthrax.

The chief difference between anthrax and tick fever is that the course of the former is more acute and the blood of the animal is dark and of a tar-like consistence, while in tick fever it is in some cases even thinner than normal.

Of the utmost importance is the disposition of the carcasses of animals which have died of anthrax. These are in most instances responsible for the propagation of the disease. The simplest means is to bury the carcasses deep—at least six feet under the surface—where they cannot be exposed by dogs or wild animals. The premises and all the utensils that came in contact with the infected animals should be thoroughly disinfected. Likewise chlorinated lime should be sprinkled at every place where any discharges from affected animals have accumulated.

All carcasses should be disposed of without being opened, since the access of the air into the opened carcass causes the spore formations which may retain their infective power for years, whereas, if the carcass is not opened the germs do not produce spores and are readily destroyed through the process of decomposition.

Preventive Inoculation

Anthrax may be successfully controlled by periodical vaccination of all stock in infected localities. This method, even if practiced alone, will have splendid results in minimizing the losses from anthrax. However, such vaccination must be carried out regularly in infected localities and irrespective of whether the disease has already appeared on the premises or not.

Fortunately, in anthrax we have at our command various methods of vaccination which have been proved highly efficient in the production of immunity. This was one of the first infectious diseases in which protective vaccination was successfully demonstrated, and for this we are indebted to Pasteur.

Henceforward the Pasteur method was used, principally, for the prevention of anthrax in the United States. There are, however, disadvantages in this method of vaccination that have probably been responsible
for the numerous failures resulting therefrom. Special mention might be made of the unstable keeping qualities of the Pasteur vaccine, and further, that it requires two handlings of the animal before immunity is established, that its standardization is not carried out accurately and that in herds where the disease has already appeared it is apt to induce losses through the temporary reduction of the resistance of the animal during the development of immunity.

These conditions are, no doubt, responsible for the extensive experimental work undertaken by the U. S. Bureau of Animal Industry during the past three years on immunization against anthrax. The results of the work have been published in the Bureau of Animal Industry Bulletin, No. 340, by the writer, in which the advantages of the simultaneous treatment with anti-anthrax serum and attenuated spore vaccine are pointed out and endorsed.

Anti-anthrax serum is prepared from horses which have been immunized against anthrax. Then they are injected with minute doses of virulent cultures which are gradually increased until the animals tolerate intravenous injections of suspensions of mass cultures of virulent anthrax bacilli. The serum is then subjected to potency tests on guinea pigs and rabbits and if found satisfactory the animals are bled and re-injected at regular intervals.

The spore vaccines are produced from specially selected anthrax cultures which have been proven good spore producers. They are subjected to attenuation by cultivating them at a temperature of 42½° C. (108.5° F.). The No. 1 vaccine or the vaccine of greater attenuation, is attenuated from 18 to 21 days, and must be pathogenic only to mice. The second or stronger vaccine is attenuated from 11 to 13 days and should be pathogenic to guinea pigs and mice but not rabbits. The attenuated vaccines retain their weakened pathogenic properties for an indefinite period. They are then cultivated for the vaccine production on agar media for four to six days until the maximum spore formation has been attained. After washing off the growth it is heated to 60° C. (140° F.) for one hour in order to destroy the vegetative forms. The suspension is then standardized by plating to establish the number of spores contained per mil. The suspension of spores is then diluted to a desirable strength and properly preserved.

The simultaneous method consists of the injection of a potent anti-
anthrax serum on one side of the animal, and the injection of an attenuated spore vaccine on the other side. The advantages of this method are apparent. It confers immediate protection, requires only a single handling and reduces the losses from vaccination to a minimum.

These investigations have further established that should it be found desirable to employ the double vaccination, it is much safer to use attenuated spore vaccines than the Pasteur vaccines, on account of the better keeping qualities of the product and the possibility of more accurate dosage. These findings were obtained through extensive investigations made by the Bureau of Animal Industry, not only in the laboratories and experiment stations but also in numerous field tests.

The remarkable curative properties of anti-anthrax serum in the treatment of animals in anthrax infected districts are well established. Since it has been made available for the treatment of this disease, numerous reports are at hand which indicate that even in the most severe cases of infection, an intravenous injection of 50 to 100 mils of anti-anthrax serum has often resulted in the recoveries of animals in 1 to 4 days. Veterinarians in anthrax districts should not hesitate to use these new methods of vaccination as they cannot be considered in the experimental stage. The results obtained in hundreds of thousands of animals have demonstrated, and the experiments made by the Department of Agriculture should prove sufficient factors for establishing their merits.

BLACKLEG.

(Symptomatic Anthrax.)

This is a non-contagious, infectious disease of young cattle characterized by bloody swelling under the skin on the fleshy parts of the body. The disease is confined almost entirely to young cattle and other species of animals are rarely affected. It is seen most frequently in animals ranging in age from six months to 21/2 years, and well-bred, well-conditioned animals seem more susceptible than scrub stock.

Cause.

Blackleg is caused by the Bacillus gangræne emphysematosæ, commonly known as the "blackleg bacillus." This organism produces spores, or, resistant forms that, once established in the soil, remain for long periods, sometimes several years, until they gain entrance to the animal body, whereupon they grow and reproduce the disease. When this fact is understood the persistence of the disease in a locality is readily comprehended. Blackleg is a pasture disease, the infective agent being found in the soil, and the germs are taken in with the food and water or through slight wounds in the skin, such as briar pricks or barbed wire scratches.

Treatment.

Treatment is ineffectual after the disease is once fully developed as it results almost invariably in death. Some have advocated cutting into the swellings, roweling and dragging the animals about. Such measures cannot be too strongly condemned. The fluids which are liberated contain the germs of the disease and as a result more infection is distributed to the grief of the owner and loss of future generations of calves.

More recently the administration of anti blackleg serum has resulted
in recoveries of animals affected with blackleg, especially when the injection is made before the disease has advanced too far.

Too strong emphasis cannot be placed upon the proper disposal of the carcasses. They should not be left to be torn apart and distributed over the country by predacious animals and buzzards, but should be buried deeply where they die, without opening, using quick lime or other strong antiseptic to disinfect the carcass and the place where the body has lain.

Prevention.

There is no other biological product used as extensively for the prevention of disease as is blackleg vaccine, and no other which has become so well established. The good results that followed its introduction are recognized throughout the United States. In blackleg districts a considerable portion of calves are annually vaccinated with this product.

The available statistical data prove the remarkable reduction of losses from this disease, as a result of systematic vaccination.

Notwithstanding the tremendous economic saving that has resulted from its use, it must be admitted that blackleg vaccine prepared in the usual pellet or powder form from blackleg infected meat is a comparatively crude product. Blackleg vaccine as marketed at the present time cannot be accurately standardized; a single dose may contain 100,000 or 1,000,000 spores and at other times a much smaller number, or even none at all. Such a variation must naturally result in irregularities of the immunizing action of the vaccine, and it is no doubt due to this fact that direct losses from vaccination and deaths from the natural infection after vaccination cannot be entirely avoided. Nevertheless, blackleg vaccination even as heretofore practiced has given splendid results, though complaints against the reliability of the method are not infrequent, both from veterinarians and stockmen.

Realizing the shortcomings of the vaccine, investigators have been at work to develop a more uniform product that would avoid losses from vaccination, and at the same time, confer on the animals effective protection against blackleg.

The investigations revealed that certain germ-free filtrates possess great immunizing properties and further that the injection of such filtrates into cattle will afford them a protection against the natural infection of blackleg.

Professor Naoshi Nitta of the laboratory of pathology and bacteriology of the Tokyo Imperial University, Japan, has recognized the value of this method of immunization against blackleg, and has developed the procedure to such a state of perfection, that it is now uniformly employed in Japan and Korea.

In the July, 1918, issue of the Journal of the American Veterinary Medical Association, Professor Nitta published the results of the vaccinations with blackleg filtrate in Japan and Korea in an article entitled "Investigations on Blackleg Immunization", in which he includes as follows:

"The filtrate of a pure culture of the blackleg organism confers a high degree of immunity on animals treated and it has been already successfully used in thousands of cattle in infected districts. It is inexpensive, the material for preparation being aerobic cultures of the organisms
in meat-piece broth, and its injection is not accompanied by the least danger, because the filtrate is quite germ-free."

The successes attained in the Far East with blackleg filtrate have been duplicated in the United States. The statistical data available on over one million vaccinations prove conclusively the effectiveness of the product, and in consideration of the many advantages of a germ-free filtrate its superiority for the control of the disease in cattle is apparent.

The greatest advantage of the blackleg filtrate is that it does not contain the blackleg germ in any form and therefore, cannot induce the disease under any circumstances. At the same time, it possesses all of the immunity producing properties of the vaccine, so-called aggressins (extracts), and liquid culture vaccines.

Blackleg filtrate should not be confused with blackleg serum, which confers only a passive immunity, lasting but a few weeks; whereas the blackleg filtrate affords protection to the animals for about one year.

Blackleg filtrate is prepared by cultivating the blackleg bacillus in a special medium until the maximum growth is obtained and the liquid becomes thoroughly charged with the products of the germs. The product is then suitably preserved and filtered through porcelain which removes all the germs. It is then properly standardized and carefully tested on animals for potency and sterility.

Germ free extract (natural aggressin) is obtained from animals artificially infected with the disease and after death the fluids of the affected muscles are extracted by pressure. After filtering, testing and suitably preserving the filtrate it is ready for use.

Blackleg vaccine, powder and pellet form, is prepared from the affected muscle of an animal artificially infected with blackleg. The muscles of the involved part are cut into strips, dried and pulverized in a drug mill. The powder is then mixed with distilled water into a paste, filled into shallow pans and placed in an attenuating oven where it is subjected to a temperature of 95° C. (203° F.) for a period of six hours. The attenuated material is then ground into a powder which is prepared into either pellet or powder form.

The product known as liquid blackleg vaccine represents attenuated cultures of the blackleg organisms.

Anti blackleg serum is obtained from horses or cattle which have been injected with cultures of blackleg, at first with small doses, which later are increased until as high as 500 mils are injected intravenously. The serum is then standardized on guinea pigs for its protective value against a definite amount of virus.

In order to minimize the losses from this disease it is essential not to defer vaccination until its actual appearance among the animals. Susceptible stock should be vaccinated periodically and systematically; its occurrence cannot be controlled otherwise.

A further advantage to be gained by such practice lies in the prevention of reinfection of the soil through the discharges of sick animals and from improper disposition of carcasses, thereby "wearing out" the infection from the soil.

CANINE DISTEMPER.

Canine distemper is a highly infectious disease of dogs accompanied by fever and an acute inflammation of the mucous membranes. The
etiology of this disease has occupied the attention of bacteriologists since the time of Pasteur.

According to the investigations of Carré, which have since been confirmed by Lignieres, canine distemper is caused by a filtrable virus, which in the beginning of the disease is contained in the nasal discharge. These findings, however, have not been uniformly confirmed. The investigations of Ferry, McGowan and Torrey, on the other hand, appear to indicate that the B. bronchisepticus which they independently isolated, plays an important part in the etiology of canine distemper. Its relation to the cause of the disease is not generally accepted; nevertheless the presence of this organism in the excretions, tissues, and at times in the blood of infected dogs, indicates its close association with the pathological process developing in the course of the disease.

In view of these findings and the fact that besides the B. bronchisepticus there are other organisms involved in the secondary infections associated with the affection, the use of a bacterin containing these organisms is entirely logical.

Treatment.

The results obtained from the canine distemper vaccines and bacterins are encouraging and justify their use both for preventive and curative purposes.

Dogs, affected with the distemper, should be placed under good hygienic conditions; a uniformly warm place protected from draughts, is essential. Likewise, the patient should be given concentrated nourishment, such as milk, meat broths, etc.

Bacterin treatment has given variable results. Animals which are exposed to the infection should be given the specific vaccine as a prophylactic.

The value of the vaccine lies particularly in its protective action against the more severe symptoms of the disease which are due to the secondary invading organisms and which have proved to be the cause of the severity and fatality of the disease.

Anti-canine distemper serum is being prepared by injecting horses with cultures of B. bronchisepticus. The prophylactic and curative value of such serum has been reported to give favorable results; others again fail to obtain any advantages from such serum.

ABORTION DISEASE.

Epizootic Abortion; Enzootic Abortion; Slinking of Calves.

Abortion disease is an infectious disease affecting chiefly cattle and to a lesser degree other domestic animals, and is characterized by an inflammatory condition of the female reproductive organs, which results in the expulsion of the immature young.

Cause.—The Bacillus abortus of Lang is now generally recognized as the causative agent of the disease in cattle.

The possibility that other organisms may also be responsible for abortion in cattle is being now recognized. In recent investigations by Theobold Smith, a spirillum was isolated from cases of infectious abortion.

It was formerly claimed that abortion is due to injury, such as blows, horn thrusts, falls, etc., or the eating of spoiled food and of certain plants having oxytocic properties. While abortion may occur from such causes
in a limited number of cases, careful investigations have demonstrated these claims to be largely unfounded.

It is now generally recognized that in herds where abortion occurs from time to time, it may be safely assumed that the disorder is of an infectious nature and should be treated as such.

Natural Mode of Infection.

The manner in which pathogenic organisms gain admittance to the tissues of the host in any disease is of greatest importance for a clear understanding of the methods of its prevention. Many investigators claim to have demonstrated that in abortion disease, the infection is transmitted through the digestive tract, by the ingestion of contaminated food and water. The germs are taken up from the intestines into the lymph vessels, thence reach the blood stream and are carried by it to the genital organs, where they find conditions best suited to their development. Some claim that calves are infected in this manner by suckling infected mothers, the organisms being present in the milk; or, on the teats, having been contaminated by coming in contact with infective discharges. It is claimed that infection contracted in this manner remains dormant in the body of the calf until pregnancy begins, and then the organism finding conditions suitable for its development produces the disease.

Still other investigators believe that the natural habitat of the B. abortus (Bang) is the udder of cows and that it will exist but a short time in the nonpregnant uterus or other tissues of cattle. From the udder it reaches the uterus by way of the blood stream; if pregnancy exists, it develops in the uterus causing abortion, retained afterbirth, pyometra and other sequelae of the disease. The udders of healthy cows are infected from contamination with the discharge from the uteri of aborting cows or from milk from infected udders; the organisms entering by way of the teat openings.

Diagnosis.

The diagnosis of abortion disease is made upon the history and symptoms of the disease and from the changes occurring in the fetal membranes and in the expelled fetus. This, however, is substantiated with certainty only by the isolation of the B. abortus Bang. The fact, however, that repeated abortions are observed in a herd is sufficient evidence of the presence of this disease. The fact that animals may be affected with the disease and disseminate the germs, even though they carry the fetus to full time, renders the control of the disease very difficult.

Prevention and Treatment.

The enforcement of the strictest sanitary measures alone are frequently of no avail in the attempt to check contagious abortion in infected herds. Medicinal treatment has likewise proved ineffective. On the other hand, in view of the fact that self-immunization of infected animals is now almost uniformly recognized, it appears self-evident that this might be hastened by timely injection of proper biological products; and furthermore, that susceptible animals might be rendered immune or highly resistant against the infection.

Unfortunately up to the present no absolute specific vaccine or bacterin has been developed for the prevention of abortion disease. While
good results from the injection of abortion bacterin have been reported by many veterinarians, nevertheless experimental work along this line has not established definite good results from such treatment. It is essential that in conjunction with any specific treatment the sanitary measures also be given proper attention.

Extensive investigations of the British Commission on abortion disease have demonstrated that the disease may be reduced to a minimum by single injections of active live abortion organisms. They apparently have demonstrated that a single injection of live organisms when given to virgin heifers and non-pregnant cows at least two months before breeding confers to the treated animals an effective immunity. Similar good results from this treatment are reported by Hadley, who also claims that animals treated with living germs proved protected for two years and probably for a longer time, whereas the British Commission states that it is necessary to continue the inoculations for a time on the infected animals after abortions cease to occur. From all indications immunization with live organisms is most encouraging and at the present time appears to be the best means for controlling the disease. Furthermore the method appears to be without danger as far as the spread of the disease is concerned when employed in infected herds.

EQUINE INFLUENZA.

This term applies to a group of contagious diseases of horses which are manifested by blood infection, with inflammation of the air passages and frequently associated with pneumonia and pleuropneumonia.

Cause.—We have no positive knowledge on the true causative agent of any of these diseases; however, it is now believed at least one of them is due to a filtrable virus with the Streptococcus pyogenes equi and the Bacillus equisepcticus as secondary invaders.

Prevention and Treatment.

The infected animals should be isolated from the healthy ones and placed in well ventilated stables.

In the treatment of influenza in horses (pink eye, shipping fever, contagious pleuro-pneumonia, stable pneumonia, stockyards disease, etc.), also in purpura hemorrhagica, strangles, septicemia and other infectious catarrhal affections, the value of anti-influenza serum has been thoroughly tested and proved. The serum is also useful as a prophylactic against these diseases. Numerous reports from its use by practicing veterinarians and also from the results on horses of the foreign armies, indicate that improvement is rapid when the minimum subcutaneous dose is 50 mils. The dosage employed and recommended is 50 to 200 mils daily. In all serious, acute cases, the serum should be administered intravenously, the dose being not less than 200 mils. The nature of this serum is such that ill effects will not follow, no matter how large a dose is given. The frequency of the dose depends upon the character of the case, the complications, the extent of toxemia and the results obtained.

While numerous reports are favorable in regard to this product, others fail to observe any beneficial action from its use. Influenza bacterin contains streptococci isolated from influenza cases, and while the causative agent of this disease has not been definitely determined, it is
generally accepted that the Streptococcus pyogenes equi plays a most important part in its pathogenesis.

This organism which, in its principal character is identical with the streptococcus of strangles, must be recognized as a significant factor in connection with the changes occurring in the course of the disease; and this may explain the beneficial results which are obtained from the biological products.

Dr. Gregg of the British remount organization recommended the use of serum from horses recovered from influenza for the treatment of this disease. His observations, which included thousands of cases, are very conclusive as to the beneficial action of such serum. These facts would justify the use of influenza serum produced from horses which recently recovered from influenza and which have been subjected to repeated injections with many strains of streptococci of equine origin.

Hemorrhagic septicemia is the name applied to a highly fatal infectious disease existing in various species of domestic and wild animals, and is due to a micro-organism known as the Bacillus bipolaris septicus. The same germ causes disease among different species. In cattle and sheep it is called hemorrhagic septicemia; in swine it is known as swine plague and when affecting chickens it is known as fowl cholera. In horses this organism appears to be found only in secondary infections of influenza or shipping fever. Wild animals are also susceptible and may be responsible for the spread of the disease to domestic animals.

The bipolar bacillus is widely spread, and is found even in the digestive tract of normal animals. In such instances, however, it is not pathogenic, and attains such qualities only under certain special conditions, when it becomes highly virulent, causing many fatalities among the various species. Once the bipolar organism enters the circulation it multiplies with great rapidity, causing a poisoning of the blood and fatal consequences.

The best results are obtained from vaccination with the specific bacterins for the disease in the respective species of animals, that is, for the control of hemorrhagic septicemia in cattle a bacterin prepared from the B. bovisepticus. For the control of the disease in sheep a bacterin made from the B. ovisepticus, and for hogs a bacterin prepared from the B. suisepticum should be used. Such practice would naturally tend to yield the best results from vaccination against hemorrhagic septicemia of the various species.

HEMORRHAGIC SEPTICEMIA.

Hemorrhagic septicemia of cattle is, usually, an acute infectious disease which manifests itself either as an inflammation of the digestive tract, in the form of a swelling of the skin and underlying tissue, or as a necrotic pneumonia. The cause is the B. bovisepticum. The period of incubation is only from one to two days.

This disease is sometimes mistaken for anthrax, and is differentiated from it by the absence of the swelling of the spleen, and by the character of the blood which in anthrax is very dark and does not become light red on exposure to air, nor does it coagulate, while in hemorrhagic septicemia the blood is normal in appearance and readily coagulates. Forage poi-
soning (cerebro-spinal meningitis), known also as “corn stalk disease”, may be at times mistaken for hemorrhagic septicemia. The fact is, however, that this disease manifests hemorrhages in different parts of the body, whereas in forage poisoning the only lesions present are infection of the meninges of the central nervous system (often slight) and in the less occult cases an extra amount of fluid in the brain and spinal canal.

TREATMENT.

Medicinal treatment is absolutely useless in acute cases. More recently the administration of liberal doses of serum has been shown to favorably affect the protracted cases and a considerable proportion of such animals have been saved by administration of anti-hemorrhagic septicemia serum. The injections should be made intravenously, and not less than 50 to 100 mils of the serum should be given as the initial dose, to be repeated in from eighteen to twenty-four hours if the severity of the symptoms demands it.

All affected animals should be immediately isolated. The carcasses should be burned, or buried, and the premises thoroughly disinfected. In fact, all precautionary measures recommended for anthrax should be followed. The disease being fatal in character, attention must be directed to preventing and checking all outbreaks. For this purpose vaccination has been employed with uniformly good results. Although one of the newer biologic products, hemorrhagic septicemia bacterin is one of the most dependable, satisfactory, inexpensive and important of all such products.

The first time vaccination was resorted to in the United States was in an outbreak of hemorrhagic septicemia which occurred among the buffalo in the Yellowstone National Park in 1911. The method of preparation of the bacterin used in that instance has been described by Mohler and Eichhorn in an article on “Vaccination Against Hemorrhagic Septicemia” in 1911. Since that time this method has been employed on hundreds of thousands of animals throughout the United States and the results justify the use of the bacterin for preventive purposes.

In severe outbreaks it is advisable to treat the animals with protective doses of serum alone in order to prevent further losses. Since such treatment produces only a passive immunity it should be followed in two or three weeks with the injection of bacterin in order to develop an active immunity.

In a recent publication, by the Bureau of Animal Industry, on hemorrhagic septicemia it is stated that cattle, sheep, swine, rabbits and fowls if treated with heated cultures of hemorrhagic septicemia organisms obtained from animals of the same species will almost invariably be protected against injections of living cultures of the same germ, even though applied in comparatively large quantities.

Hemorrhagic Septicemia in Sheep.

This disease in sheep is characterized by a septicemic condition associated with a discharge from the eyes, nose, and a pleuropneumonia. The cause is the B. ovisepticus.

The infection occurs usually through the digestive tract from infected food or drinking water. Young sheep are far more susceptible than older animals.
The older sheep usually develop a chronic form, unless they have been subjected to some unusual hardships as a long drive or shipment on a train, when they may develop an acute form of the disease and die with great rapidity, sometimes as many as ten per cent. of a band succumbing daily.

The acute forms are easily mistaken for anthrax, from which they differ principally by the absence of gelatinous infiltrations and hemorrhages under the skin and by the absence of enlargement of the spleen.

Prevention and Treatment.

The disease does not yield to any medicinal treatment, therefore attention must be directed towards preventive measures. Affected animals should be isolated and those showing advanced symptoms should be destroyed. Vaccination in this disease has given very satisfactory results and all animals exposed to the disease should be given a prophylactic vaccination.

Hemorrhagic Septicemia of Hogs. *(Swine Plague.)*

Hemorrhagic septicemia in hogs manifests itself as a multiple necrotic pleuropneumonia. It is caused by the B. suisepticum. It frequently occurs as a mixed infection with the virus cholera, although it may appear as an independent disease.

Differentiation of this disease from hog cholera due to the filtrable virus is often very difficult, especially since the diseases may appear simultaneously in the same animal. The fact, however, that this disease is not as highly contagious as hog cholera, and also that it almost invariably localizes in the lungs, is suggestive of hemorrhagic septicemia.

Prevention and Treatment.

At the present time we have no satisfactory treatment for this disease. It may, however, be effectively prevented, provided suitable measures are enforced. Isolation of the affected animals, thorough cleaning and disinfection of the premises, are essential factors. Vaccination with a bacterin prepared from the specific organisms of this disease has given good results. Swine plague infection is so common in some localities that veterinarians have found it is advisable to use hemorrhagic septicemia vaccine in conjunction with the serum simultaneous treatment for the prevention of cholera. Otherwise the hogs continued to die with marked chronic symptoms and lesions of a lung infection—with hemorrhagic septicemia. In such cases it is assumed that the serum-simultaneous method will not prevent the development of the pathological process resulting from the secondary infection with the hemorrhagic septicemia organism. Thus can we account for the continuance of losses in such instances.

Hog Cholera.

Hog cholera is a blood infection of swine produced by a filtrable virus in association with which necrotic processes develop in the intestinal tract and in the lungs.

Prevention and Treatment.

Proper sanitary measures consisting of a thorough cleaning and disinfesting of the premises are primarily essential in the control of this disease. The spread of the disease should be controlled by vaccination of the animals with anti-hog cholera serum.
Anti-hog cholera serum is prepared by hyperimmunizing immune hogs with intravenous injections of blood from hogs sick with hog cholera. Ten days following the injections the hyperimmunized hogs are bled and either the defibrinated blood or the recovered serum is used for prophylaxis and treatment of the disease. The defibrinated blood aside from containing the inert corpuscular elements of the blood cannot be produced in a sterile form, whereas the clear serum being free from corpuscles can be readily sterilized by various methods, therefore possessing many advantages over the bloody serum.

Anti-hog cholera serum is probably the most important biological product produced in recent years. Its effectiveness in the prevention of hog cholera caused by the filtrable virus is no longer questioned. However, it is essential to have a potent serum and to adhere to the strictest precautions against contamination both in handling and administration of the serum. In spite of the fact that the protective value of hog cholera serum has been established beyond a doubt, numerous complaints are made of its failure to immunize against hog cholera. Various factors are responsible for such failures. Among these, probably the most commonly recurrent one is a mistake in diagnosis. Practitioners are very prone to establish a diagnosis of hog cholera in case several animals die, without determining the character of the post-mortem lesions. An insufficient knowledge of other infectious diseases of swine may also be responsible to some extent for the failure in hog cholera vaccinations. A serum without the proper potency, used by the simultaneous method, with a potent virus, may bring about bad results. It should be understood that anti-hog cholera serum represents one of the crudest of biological products. We have no means of properly standardizing it, or of establishing with any degree of certainty the amount of protective substances contained in the blood serum.

It must be acknowledged that the study of diseases of swine has been somewhat neglected. Veterinarians are apt to accept any outbreak of infection as hog cholera, frequently relying for their diagnosis on lesions which are far from pathognomonic. The lesions which are commonly accepted as those of hog cholera may also be associated with other diseases. Thus, for instance, hemorrhages in the kidneys may appear in association with any septicemia condition, as is likewise the case with the cutaneous subpleural and subperitoneal hemorrhages. They may arise from excessive acid or oily substances in the food, from injuries or from overheating. It is therefore apparent that in order to establish an accurate diagnosis of the "virus disease" it is essential to take into consideration everything which is characteristic of the symptomatology and anatomical changes of the disease.

The preventive treatment of hog cholera consists either in the administration of serum alone or in the simultaneous treatment.

The serum alone method of immunization is now used only in exceptional cases, principally due to the fact that the immunity produced by this treatment is of only short duration, not over eight weeks. It is principally used on suckling pigs in infected territories. The immunity conferred upon such pigs is only temporary no matter what method is used and revaccination with the double treatment should invariably follow at the time of weaning. The serum alone method should also be used on
hogs in infected herds which at the time of treatment show a temperature over 104° F. Such hogs and also those showing slight symptoms of cholera should be injected with at least double the quantity of the immunizing dose. Animals showing distinct and severe symptoms of the disease should not be treated.

The simultaneous treatment consists of an injection of serum and a corresponding dose of hog cholera virus in another part of the body. This method of treatment confers to the animal a life immunity. It is indicated in healthy herds where it is desired to prevent the development of hog cholera; also in herds where the infection has already occurred, in which instance the treatment should be applied only to hogs showing no signs of the disease.

It is important that hog cholera virus should never be injected without the corresponding dose of anti-hog cholera serum. The two should never be mixed together before injection and it is also essential to make the injection of virus on the opposite side of the body, or at some distant point to the serum injection.

The serum is injected subcutaneously and preferably into the arm pit (axillary region). With the clear, sterilized serum this location is especially desirable since on account of the loose connective tissues in this region an immediate absorption takes place. The serum may also be injected in smaller hogs into the subcutaneous tissues of the groin.

RABIES.

Rabies is a fatal disease which is contracted through a bite from an infected animal. At the present time the belief is growing that the cause of rabies is a parasitic protozoan discovered by Negri and generally known as the "Negri body." His discovery has been amply confirmed and most observers agree with his interpretation as to the nature of these bodies as well as on their significance.

Dogs are in most instances responsible for the spread of the disease. This is due to the fact that the affected dogs travel a long distance and bite other dogs, as well as other animals and men.

The period of incubation is from 16 to 40 days, although cases have been reported as occurring as early as 14 days after natural infection and as late as 60 days. Folk tales of the development of rabies many months and even years after infection owe their origin to mistaken diagnoses or to the disease due to an unobserved infection more recent than the supposed inoculation. Certain prodromal symptoms may be noted by changes in the dog's disposition, quiet friendly animals may become uneasy and vicious and occasionally, the savage dog grows more affectionate. In this prodromic period the owner may detect changes unnoticed by the veterinarian. It should be noted that the bite of the dog is infectious even at this stage and earlier before any symptoms whatever have developed. In the prodromic stage the dog is no more inclined to bite its owner than when normal but is quite apt to snap at strangers. The veterinarian must keep this in mind at all times in making examinations of dogs.

Death usually ensues in from three to seven days. The symptoms in other animals vary with the species and with their natural weapons of offense.
Prevention by Pasteur Method.

In the Pasteur method, rabies vaccine is prepared by inoculating rabbits subdurally with fixed virus which in six to eight days produces paralysis. When completely paralyzed, the rabbits are killed and the spinal cords are removed under aseptic conditions. *Fixed virus* is rabies virus which, by continuous passage through rabbits, has reached a stage of maximum virulence for that animal. Rabbits of four or five pounds weight, inoculated subdurally with fixed virus, will die in eight days. By the passage of the virus through rabbits, the virulence is enhanced for the rabbit but attenuated for other animals and man. Besides being weakened by the passage through rabbits, the virus is further attenuated by drying the spinal cords for varying periods of time. The cords are suspended over a layer of potassium hydroxide and kept at a temperature of 22° C. from one to eight days. As a result of this drying process, the virus in the substance of the cords is gradually weakened or attenuated. If suspended in this manner long enough, the virus may be entirely destroyed: the virus being strongest when the cords are fresh. Each day during the process of drying, the strength decreases in direct proportion to the extent of the drying. In the preparation of each dose of rabies vaccine, a portion of a rabbit's cord, in which the virus has been properly attenuated by drying for periods of one to eight days, is emulsified by grinding under aseptic conditions with glycercin, and filled into vials. Pasteur's antirabic treatment consists of the injection of 25 doses of rabies vaccine, the injections being given daily for 21 successive days.

The vaccination of human beings against rabies by the Pasteur method has been well established in every country of the world. Rabies vaccine has been used to only a limited extent in veterinary practice. The apparent neglect of utilizing this treatment for animals is due to the fact that vaccination by the Pasteur method, aside from the considerable expense of the vaccine, requires 25 injections in order to produce the desired immunity which, of course, necessitates a large number of visits by the veterinarian. Whereas, with the dilution method, immunity is established with six injections, which in itself gives decided advantage to this form of vaccination and it is therefore given preference for the protective treatment of animals.
The Antirabic Treatment with the Hogyes Dilution Method.

This consists of six injections of various dilutions of rabies vaccine prepared from the fresh brain of a rabbit affected with rabies. The fixed virus contained in the brain is not changed by drying or any other method of attenuation and is used in a fresh active state in the varying dilutions.

Rabies vaccine is used for the preventive treatment of rabies during the incubation period. After the symptoms of the disease are developed, antirabic treatment is of absolutely no value. A cure for rabies is as yet undiscovered but the antirabic treatment is quite effective in preventing the development of the disease in domestic animals, bitten by rabid dogs or other animals. Rabies affects chiefly dogs; but horses, cattle, sheep, goats, pigs, cats, poultry and wild animals, particularly wolves, foxes and prairie dogs, are also susceptible and are sometimes affected. In the western states rabies has been prevalent among coyotes of recent years and many cases in domesticated animals have been due to inoculation by rabid coyotes.

TETANUS.

Tetanus is characterized by muscular spasms of the face, neck, body and limbs. The muscular contractions are very rigid and persistent. The disease is caused by the tetanus bacillus—Nicolaier's bacillus. It is very often found present in the soil, in dust, and especially in manure. The tetanus bacillus is a straight, slender rod possessing slight motility and propagates by fission and also by spore formation. The spore is usually situated at one pole of the rod, thus giving the spore-bearing bacillus a drum-stick-like appearance. In cultures it may form longer slightly curved threads. It produces a very powerful poison, and the action of this poison on the nervous system is responsible for the symptoms of tetanus. The tetanus organism remains at the point of inoculation, which usually occurs through a wound. The infection may enter the body through wounds of an operation, particularly castration. Nail pricks are the commonest mode of infection. The disease is more prevalent in certain localities than others. In southern countries the infection is so widely spread that unless preventive measures are undertaken the disease almost invariably follows favorable injuries. Horses and mules are especially susceptible to the disease, although at times it may occur in cattle, sheep, hogs and dogs.

Prevention and Treatment

The affected animal should be placed in a quiet, dark box-stall and away from other animals and all noises. The attendant must be very careful and quiet in order to prevent unnecessary excitement and increasing spasm. Tetanus antitoxin in large doses is also indicated. For this purpose it is necessary to inject intravenously not less than 3000 units and also at the same time the same amount subcutaneously, and the subsequent dosage should depend on the progress of the case. It is advisable to repeat the injections at least every 24 hours.

Tetanus antitoxin is prepared from horses. At first a very small amount of the toxin is injected which is gradually increased until the animal develops a tolerance for large amounts of toxin injections. Test bleedings are then made and the serum subjected to standardization in order to establish the number of units contained therein per mil.
A tetanus antitoxic unit is ten times the least amount of serum which saves the life of a 350-gram guinea pig for 96 hours against the official test dose of a standard toxin. If the serum is found of desired potency the animal is bled from the jugular vein. The blood is allowed to clot, the clear serum which separates is tested for sterility and after the addition of a preservative it is filled into containers ready for use.

The preventive treatment with antitoxin has proved effective beyond any doubt and is always successful, provided it is undertaken early in the period of incubation. This treatment consists of the injection of tetanus antitoxin under the skin after an injury of any kind or after operations. It is advisable to inject animals with antitoxin in all cases when there is the slightest danger of tetanus developing. When the antitoxin is not administered for four days or more after inoculation, the result is uncertain. The prophylactic dose is 500 units during the first seventy-two hours after inoculation; after that it should be increased 500 units for each twenty-four hours that have elapsed since probable inoculation.

Unlike many other biologic products, in tetanus antitoxin it is possible to establish accurately the number of units contained per ml of the antitoxin and thereby we can always safely establish a uniform dose for the protection of animals. The curative action of tetanus antitoxin is very problematic, even excessively large doses at times failing to relieve the affection in the slightest degree. This, however, can be readily explained by the pathogenicity of the tetanus toxin which, when once the disease is established and is progressing, becomes anchored in the nerve cells, producing there morbid changes that can not be remedied.

White Scours in Calves.

White scours is an acute infectious disease of new-born calves which in the majority of cases develops as a persistent diarrhea and loss of strength, finally resulting in death.

In every country in which stock breeding has been highly developed the mortality in young animals from white scours is very large. Calves in the first few days of their lives are especially threatened, but even later fatal cases may occur.

White scours is caused by specific pathogenic germs. The infection as a rule is taken up by the mouth. In some cases, however, the germs may enter the body through the navel. Investigations have conclusively established that the great majority of outbreaks are due to an infection with virulent strains of colon and para-colon bacilli; also that the newly born calves are susceptible to infections through the digestive tract with other germs. The germs, which are persistent and difficult to eradicate from infected premises, are responsible for the losses of the calves. Fortunately, investigators in Denmark succeeded in producing a highly potent serum from horses which when injected into exposed calves will prevent the disease, or in case the infection is already established, it exerts a very favorable action upon the course of the disease. That is, the serum has proved to possess, aside from its preventive action, also great curative value.

Anti-white scours serum is prepared by consecutive intravenous injections of horses with numerous strains of colon and other germs which
have been isolated from cases of white scours in calves. The horses are first treated with suspensions of dead organisms containing various strains of B. coli, para-coli, meta-coli, abortus, aerogenes and enteritidis. After this preparatory treatment, live cultures are injected intravenously into the horses, beginning with small amounts until the highest tolerance is reached. Then they are bled and again given a cycle of injections with suspensions of the various live organisms.

The standardization of anti-white scours serum is carried out by taking samples of blood from the horses during the course of treatment and the serum is subjected to the agglutination test against the various strains used in the treatment. It is required that a potent serum should agglutinate each respective strain in a dilution of at least 1:1500. It has been found that serum possessing such an agglutinating titer against the different strains possesses prophylactic and curative value for white scours of calves.

It is, of course, necessary that such serum should possess polyvalent properties, since it is well known that different strains of the colon and other germs are responsible for the disease, and if the serum has been prepared only against a particular strain it would exert only slight influence against the other disease-producing strains.

In the preparation of the horses producing anti-white scours serum a great number of strains of the colon and para-colon group are being used; also strains of abortion, aerogenes and meta-colon bacilli, since it has been found that at times some of these organisms are associated with white scours in calves. Repeated observations made by investigators abroad and also in this country have shown that the systematic treatment with potent serum results in the elimination of loss from this infection even in the most severe infections, where prior to this procedure the losses in calves amounted to from 75 to 100 per cent. Sanitary measures should necessarily be carried out in order to eradicate the infection from the premises.

In herds where the disease is prevalent it is essential to administer to each calf as soon as possible after birth a protective dose of the serum.

The following statement is made by Williams on the use and effectiveness of anti-white scours serum:

"In herds where abortion, premature birth, retained after-birth, and scours, are common it is better that the calf should have liberal doses of calf-scours serum before it has its first feed. Usually it is well to give twenty mils immediately after scours set in; the calf may take twenty to thirty mils of serum every four to six hours if required. The enemas of warm salt solution repeated ever four to six hours aid also."

Other Indications for Specific Bacterin Therapy.

Aside from the diseases described in which biological products have proved efficacious, there are numerous other conditions in which the employment of bacterial vaccines have given encouraging results. Following the exploitation of the vaccine therapy by Wright, bacterins have been prepared for practically all conditions in which micro-organisms are associated with the pathological processes. Among these the pyogenic affections have commanded special attention, as these conditions are especially promising to yield to such specific therapy.
While the results attained are not uniformly satisfactory, nevertheless, from the statistical data available, there appears to be no doubt that the application of bacterin therapy in most of the infections induced by pyogenic organisms is justified, especially if dependence is not entirely placed upon their action, but sanitary, hygienic, therapeutic, surgical and other means are employed in association with the biologic treatment.

The widely distributed staphylococcus is primarily or secondarily responsible for suppurative processes. Most frequently, however, a bacteriological examination of such conditions reveals a mixed infection with streptococci and many times the colon bacillus is also present. In all such cases a bacterin containing these organisms when properly applied will yield good results, and this has been found to be the case especially in infected wounds such as open joints, nail puncture, wire cuts, abscesses, fistulous withers, poll evil, quitter etc. In recent investigations by Schofield, navel ill in foals yielded most readily to the treatment with mixed bacterial vaccines, and similar good results were obtained by other investigators.

Infectious mammitis is, in the majority of cases, induced by streptococci. The infection is usually very persistent, causing at times great losses in herds, not only in a reduction of the milk supply, but also from the entire or partial functional destruction of the udder of the affected animals.

Specific bacterin therapy has been frequently employed for combating this condition and favorable reports are available from such treatment. Since infectious mammitis is frequently associated with a mixed infection of streptococci, staphylococci, and possibly the bacillus coli, the injection of bacterins containing these organisms should be undertaken, especially since no other specific remedy is known for the control of this disease. It is natural that, aside from the administration of the bacterin, attention must be directed toward strict sanitary, hygienic and the usual therapeutic measures.

Autogenous Bacterins.

In all persistent and aggravating conditions in which a specific organism has been found to be the responsible factor, it is advisable to utilize a bacterin prepared from the respective species of bacteria; thus, for instance, in a furunculosis a staphylococcus bacterin acts very promptly and prevents recurrence. There are numerous other conditions in which the use of mixed bacterial vaccines, staphylococcus bacterins, streptococcus bacterin and colon bacterin have given excellent results, but it is necessary to emphasize that in order to obtain the best results, every case should be individually studied and a product selected in accordance with the clinical, and if necessary, with the bacteriological findings. Furthermore, it is again emphasized that in treating such conditions with bacterins, the necessary medical and surgical measures must not be neglected. Where the circumstances permit a bacterin made from cultures obtained from the case they are intended to treat has the preference over a stock bacterin made from the same species of bacteria. Obviously such a bacterin has limited application and always means a delay of several days in instituting treatment.
DIAGNOSTIC PRODUCTS.

There is a class of very important biologic products which for the present, though not of therapeutic value, are being used as diagnostic agents in the control of diseases. It is a known fact that the entrance of an infection into the animal organism always has a stimulating effect upon the production of anti-bodies; the appearance of anti-bodies in the system is an indication of a struggle against the infection. As a result of the struggle the body shows either an increased or diminished resistance against the infection; an increased resistance being manifested as immunity, and a decreased resistance as hyper-susceptibility. This state of hypersensitiveness toward the infection or its products may, in some diseases, be utilized for diagnostic purposes. Thus, for instance, an animal affected with glanders or tuberculosis will develop a hypersensitiveness to the respective products of the germs, that is, to mallein or tuberculin, and the injection of such products into infected animals will result in a general or local reaction, manifesting itself by a rise of temperature, systemic disturbance, and local swelling at the point of inoculation.

Investigations have also established that such reactions may be induced in various ways, thus according to the method of application they are known as subcutaneous, ophthalmic, intradermal, intrapalpebral, and cutaneous tests. The underlying principle in all these tests is the same in that it is aimed to utilize the hypersensitive state of an infected animal, to respond to the introduction of the respective antigen in visible or otherwise determinable manifestations. In the subcutaneous test we thereby obtain a typical rise in temperature associated with more or less systemic disturbance; in the ophthalmic test infected animals respond with a purulent conjunctivitis; in the intradermal test we obtain a pronounced infiltration.

Diagnosis of Tuberculosis.

The relative value of the various tests has been studied carefully, and for the present time in tuberculosis the subcutaneous test has to be given first place, although the intradermal method is also being recognized as quite accurate and dependable. The intradermal test is less expensive in time and labor, but its application and interpretation requires considerable skill and experience. Both the intradermal and ophthalmic test for the diagnosis of tuberculosis may be used as supplementary to the thermic test.

Tuberculin is prepared by cultivating tubercle bacilli in a five per cent. glycerin bouillon for six to eight weeks at 37° C., whereupon the tubercle bacilli are killed by boiling and the bouillon is then freed from the killed bacilli by filtration. The concentration of the filtrate containing the tuberculin to 0.1 of its original volume represents what is known as Koch's "old tuberculin."

The subcutaneous tuberculin as marketed at the present time is either rediluted Koch's old tuberculin or the original filtrate without concentration of which one mil represents a definite amount of Koch's old tuberculin. It is required by the Bureau of Animal Industry that a dose of subcutaneous tuberculin should contain not less than 0.5 grams of Koch's old tuberculin and manufacturers are instructed to designate
on their labels and literature the amount of Koch's old tuberculin contained per
mil.

Thermic tuberculin when injected subcutaneously, not containing any
germs, is unable to produce the disease or any kind of injury to a healthy
animal. On the other hand if the animal is affected with tuberculosis a
rise in temperature will follow the administration of tuberculin. The
following instructions on tuberculin testing are issued by the Bureau of
Animal Industry:

The Subcutaneous Test

The following directions for tuberculin testing are taken from
the B. A. I. publication on "Instructions concerning the work of the
tuberculosis eradication division."

The subcutaneous test is the official test of the United States Bureau
of Animal Industry. Carefully and conscientiously applied, with good
judgment exercised in both its administration and interpretation, it is
regarded as highly effective. It is not a suitable test to apply generally
when the animals have high temperatures and it may not be practicable
in cases of cattle which cannot be controlled easily.

Directions for the Application of the Subcutaneous Test.

1. So far as practicable, the cattle should be stabled under usual
conditions and with usual surroundings.

2. The cattle should be fed and watered in the customary manner,
except that it should be done only immediately after the measuring of
temperature. Occasionally it is advisable to limit the quantity of con-
centrated food given animals under test. This is especially true if large
quantities of that kind of food are allowed.

3. A careful physical examination of each animal should be made
before or during the application of the test.

4. During the period immediately before the injection of tuberculin
each animal's temperature should be taken at least three times at not
less than two-hour intervals. Care should be taken to let the thermom-
eters remain inserted for a sufficient length of time to insure correct
reading. Animals showing evidence of any acute disease or condition or
showing extensive pus formations should not be injected with tuberculin.
Any animal showing pronounced abnormal preliminary temperatures like-
wise should not receive the tuberculin test. Inquiry concerning the his-
tory of the herd should be made, and it should be ascertained, if pos-
sible, whether any animal in the herd has ever given a positive reaction
to tuberculin, the number of tuberculin tests applied to the herd pre-
viously and, also whether any cattle in the herd have been treated at any
time in any other manner with tuberculin. The information thus obtained
should be used in determining the method to be employed in the tuberculin
testing of the herd.

5. The hypodermic syringes and needles should be disinfected be-
fore testing any herd with tuberculin. Before being used for the
injection of each animal, needles should be washed in a disinfectant
solution. A five-per-cent solution of carbolic acid is suitable for steriliz-
ing the instruments. Open bottles of tuberculin should be protected from
contamination. Thermometers should be sterilized before the temperature
is taken, and should be dipped in a disinfectant solution before and after
each reading.
6. For cattle which are apparently healthy, and which have not been injected with tuberculin within a period of at least 60 days, the dose of tuberculin prepared by the Bureau of Animal Industry is as follows:

Two mils for calves ranging from six months to one year of age.

Four mils for cattle more than 1 year old to maturity.

Older animals or animals clinically suspicious may receive a larger dose.

7. The measurements of temperature following the injection of tuberculin should commence at the eighth hour and be continued every two hours until the twentieth hour after injection, when, if there is no tendency for the temperature to rise, the test may cease. Temperatures upon cattle which are showing a rising tendency following the injection of tuberculin should be measured more frequently.

8. Suspected cattle should be submitted to a retest after the expiration of not less than 60 days. This class of cattle and those which show possible physical evidences of tuberculosis, emaciation, old age, or which have been tested repeatedly should receive double the dose of tuberculin indicated above.

9. Experience has shown that animals, especially those of doubtful record, receiving large doses of tuberculin, may respond early to the test, and inspectors are advised, wherever practicable, to obtain temperatures at from the fourth to sixth hour following the use of large doses of tuberculin.

10. A rise of 2° F., or more, above the maximum temperature observed prior to the injection of tuberculin, or a temperature above 103.8° F., should be regarded as an indication of tuberculosis, provided the temperature reaction shows the characteristic rainbow curve.

11. Animals which after injection show a rise of temperature of 2° F., with a maximum of between 103° and 103.8° F., as well as those which show a rise of less than 2° F., with a maximum temperature of 103.8° F., are regarded as suspicious. The presence of a general systemic reaction or a typical curve should be considered in determining the classification between suspects and reactors.

The Intradermal Test.

The intradermal test is not officially recognized by the U. S. Bureau of Animal Industry, except on strictly range cattle or animals whose...
movements are difficult to control. This test is being studied carefully by the bureau with a view to its more extensive employment in area work.

Directions for the Application of the Intradermal Test.

1. Various sites may be selected for the intradermal injections. The sites most used are the subcaudal region and the skin of the lower eyelid. The injections should be made with a hypodermic syringe provided with a needle about one-fourth inch in length and of small caliber. The syringe and needles used generally by the dental profession are satisfactory, but many operators prefer a moderately large syringe with adapters for the use of the dental needle.

2. The injection should be made into the dermal tissue, care being taken to prevent the tuberculin from being discharged into the subcutaneous tissue, or superficially into the epidermis. An injection into a loose subcaudal fold is liable to result in the production of an infiltration so slight as to prove of no diagnostic value; hence, a more preferable site is the undersurface of the tail, where the soft skin lies close to the bone. The swelling or edema here is more pronounced. In case the eye is selected the injection is made in the lower lid one-fourth inch below the border and about one-half inch from the corner of the eye.

3. Swellings that appear within the first hour and disappear early are not diagnostic. Swellings present at the forty-eighth hour are generally diagnostic; hence, observations should be made at the forty-eighth and seven-second hours and, if possible, at a period between the ninety-sixth and ninety-sixth hours, or longer. The later the appearance of the local reaction, the more positive the diagnosis. The local reaction is often confirmed by a thermal reaction, this being especially true in those cases in which tuberculin has not been administered recently by the subcutaneous method. These two methods may be employed simultaneously, well-defined reactions to both tests being obtained from infected animals. The
failure to obtain a reaction, of course, is not positive evidence of health; therefore a careful report is expected concerning the character of lesions shown and the extent of infection disclosed at post-mortem examination of animals which have failed to react to the tests.

4. Detailed reports of each lot tested should be forwarded promptly to the Tuberculosis Eradication Division, and when possible the intra-dermal and subcutaneous methods should be checked against each other and post-mortem records be made complete. Special reference should be made to isolated, well-encapsulated lesions unaccompanied by evidence of the presence of more active areas of infection.

The Ophthalmic Test.

The ophthalmic test at present is not accepted by the bureau for testing cattle for interstate shipment. It is believed, however, that it is valuable as a check test.

Directions for the Application of the Ophthalmic Test.

1. Place two tuberculin tablets in the conjunctival sac beneath the lower lid and by holding the hand gently over the eye for a short time (about 45 or 50 seconds) make sure that the disks are not "winked out."

2. As this is experimental work, observations should be taken at approximately the third hour following the introduction of the tablets and at frequent intervals up to at least 24 hours. If the left eye is always selected for treatment, it follows, of course, that the right eye may be regarded as the control eye. This obviates unnecessary memoranda and assists the inspector in making final disposition of the animal, since exudate appearing during the test should be limited to the treated eye.

3. It should be noted, however, that animals exhibiting well-encapsulated lesions upon post-mortem examination have been very slow in responding to the test. The prior use of tuberculin by the subcutaneous method sometimes invites a very early response to ophthalmic tuberculin when but a brief period of time intervenes between the two tests.

4. In the case of an animal whose tested eye exhibits dark, albuminous exudate, equivalent in volume to 8 minims or more, the fact should be indicated in reports by the symbol "PX." If the exudate exhibits granular casts or flakes of a yellowish tint, the report should read "PXX." When the exudate tends to smear over the ball and pupil of eye, note the fact with the symbol "PXXX." The word "negative" may be abbreviated "N." It is preferable to use double columns noting such observations, the condition of both the treated and the control eyes, using the upper space for the treated eye thus:

<table>
<thead>
<tr>
<th>No.</th>
<th>2 p. m.</th>
<th>5 p. m.</th>
<th>8 p. m.</th>
<th>11 p. m.</th>
<th>2 a. m.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>PX</td>
<td>PXXX</td>
<td>PX</td>
<td>Reacted</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>(Control) Negative</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Negative</td>
</tr>
</tbody>
</table>

5. Each animal should be marked carefully for identification so that, in case of slaughter, the identity of each animal may be traced through the post-mortem and the test properly judged.
6. The proper dosage is 0.2 milligram (gr. .003) of tuberculin, which is contained in two tablets. The tuberculin is non-irritating to the normal eye and it must be remembered that irritants of varied types may produce eye discharges. Hence only normal eyes should be selected for testing.

7. The so-called sympathetic reaction is not confirmative of tuberculosis, and animals exhibiting discharges from both eyes should be classed as suspicious and be retested when normal conditions exist.

8. Hyperemia is not invariably present. When limited to the treated eye it may be regarded as confirmative of a reaction. It appears more uniformly in sensitized eyes, also in the treated eye of an animal that has reacted to subcutaneous tuberculin within a short time.

9. The best results are obtained from this test when one sensitizing tablet is used two or three days prior to the application of the regular ophthalmic test. This method should be followed wherever practicable.

The Combined Application of the Three Tests.

Recent experiences of the bureau indicate that in badly diseased herds, or in herds which have been injected frequently with tuberculin by the subcutaneous method, it is advisable to apply the ophthalmic and possibly the intradermal tests. Whenever all these tests are employed, the intradermal injection should be made first, and at the same time one ophthalmic disk should be inserted as a sensitizing agent for the regular ophthalmic test.

Observations should be made following the use of the sensitizing tablet, as frequently typical reactions occur from the use of one tablet.

Intradermal observations should be made on the forty-eighth, seventy-second, and ninety-sixth hours. Two ophthalmic disks should be used the second or third day, and at the same time the regular injection by the subcutaneous method can be made.

It has been observed that the combined use of the three tests detects additional reactors which might have escaped one of the tests alone. Whenever this method is followed a detailed report covering the work should be submitted to the bureau.
Diagnosis of Glanders.

In glanders the ophthalmic or eye test appears to have established itself as the most satisfactory. Recently, however, the intrapalpebral or cutaneous test is given preference by some.

The product used for the diagnosis of glanders is known as mallein which represents a toxic substance produced in cultures of the Bacillus mallei. Mallein is prepared by cultivating the Bacillus mallei in glycerin peptone bouillon for a period from six to eight weeks. The bacilli in the growth are then killed by boiling in a water bath. The dead organisms are then filtered out, and the filtrate containing the mallein is concentrated to 0.8 of its original volume which represents the subcutaneous mallein. Concentrated mallein which is also known as ophthalmic mallein represents a concentration to one-tenth of the original volume.

Refined mallein which is used for the production of the mallein discs is a dry powder obtained from mallein which has been precipitated with absolute alcohol. After filtering the precipitate it is redissolved in normal salt solution and washed repeatedly with absolute alcohol. The precipitate is finally dried over calcium chloride or sulfuric acid. The dry precipitated mallein mixed with sugar of milk is then made up into the mallein discs.

Dry tuberculin known also as refined tuberculin is prepared in a similar manner from Koch's old tuberculin.

Application of the Diagnostic Mallein Tests for Glanders.

The subcutaneous test while the oldest of the mallein tests is now used only to a limited extent. In its reliability this test does not compare favorably with the results from the subcutaneous tuberculin test. The test is made by injecting the mallein solution into the suspected animals in which it produces a characteristic temperature rise and a local and general reaction. Rise in temperature begins in from four to eight hours and the maximum temperature is reached in from 10 to 20 hours with a gradual return to normal. At least two temperatures should be taken before the injection of the mallein, three hours apart, and at least five temperatures after the injection beginning not later than the 8th hour and continuing to the 18th hour at intervals of two hours.
A positive reaction consists in a rise of temperature of at least 2.5° F., with the temperature rising to 103° or above. In reacting horses at the point of injection a hot, painful, edematous swelling develops which may persist for several days. Normal horses may show a slight local swelling which disappears rapidly.

Ophthalmic Mallein Test.

Before the application of the test the eye should be examined and in the presence of inflammatory conditions the tests should not be made. With a dropper or with the aid of a camels hair brush, 0.1 to 0.2 mil (3 to 4 drops) of concentrated mallein is placed on the lower eyelid. In case mallein discs are used one disc should be placed into the conjunctival sac. Care should be taken that it does not drop out before being dissolved which usually takes from 30 to 50 seconds. In case the animal is affected with glanders a reaction develops in from six to thirty-six hours in the tested eye. The reaction is manifested by a purulent secretion or discharge with the reddening of the conjunctiva frequently associated with an edematous swelling of the eyelids. The reading should be made in from 18 to 36 hours following the application of the test.

Intrapalpebral Mallein Test.

The intrapalpebral or intradermal mallein test is made into the lower eyelid. The mallein used is a 50% dilution of the concentrated mallein with phenolized salt solution.

A fold of the skin of the lower lid is grasped by the forefinger and the thumb as near the margin as possible. The needle is inserted into the skin parallel...
Introducing the Mallein

Negative Reaction

Sero-Mucous Discharge
Pus Drops In Conjunctival Sac

Purulent Discharge
Discharge With Pasting Together of Eyelids

OPHTHALMIC REACTION TO MALLEIN
TEST FOR GLANDERS
to the margin of the eyelid and midway between the inner and outer canthus. About 0.1 to 0.2 mil of mallein is injected. If the injection is properly made a swelling the size of a small split pea should appear immediately at the point of injection. The injection should be made between the layers of the skin. If, however, it should be made under the skin it only delays the reaction but does not materially interfere with the test.

As a rule the characteristic manifestations of the reaction for glanders, following the intrapalpebral test commences in five to six hours and lasts 24 to 36 hours or longer. It consists of a pronounced swelling of the lower lid and may affect a considerable area around the eye. In association with the edema there is usually a purulent discharge from the conjunctival sac and is in most instances accompanied with an inflammatory condition of the conjunctiva. The reaction may vary in extent and intensity. The swelling may vary from a slight degree to an extent of affecting the entire area around the orbit. Likewise the discharge may be slight while at other times the reaction may result in true pyorrhea to such an extent as to cause gluing of the eyelids. It is advisable to examine the animal between the 16th and 36th hour following the test.

Among these biologic diagnostic agents tuberculin and mallein are, without a doubt, of the greatest importance to the live stock industry. With the aid of these the presence of latent cases of tuberculosis and glanders can be determined accurately in most instances, and thereby the control and eradication of the disease is much facilitated. Attention is called to the successful work carried on in Austria where with the aid of ophthalmic mallein, glanders has been eradicated successfully in the past few years. Austria has been at all times badly infected with glanders, but through the enthusiastic and untiring efforts of Professor Schnirer the eradication of the disease from the country has been accomplished almost entirely. The aid of laboratory biologic tests has been employed in only a few doubtful cases.

There are now numerous biologic products being prepared for diagnostic purposes, but most of these are still in the experimental stage and their value has not been sufficiently proved. The application of biologic
reactions for diagnosis has also been developed to a remarkable degree in recent years, and without some of these the control of certain diseases would have been impossible. It is especially desired to mention dourine, in which it is impossible to diagnose the latent form without the aid of the complement-fixation and agglutination tests. This applies also to infectious abortion in which the affected animals manifest no clinical signs of the infection and a diagnosis can be made only by subjecting the blood of the animals in the suspected herd to either the agglutination or complement-fixation tests. Therefore the importance of these is apparent in the control of these diseases.

SUMMARY.

The importance of biologic therapeutics cannot be overestimated. To utilize the forces behind evolution (natural selection, the struggle for existence, the survival of the fittest) in our conflict with bacterial and protozoan infections, through the employment of the dead or living pathogenic organism or its products in our warfare against it, is perhaps the culminating triumph of modern medicine. In employing these means, however, we must always keep in mind certain limitations of this newer therapy.

Biologic remedies are not specifics in the sense that they will always cure, although in a sense specific for a given disease. They do not always cure or immunize, and the diagnostic agents (examples, tuberculin, mallein) do not always detect disease. To the trained mind these limitations are not unexpected or disappointing; they exist because the ever-varying individual equation exists. Happily, the best known and longest used are as nearly specific as any remedy can be, as specific as quinine in malarial fever or mercury in syphilis.

Diphtheria antitoxin, tetanus antitoxin, rabies vaccine, anthrax vaccine, blackleg filtrate and calf scours serum have given results absolutely unattainable by any other means.

The accuracy of the diagnostic agents mallein and tuberculin, is so great that we destroy reacting animals that to the clinician appear healthy with absolute confidence that in the great majority of instances the postmortem examination will justify our diagnosis made solely upon the findings of that biologic test.

The principles of biologic therapeutics are correct; when we are confronted with partial or total failure, it is almost invariably due to the fact that our knowledge is neither complete nor final; each year extends the field of their usefulness, clears our vision and improves our verifiable results. In order to thus profit by this newer therapeutic method we must use biologic remedies early, rather than late, in full, not insufficient dosage; and must assure ourselves that the remedies we use are potent. Antisepsis must be thorough and the use of the drugs tending to ameliorate symptoms or conserve the vital powers cannot be neglected.

In those so common cases where secondary infections complicate the primary we must combat them with all the means at our command; and in the use of the diagnostic agents only patient taking of temperatures, and rational checking of the symptoms of reaction will safeguard the reputation of the practitioner and the welfare of his community.
Having done all this, we can lean on biologic therapeutics as on a staff, can widen our sphere of influence, gain increased consideration for our profession, increase the health, wealth and happiness of our country, and so render this world a better place in which to live.
AN EPITOME OF MODERN TREATMENT OF DISEASES OF THE DOMESTIC ANIMALS.

For details concerning the use of drugs or measures recommended in this section the reader is referred to the text of this book.

ABORTION.

1. Accidental, all animals. To prevent, give opium; rest, laxative diet.
2. Contagious in cows and ewes. Consider all abortions in cows contagious. One in five have latent or active infection. Infection probably enters through teat in adults and is situated in udder of non-pregnant, and in womb and vaginal discharge of pregnant cows, but B. abortus disappears from uterus soon after parturition. Or germs enter cow through food and attack fetus in utero through blood. Young may be infected by milk, or in utero, but infection does not last long. Bull conveys organisms mechanically not by semen. There are many healthy carriers never showing signs of disease.

Symptoms: Abortions, retained afterbirth, sterility, nymphomania and mastitis in cows; while B. abortus causes in calves through milk white scours, infectious arthritis and pneumonia.

To prevent: Injections of living B. abortus in cows 2 months before breeding cause immunity for 2 years (?) and without danger of spreading disease. All animals examined by agglutination test before putting them into the herd. Segregate reactors. Aborting animals isolated till vaginal discharge ceases. Test bull before service; also cut hair from sheath and penis and latter douched with fountain syringe and horse catheter with ½ per cent. lysol before and after service. Douching vagina with lysol solution 3 times weekly a month before parturition may avert calf pneumonia and white scours.

Fetus, afterbirth and discharge from aborting animal should be burned, and uterus douched daily with ½ per cent. lysol as long as os remains patent and the discharge continues. External parts bathed with 1 per cent. lysol solution. After abortion, do not breed for two months or till discharge stops. Separate attendants for infected animals. Disinfect premises at stated intervals (HCl, 1 part; NaCl, 8 parts; and water 100, best disinfectant solution for stable to kill B. abortus). Disease tends to die out if no new infected animals admitted to a herd. Internal antisepsics, phenol or methylene blue, are not of any value. Most prevalent of all bovine disorders. Wash and dry new-born calf. Sterilize stump of cord with tincture of iodine and dust with boric acid, 3 parts, salicylic acid, 1 part. Absolute cleanliness of hind quarters of infected cow prevents mastitis and white scours of calf. Milk should first be boiled if fed to calf. Give calf raw whole milk of mother or healthy cow first 8 days.

Vaginal douches best given with horse stomach tube attached to bottom of 12 quart galvanized iron pail. The intradermic injection of abortin (washed, killed abortus bacilli) will determine infection in a herd although unreliable in individuals.

Some cases show absence of B. abortus and presence of Spirillum (T. Smith). Either may cause disease.

Animals which have aborted may be fattened for market.

ABSCESS.

To abort, paint with tincture of iodine; or inject 10 or more m. of 2 per cent. carbolic acid solution; poultices, fly blister, open with knife or actual cautery under ethylchloride spray, and cocaine. After opening, inject antisepsics, as hydrogen dioxide, and iodoform with vaseline or glycerin. To aid resolution, a blister of cantharides, vaccines.
Abscess, Cold.

Open with actual cautery or knife; inject antiseptics, as carbolic acid in glycerin; Peruvian balsam. Dress with powder, equal parts of tannic acid, boric acid, iodoform and charcoal.

Acariaisis. See Mange.

Acne.

Prevent by avoiding rough harness and by constant cleansing with sulphur soap after removal of harness. Abort by applying pure carbolic acid. When acute, hot fomentations with borax, 3i–01; dry sulphur, sulphur ointment. Fowler’s solution in chronic cases. Vaccine of acne bacilli and staphylococci in obstinate cases.

Actinomycosis.

Chiefly in young cattle, affecting the jaw and tongue, soft parts of head, pharynx, larynx, skin and internal organs. Excise, curette, chisel. Apply tincture or compound solution of iodine to wound, or iodoform. Large doses of potassium iodide internally; good food and tonics.

After-Pains.

Remove membranes and clots; opium, morphine. If fever and foul vaginal discharge are present, see Puerperal Fever.

Aged Animals, destruction of.

Strychnine, bullet, chloroform, prussic acid.

Alopecia (Baldness).

If general, due to debility, give good food, iron, arsenic, bitters; and apply to skin tinct. cantharis, 3 i; lin. saponis, 3 viii. With scaling, use sulphur ointment, and add later to it Peruvian balsam; also groom very thoroughly. In alopecia areata, use ung. chrysarobini; or equal parts alcohol and tinc. iodi; or creolin and alcohol (1-10-20); or balsam of Peru and alcohol (1-10).

Amaurosis.

Treatment depends on cause. If owing to debility, loss of blood, trauma or quinine poisoning, give strychnine internally; and apply fly blister about temples. In amaurosis due to cerebral disease (concussion, hydatids, paroxysmal apoplexy), to renal disorder, convulsions, lead poisoning, etc., treatment depends upon the causative factor.

Amenorrhoea. See Sterility.

Anemia.

Remove primary cause. Full diet; fresh air and exercise; comfortable housing; sodium chloride and HCl; iron, arsenic, quinine, gentian, strychnine, cupric sulphate. Cod liver oil, myrrh. Clip horses with thick coats. In pernicious form, Fowler’s solution in increasing doses till the maximum dose is reached; H., 3 ii twice daily; D., 3 iii thrice daily.

Anemia, Infectious, of Horses, Asses and Mules.

Treatment is purely symptomatic and is not very successful. Give antipyretics for fever; acetanilid 3ii and quinine sulph. gr.40 t.i.d. Sodium cacodylate, gr. xxx every other day subcutaneously, or six per cent. phenol solution with enough potassium dichromate to make dark, straw color. Dose: 3 i t.i.d. Also blood transfusion successful. When fever subsides give pulv. ferri sulph. 3ii, acid arsenosi gr.2, quin sulph. gr.xxx, pulv nucis vom. 3i, pulv. gent. 3i; M. et f. pulv. I; give one such t.i.d. Give laxative food and daily enemata of cold water to excite peristalsis and reduce fever.

Aneurism.

Radical cure by ligation of aneurism on either side of sac and excision of sac. When impossible, ligate proximal side. Employ Matas’ operation, in which temporary ligation on either side of sac and obliteration of orifices and sac with layers of buried chronic gut sutures are done and continuity
of vessel remains intact. Continuous pressure by hands or truss; potassium iodide, ergot injections into sac in early stages; needleling; acupuncture; introduction of foreign bodies into sac, as wire.

Anorexia (Appetite, loss of).

Gentian, cinchona, quinine, quassia, cascarilla, calumba, taraxacum, hydrastis, hydrastine, hydrastin, calamus, capsicum. Remove cause as carious or sharp teeth, and digestive or general disorders.

Treatment is chiefly preventive; bodies of dead burned or buried 7 feet deep, with hide intact. Flesh of the dead may communicate the disease, if eaten. Isolate or kill patients; infected premises and discharges must be thoroughly disinfected; avoid infected pastures. Simultaneous injection of attenuated spore vaccine and anti-anthrax serum confer immunity and prevent the incidence of anthrax. Any treatment is generally unsuccessful and may lead to infection of attendants or other animals and therefore inadvisable. Internally, calomel and salts, in cattle, and carbolic acid or creolin in enormous doses have aided recovery in some cases; injection of 5 per cent. carbolic acid solution at many points in anthrax carbuncles and serum have proved curative in human patients.

Aphtha. See Stomatitis.

Aphthous Fever. See Foot and Mouth Disease.

Apoplexy, Cerebral.

Raise head, ice bag to poll; venesection, 4-8 quarts in horse; veratrum. Mustard paste to legs and bandage; croton oil; dark, quiet quarters; gruels and mashes, if swallowing is possible. Change in position important; also use of the catheter and enemata. To aid resolution, potassium iodide, massage and electricity.

Apoplexy, Parturient. In Cows.

Prevent by withholding grain last six weeks of pregnancy, except bran mashes; also give Epsom salt occasionally. Milk twice daily before parturition unless animal dry. Kunsel’s treatment, successful in 90 per cent. of cases. Enemata, ice to poll; bandage legs; prop patient up on sternum and change position every few hours. Catheterize and use enemata, caffeine, strychnine, alcohol, if collapse. Avoid drenches if animal unconscious; otherwise, give Epsom salt. For resulting paralysis, use potassium iodide; strychnine; blister over lumbar region; gruels and mashes during convalescence.

Apoplexy, Pulmonary. See Pulmonary Congestion and Edema.

Apoplexy, Splenic. See Anthrax.

Appetite, Depraved. See Depraved Appetite.

Appetite, Loss of. See Anorexia.

Arthritis.

1. In horses, traumatic and septic; 2, in new-born, due to uterine and umbilical infection (B. abortus equi); 3, may be variety of acute infection known as acute articular rheumatism; in this form use salicylic acid or salicylates; salol; externally, formalin and glycerin injections, methyl salicylate, sodium bicarbonate, iodine ointment; later stages, salicylates and potassium iodide; diet, milk for small, and gruels and mashes for large patients in acute stage. When disease prevalent segregate pregnant animals. Ligate aseptically the cord of new-born at birth and sterilize the stump with tinc. iodine. As preventive, give new born within 24 hours of birth 10 mils antistreptococcus serum subcut. or specific vaccine of B. abortus equi. Disinfect the stall before another birth occurs. May be due to B. necrophorus, staphylococcic, or other infection; see Umbilical Infection. In traumatic arthritis, cold irrigations or hot fomentations; internally, calomel; Priessnitz poultice; rest, splints and slings; later, blisters; red mercuric iodide; iodine. An arthritis may occur as a complication of almost any acute infection. Use formalin and glycerin in acute infections.
ASCARIDES. See Parasites.

ASCITES. See Dropsy.

ASTHMA, BRONCHIAL, IN DOGS.

In attack, chloroform, amyl nitrite, morphia, fumes of stramonium leaves and saltpetre, equal parts. Chloral, bromides, belladonna, potassium iodide, inhalations, arsenic, cod liver oil, between attacks.

AZOTURIA. See Hemoglobinuria.

BALANITIS.

Withdraw penis. Cleanse with lysol. If the urethra discharges, give urethral injection, 1 per cent. zinc sulphate and lead acetate mixed; hydrastis. Horse or bull may have to be cast and glans cleansed with lysol (2 per cent.) and touched with stick silver nitrate. Rest, cathartic and sloppy food.

BARRENNESS, STERILITY.

Remove the immediate cause, if possible, after careful examination of body and generative organs. In the female, injection of yeast (cow) has given favorable results; one cake of fresh, compressed yeast dissolved in quart of tepid water, after standing 2 hours, is used as a vaginal injection once daily for a few days; the vagina should first be cleansed with soap and water. Aphrodisiacs, yohimbine, emmenagogues. Examine semen for spermatozoa. Exercise, reduce obesity (see Obesity). In debility, bitters, iron and good food. In female, change male; may try intruterine injection of semen; dilatation of constricted os uteri.

BITES.

Of snakes. Calmette's serum injected into muscle (10 mils human dose) very successful; immediate cautery with hot iron, or free incision of the bite, and ligature above the injury on a limb must be done. Inject 1 per cent. solution of potassium permanganate or 15 grains of chlorinated lime in 2 ounces of sterile water about the bite in several places; strychnine subcutaneously in enormous doses; and adrenalin.

Of Rabid Animals:—Cauterize with hot iron, nitric acid followed by saturated sodium bicarbonate solution and then by alcohol, or excise the bite, even 24 hours after injury; human patients should receive Pasteur's anti-rabic vaccine.

Of Insects:—Aromatic spirit of ammonia, potassa; or a 10 per cent. solution of sodium bicarbonate should be applied to bite; also wet dressing, clay, antiphlogistine.

BLACK-QUARTER. BLACK-LEG.

Prevention secured by blackleg filtrate. Immediate, temporary protection, by anti-blackleg serum. Avoid infected pastures; bury dead with hide intact, 7 feet below surface in quicklime; disinfect premises; free incision of swellings (endangers spread of infection) and injection of hydrogen dioxide and other antiseptics in mild cases.

BLADDER, IRRITABLE.

Sloppy food, linseed tea. A cathartic; rest; hot enemata. Remove smegma, calculi and other sources of irritation. Belladonna, hyoscyamus, potassium citrate, potassium acetate, spirit of nitrous ether, methylene blue, camphor, buchu, salol, urotropin.

BLADDER, PARALYSIS OF.

Empty by sterile catheter or, in horse, pressure through rectum. Treatment directed to cause.

BLEPHAROSPASM. Atropine.

BLEEDING. See Hemorrhage.

BOG SPAVIN. See Synovitis.

Rest; irrigation; hot fomentations; Priessnitz poultice; high heel shoe or slings, in bad cases; after acute stage passes, cantharidal blister, aspiration.

BOILS OR FURUNCLES.

Aborted by touching with tincture of iodine, or pure carbolic acid, or
painting with collodion, or 20 per cent. silver nitrate solution; injection of 2 per cent. carbolic solution. Puncture central opening with pure carbolic acid on toothpick and dress with carbolized vaseline; or creolin in Peruvian balsam (1-10); poultices inadvisable as they spread infection, staphylococcic vaccine, for recurrence, internal remedies of doubtful advantage; calcium sulphide, H, gr. 20-30; D, gr. ¼-½, three daily; or sodium sulphite, or compressed yeast cake, 1 daily to dogs in pills. In anemia, bitters, iron and arsenic. Paracentesis in severe cases; dress with Peruvian balsam and creolin, as above, or iodoform, and avoid chafing of parts.

Bots in Horses.

Give carbon disulphide in capsules; 2 drams at hourly intervals for three doses, followed in 24 hours by a pint of linseed oil. Laxative diet of green fodder. Destroy larvae in feces in spring, then give bitters, iron and arsenic for a fortnight. Sponge hair on which eggs are laid with kerosene twice a week during the fly season.

Broken Knees. Horses.

For mere abrasion of skin, tie head up, to prevent the animal from lying down for 2 or 3 days, and apply white lotion on a compress continuously. When the skin is cut, shave or clip hair from surrounding skin, but use no water. Wipe away dirt with sterile gauze or remove by means of forceps and scissors. Paint wound and skin area with pure tincture of iodine and use sterile silk sutures, dry, aseptic gauze and bandage. Apply splint to leg, and tie the head up. If the wound suppurates, remove stitches, apply wet dressing (2 per cent. lysol), covered with oil silk or rubber, for few days, and then Peruvian balsam, aseptic dressing and bandage. If the sheath of extensor tendon is opened and tendon exposed, or joint opened, place the animal in slings (with splints on leg) and treat with tincture of iodine and wet dressings (if suppuration occurs) as above exactly as for the lesser injuries. Treatment is unavailing if the tendon is much lacerated, the bones of the knee fractured or joint opened—except in the case of invasion of the carpo-metacarpal articulation alone.

Broken Wind, or Heaves in Horses.

Avoid water before hard or fast work; give water in moderation between meals; give mashes of bran and oats with carron oil; also small amount of moistened hay. Arsenic for long periods; iron and nux vomica in anemia and anorexia. If heart at fault, give tincture of digitalis and strophanthus, 2 drams each, thrice daily. If bronchitis is a cause, see treatment under that disease. If there is true asthma, give spirit of chloroform, ½; in ½i of whiskey, and remedies advised for asthma in dogs.

Bronchitis, Acute.

In acute cases in horses, to shorten attack give full dose of Dover's powder; also apply hot blanket and rubber sheet and dry blanket to chest, frequently changed; rub mustard paste on legs and bandage. Give bran mash, roots or grass and pint of linseed oil or enema; furnish a well-ventilated box stall. If there is fever, aconite; spirit of nitrous ether; and potassium citrate; mixed in a drench, thrice daily. Employ inhalations of sodium bicarbonate (5ss to Oi) to increase secretion; later, inhalations of oil of turpentine (5ss to Oi) to lessen secretion. In dogs with dyspnea give tablespoonful of syrup of ipecac to produce emesis; also, to increase secretion, ipecac; with syrup of squill; or ammonium chloride or carbonate; in chloroform water. With excessive secretion, prescribe internally oil of turpentine; or terpin hydrate or terebin; or belladonna; with tincture of nux vomica. If cough is constant and wearing, administer chloral hydrate; or codeine; or heroin; or paregoric. In the horse, instead of expectorants, use mustard, or stimulating liniments and Priessnitz poultice, to chest and throat, and inhalations; if cough is persistent, potassium iodide.

Bronchitis, Chronic.

Treat as regards diet, fresh air, external applications and inhalations as in acute form. In dry cough, inhalations of sodium bicarbonate; with much secretion, use turpentine by inhalation. To increase secretion, administer
internally sodium iodide, ammonium chloride; and carbonate. To lessen secretion, oil of turpentine; or creosote. When there is heart weakness, digitalis or strychnine. In young or debilitated, fat in some form, as cream, olive oil; or cod liver oil; housing must be dry, warm, and well-ventilated. Other remedies include the following:—Nitrites, strophanthus, quinine, arsenic, linseed tea, tar, benzoin, eucalyptol, resin, balsam of Peru, balsam of Tolu, myrrh, asafetida, ammoniacum, buchu, compound spirit of juniper, camphor, sulphur, sulphurous anhydride, alum, tannic acid, eserine, cantharides.

Bronchitis, Verminous. See *Hoose.*

Bronchocele, Thyroid Enlargement in Dogs. Goitre.

Paint tumor repeatedly with tincture of iodine and give potassium iodide (gr. ii to v) internally for a month. If still persists, inject aseptically and slowly into substance of gland one dram of 5 per cent. phenol solution. Repeat if necessary at intervals of 10 days. Surgery, partial resection, proves most successful, but goitre usually disappears with drug treatment in young animals.

Bruises.

At the onset use:—Priessnitz poultice; hot fomentations; or antiphlogistine or refrigerants; or astringents, as compresses, wet with white lotion, and bandaging. Or alcohol; or arnica; or hamamelis, may be used. Anodynes, as laudanum, are indicated. To aid resolution, massage with stimulating liniments; with camphor liniment; with soap liniment; with ichthyol; with olive oil.

Burns.

In burns of 1st degree:—Dichloramine T in oil; or flour, starch, saleratus; dusted over burn. In burns of 2nd degree:—Soak sterile gauze in 1 per cent. solution of picric acid, cover with absorbent cotton and bandage; reapply in 3 days and 2nd dressing may remain a week; or, after cleansing burn, opening blebs and drying the surface by fanning, apply liquid paraffine (melts at 122° F, pliable at 82.4° F.) with brush, lay over with layer of absorbent cotton and apply another layer of paraffine. Change every 24 hours and cleanse with dry, sterile gauze; also boric acid in 10 per cent. ointment (vaseline) is harmless and efficient. In 3rd degree:—Wet dressings of saturated boric acid solution, covered with oil silk, or equal parts of Peruvian balsam and castor oil; remove dead tissue and treat as ordinary wound. In shock, stimulate with alcohol, strychnine and opium. Other agents of service include:—Tinct. iodine, orthoform, aristol, boroglyceride, carbolic acid, iodoform, salicylic acid, chalk, menthol, oil of turpentine, chlorinated lime, chlorinated soda.

Bursitis (inflammation of the bursæ of the knee, elbow, hock, stifle, fetlock, cannon bone, withers and poll).

In acute cases—Cold compresses and pressure by use of flannel bandages; cold irrigations, or ice poultices; compresses wet with white lotion.

In chronic conditions (hygroma).—Aspiration and injection of iodine or carbolic acid; excision, also blisters, red mercuric iodide or cantharides. See *Capped Elbow, Hock, Knee.*

Calculi, Biliary. See *Gall Stones.*

Calculi, Intestinal. See *Colic.*

Removal by high enemata, by hand in rectum or abdominal section. Pain relieved by morphine and atropine under the skin. Obstruction by sand may be overcome by cathartics.

Calculi, Renal and Vesical.

No medical treatment will dissolve or remove stone from the urinary tract although such may naturally escape. The medical treatment is therefore wholly prophylactic.

In cattle and sheep—Give sodium bicarbonate on the food, and allow an abundance of water; feeding sheep should be compelled to move thrice daily
100 yards to cause them to urinate. Ammonium and sodium benzoate, in the horse, or hydrochloric or sulphuric acid.

In dogs, lithium salts may be placed in the drinking water, or lycetol (dose, gr. 16). These agents may prevent calculus formation but no drug will dissolve calculi in the body.

In oxen—Work forward urethral stone by massage or do ischial urethrotomy.

In sheep—Stroke the urethra to remove stone or sediment about meatus. Success is secured only by amputation of the penis in many cases; lithotomy, lithotrity, or urethrotomy are often required. To relieve pain and spasm in urinary calculus, give hot enemata and morphine and atropine, under the skin.

Canker of Ear. See Otorrhea.

Canker of Feet in Horses.

Throw the animal and remove by actual cautery or knife all the diseased horn of the sole and frog down to the sensitive tissue. Tight bandage above fetlock for a few hours to prevent hemorrhage. Dress foot with one of following:—Salicylic acid; stick silver nitrate; formaldehyde (10 per cent.); equal parts of alum, or tannic acid, and iodoform; creolin or iodine ointment (5 per cent.); equal parts of zinc, copper and iron sulphates, vaseline to make paste, and enough creolin to equal 5 per cent. Then cover with tow, false sole of leather or iron, and shoe. Dress daily with one of above agents and remove any specks of canker, if present. When horn forms, dress with tar or calomel. After first days of treatment animal may do best at work.

Capped Elbow, Hock, Knee.

Treatment as for bursitis (see Bursitis) in acute stage; in bursitis (of perforatus) or capped hock, apply high-heeled shoe; in capped elbow, prevent increase of trouble by use of heel or ring pad; when large amount of induration has formed it must be excised.

Catarrh. See Coryza, Rhinitis, Acute.

Catarrh, Chronic.

Symptomatic of chronic rhinitis, disease of accessory sinus, and guttural pouches, glanders, carious teeth and new growth. Isolate and test for glanders. In general give tonics as iron and arsenic, graze or feed from floor, rest from work and fresh air. Inhalations of phenol or compound tincture of benzoin. Treatment mainly surgical—trephining, drainage and irrigation of maxillary sinus; hyovertebrotomy in disease of the guttural pouches in sheep, see Mestrus larve.

Catarrhal Fever. See Malignant Catarrhal Fever of Cattle.

Cerebral Anemia.

Shown by fainting (syncope). See Syncope.

Cerebral Hemorrhage. See Apoplexy, Cerebral.

Cerebral Hyperemia.

Raise head, ice bag to poll; venesection, 4 to 8 quarts in horse; veratrum. Mustard paste to legs and bandage. Warm covering; croton oil; dark, quiet quarters; if swallowing possible, gruels and mashes.

Cerebritis. See Encephalitis.

Cerebro-Spinal Meningitis.

Chiefly enzoötic and epizoötic in horses and sheep. See also Encephalitis for general treatment. Quiet, dark, cool quarters; slings for horses if animal cannot stand. Lumbar puncture behind 5th lumbar spine to relieve pressure and for cell and bacterial examination. Physic ball with calomel for horse, or barium chloride intravenously if the horse cannot swallow; ice to head, ergot, atropine, strychnine, cantharides; cathartics; water via stomach tube; catheterize; avoid moldy food and stagnant water; secure food from other regions; dry stable; disinfect quarters after occupancy.
Choking. See Esophagus.

In Cattle: fasten wooden gag in mouth to cause salivation, swallowing and eructation, or give olive oil by the mouth and try to push foreign body upward in gullet with one hand externally, while the other is in the mouth. This failing, pass probang or do esophagotomy. Severe tympanites demands massage of left flank or passage of stomach tube; if this ineffective, puncture most prominent point in left flank between last rib and angle of the haunch.

In Horses first try apomorphine hypodermically; if foreign body may not be removed by the hand in the pharynx, pass probang. In dogs and pigs apomorphine subcutaneously, or use expanding probang.

Cholera. See Fowl Cholera and Hog Cholera.

Chorea.

Occurs in dogs often after distemper or from indigestion or irritation of worms. In distemper, an outdoor life in the country, and diet with much fat and proteids—as bread or oatmeal with cream, strong broths, and meat once daily—are indicated; iron is also advisable, as Blaud's pills, each gr. v thrice daily; arsenic, as Fowler's solution, may be prescribed in increasing doses until mı.xxx are given daily, or sodium cacodylate hypodermically. If movements severe, give dogs chloral, gr.v, and sodium bromide, gr.xx-xxx, thrice daily (with laudanum, mı.v, if necessary). For the horse, chloral and sodium bromide, each 5 ss, with fluidextract belladonna, 3i, twice daily. If due to worms or indigestion, treat these troubles; if arthritis precedes chorea, give sodium salicylate. The Priessnitz poultice may afford relief. Other remedies include:—Antipyrhetics, hyoscyamus, cannabis, anesthetics, eserine, gelsemium, conium, valerian, zinc valerianate, camphor, strychnine, quinine, asafetida.

Coccidiosis.

Affects liver and intestine of cattle, sheep, pigs, dogs, rabbits, fowl, etc. due to cyst-like parasites (Coccidia) which invade the mucous membrane and biliary tubes. Prevent by cleanliness of premises, removal of feces, disinfection. One form of white diarrhea of chicks (C. avium), and prevented by giving sterile water and food and keeping the brooder aseptic. Curative treatment unsatisfactory, give physic of oil, and disinfectants by mouth, glycerin and ferrous sulphate, sodium thiosulphate, creolin, sulphur.

Prevention: Water supplied sheep must be free from feces of dogs, foxes and wolves harboring T. coenurus. Brains of sheep and cattle must never be fed to dogs; twice annually sheep dogs must be starved and given areae nut, with male fern, followed by a cathartic, and feces burned. Repeat this in two days. Kill all stray dogs on the range. Sheep's brains, when infested, must be burned or boiled; young sheep must not be pastured in infested regions. Treatment by trephining cysts, when they can be localized in the brain by soft spots on skull, and only in those which definitely circle about. On the range; open skull of dead affected sheep with axe, mash brain and cover it with 2 ounces turpentine, formalin, or sheep dip to kill embryos and keep dogs from eating brain. Meat good for market in early stage or for dogs, pelts may be sold.

Cold, Exposure to.

Applications of hot blankets and mustard paste; alcohol.

Colic in the Horse.

Place in box stall with plenty of bedding; in mild spasmodic colic, walking exercise, but in other cases; morphiine and atropine, hypodermically. Lobeline sulphate (gr. 1/8), arecoline hydrobromide (gr.ss) and strychnine sulphate (gr. 1/6) subcut. may cure spasmodic or flatulent colic without morphiine. Spasmodic colic, ether and aromatic spirit of ammonia (each, 3i) with spirit of chloroform, 3i, may be given; or chloral, 3i in one pint of linseed oil. Enemata and hot turpentine stupes, useful in all kinds of colic. In flatulent colic, oil of turpentine, 3ss; carabolic acid, mı.x; ether and spirit of chloroform (each 3i), may be prescribed together in a pint of linseed oil. A cathartic is indicated at the earliest moment—an aloes ball, or linseed oil, and hot enemata, in spasmodic colic; in flatulent colic, give arecoline, and enema;
also puncture with trocar between last rib and angle of ilium on right, or left side (when most distension here), if tympanites is increasing. In colic from overloading the stomach, use the stomach tube; also arecoline or eserine. With impaction of small intestines or colon, alternate linseed oil and Glauber's salts and give strychnine with atropine on tongue thrice daily; empty rectum by hand and use enemata as above; try arecoline, and copious drenches: flaxseed tea. Colic due to enteroliths and volvulus cured by surgery. In twist of colon eserine or arecoline often relieves. Colic from intussusception may be treated by elevation of hind quarters, enemata in enormous quantity, or laparotomy. Phystostigmine may relieve but purgatives generally aggravate intussusception. Colic from new growth or stricture of gut can be alleviated by manual removal of feces twice daily and by enemata. Worm colic is cured by remedies found under Worms. Recurrent colic of influenza is treated with salicylates thrice daily and a physic ball (aloes 5iv with gr.xx of calomel), and pain is relieved as in mild spasmodic colic.

Coma.

Apply ice to head; use cold douche or alternate hot and cold douches; mustard paste and bandaging to legs; venesection, purgatives, aloes, eserine, arecoline, or barium chloride, croton oil, stimulants, if collapsed—ether or ammonia, or strychnine. In diabetic coma, sodium bicarbonate, see *Diabetes Mellitus*.

Congestion of Lungs. See *Pulmonary Congestion*.

Conjunctivitis.

In mild form, drop in eye boric acid (2 per cent.) solution, or zine sulphate solution (gr.i to §i); also alum or cupric sulphate, or silver nitrate may be used. In muco-purulent and purulent forms, wash frequently in boric acid solution (2 per cent.), and drop in the eye argyrol, in 10 per cent. solution thrice daily after boric acid irrigation; in addition, shade both eyes and make constant applications of ice water in severe cases. In purulent cases, silver nitrate solution (gr.x to §i) may be painted on everted lid (instead of argyrol) once daily, in addition to frequent boric acid irrigations. Other remedies include: cocaine, protargol, mercuric oxides, citrine ointment, creolin, lysol, corrosive sublimate, scarification. Apply hydrargyi oxidum flavum in vaseline (gr.i to §i) at night to lids, to prevent them from adhering.

Constipation.

Diet, exercise.

Dogs.—Two or three compound cathartic pills or castor oil. Injections of §ii sweet oil followed by warm water, combined with massage of belly and removal of feces by finger or blunt curette or obstetric forceps from rectum, in obstinate constipation. Until constipation relieved, give nothing but broth and lean cooked meat with salt. In chronic constipation give some cooked liver and dog biscuit, with mixed diet, and Sharp and Dohme's aromatic fluidextract cascara sagrada, 3ss, once or more daily, or liquid petrolatum, pill laxative compound, or phenolphthalein; calomel occasionally.

Horses:—Aloes, linseed oil, calomel, Epsom salt, arecoline, eserine, barium chloride, enemata.

Cattle:—Epsom salt, calomel, linseed oil, croton oil, gamboge.

Foals and Calves:—Carron oil, Gregory's powder.

Puppies:—Suppositories, soap or glycerine; small doses of castor oil (§i-iv), liquid petrolatum, phenolphthalein, or calomel (gr.i).

Birds:—Fowl, calomel, gr.i on food; castor oil, §i; cold enemata, tincture rhei, rhubarb (gr.iii-vii), or senna (gr.xv-xx), in pill. Small birds, empty rectum with bulb-tipped probe and oil. Give artificial Carlsbad salts in drinking water (gr.i.iss to §i).

Other agents include the following: Buckthorn, jalap, colocynth, elaterin, podophyllin, arecoline, ox gall, pilocarpine, veratrine, strychnine, glycerin, belladonna, hyoscyamus, sulphur, myrrh, asafetida.

Convalescence.

Diet, fresh air, exercise; hydrochloric acid, pepticum, bitters, strychnine, gentian, quinine, calumba, quassia, hydrastin, iron, cod liver oil.
Convulsions, Eclampsia, Epilepsy.

Remove cause when possible by use of cathartics or emetics in indigestion and overloading stomach; by incising gums in teething; by anthelmintics in worms. In attack, owner may immerse puppy in warm bath; the veterinarian should give chloroform inhalation, and afterwards administer fluid-extract ipecac, m30, and enema. To prevent further attacks in dogs or horses, administer chloral with sodium bromide, thrice daily in water. When fits are recurrent, epilepsy is to be suspected. In this case, give sodium bromide thrice daily for considerable time; and tincture of belladonna or chloral, if bromides ineffectual. Or acetalanilid with monobromated camphor may be prescribed in capsules thrice daily for dogs. In puerperal eclampsia of bitches, inject morphine (gr.ss-i) subcutaneously, or employ chloroform inhalation, and an enema of chloral in boiled starch solution.

Corneal Opacities.

When recent, apply yellow oxide of mercury ointment to upper lid once daily (gr.i-ii to 3i), or calomel. After a year, opacity becomes permanent; do iridectomy under clear area in cornea.

Corneal Ulcer.

Yellow oxide of mercury, as for opacities; calomel, as for opacities; or touch ulcer with silver nitrate solution (2-4 per cent.) by means of pointed camel's hair brush; atropine during treatment. Instil 2 per cent. solution of fluorescein to stain and locate ulcer. In suppurating keratitis, touch yellow infiltrated area of ulcer with point of knitting needle heated cherry red. after using cocaine.

Corns in Foot of Horse.

Remove shoe and cut away discolored area to remove pressure or exudation under sole; disinfect with pure phenol or tincture of iodine; flaxseed poultices if much lameness; bar or wide-web shoe with rubber or leather.

Coryza, in Horses.

Fresh air, outdoors in suitable weather; moderate covering, legs bandaged and mustard paste rubbed on them in stable. Diet:—roots, bran mashes with few ounces of linseed oil. Fluidextract belladonna (2ss every 2 hours, first day or two). Inhalations, compound tincture benzoin. Other remedies are:—Spirit of nitrous ether, aconite, Dover's powder, opium, cocaine, adrenalin, menthol, quinine, arsenic, bismuth.

Cough.

Well-ventilated quarters, warm clothing; inhalations, turpentine stupes, mustard to throat and chest. Priessnitz poultice. From catarrh in upper air-passages, see Coryza, Pharyngitis, Laryngitis. Bronchial Cough. See Bronchitis.

Dry cough—Ammonium chloride and carbonate, ipecac, Dover's powder, sodium bicarbonate or potassium citrate. With excessive secretion—oil of turpentine; terpin hydrate or terebin, tar, belladonna, balsam of Tolu, creosote, internally or by inhalation.

Constant, harassing or reflex cough—Opium, heroin, chloral, chloroform, phenacetin, bromides, belladonna, wild cherry, prussic acid, cannabis indica, gelasmium, camphor.

Verminous cough. See Hoose.

Cough, Chronic, of Horses. See Bronchitis, Chronic and Broken Wind. Laryngitis.

Cracks or Fissures. See Fissures.

Cramps.

Atropine, belladonna.

Crib Biting. See Wind-Sucking.

Croup, or Roup. Pseudo-Membranous Group. "Diphtheria."

True diphtheria is rarely seen in cats and dogs (Klebs-Loeffler bacillus).

Croup common in fowl. Isolate sick and newly-bought fowl. Infected premises disinfected and whitewashed. Dead fowl burned, utensils dis-
infected. Paint affected parts in throat with mixture of Dobell’s solution and hydrogen dioxide with feather. Internally, give twice daily to fowl, potassium chlorate, gr.v, and tincture of ferric chloride, mV, in a little glycerine and water. Diarrhea relieved by 10-15 ml of 2 per cent. tannin solution, for fowl. Open distended sinuses under eye. Wash eyes with boric solution (2 per cent.) Give bacterins.

Croup in Calves, Lambs and Pigs. Isolate, disinfect premises. Tincture ferric chloride and potassium chlorate, of each one-half dram thrice daily in glycerin and water. Cleanse nose with normal salt solution, and throat with saturated boric acid solution with syringe and swab. Whiskey and milk and eggs; green food and Carlsbad salts.

Curb.

Fomentations, cold irrigation, Priessnitz poultries, cantharidal blistering and actual cautery. Rest and high-heeled shoe.

Cow Pox. See Variola.

Cystitis, Acute and Chronic.

Diet:—Large animals, barley water and mashes; small animals, milk. Rest important.

In acute form, ice water or hot enemata. Purge with salts or linseed oil, large patients; with castor oil in dogs; morphine and extract of belladonna in suppository to dogs (each gr.⅗-⅜). Large animals, spirit of nitrous ether, laudanum (each ⅟), may be given together every 4 hours, sodium bicarbonate, potassium citrate or acetate. When acute symptoms pass, prescribe one of the following: hexamethylenamine, sodium benzoate with boric acid. If urine is alkaline, use acid; when cystitis is persistent employ colon, or mixed bacterin containing the B. coli communis.

In chronic form, buchu; but bladder irrigation then most valuable—silver nitrate (1-1,000), boric acid or borax (1-2 per cent.), creolin (1-200).

Other remedies are:—Hyoscyamus, oil of juniper, acacia, cantharides, lysol, balsam of Tolu and Peru, salol, turpentine, eucalyptol, thymol, myrrh.

Debility.

Nourishing diet—milk, eggs, linseed and cotton seed meal. Small animals—bovine, broths, beef juice, cream; olive oil, cod liver oil, alcohol and bitters in convalescence, as quinine, strychnine, gentian, calumba, iron and arsenic in anemia.

To stimulate appetite and digestion, with bitters in large animals: ginger, cardamon and coriander, fennel and funugreek.

In the young and in nervous debility: calcium phosphate, glycero phosphates and phosphorus.

Decubitus. Bed Sores.

Prevention: Change position often or use slings; sufficient bedding and cleanliness. Alcohol with tannic acid (5 per cent.) to harden skin.

Treatment: Nitrate of silver (gr.xx to ⅟) painted on skin to abort, or on granulating surface of sores. Zinc oxide ointment, aristol, chlorinated lime.

Delirium.

In acute inflammations and injuries of head, ice to poll, venesection, purges, as for cerebritis. With exhaustive diseases—alcohol, strychnine. Sedatives, if severe, as morphine; chloral, bromides.

Dentition Fever.

In horses give soft, laxative food of mashes, green fodder with carron oil. Lance gums, if swollen, and extract milk teeth which interfere with eruption of permanent teeth.

In dogs, when dentition delayed, give syrup of calcium lactophosphate.

Cattle—Remove primary digestive disorder; generous feeding with plenty of salt; outdoor existence. Apomorphine, gr.ii hypodermatically, once a week for 3 injections.

Calves and Lambs—Calves segregated; lambs isolated when not sucking; apomorphine (gr.⅗) subcutaneously.
Diphtheria.
Due to Klebs-Loeffler bacillus in man, is occasionally seen in cats and dogs. They should be killed to prevent spread of the disease to man.

See Group, Pseudo-Membranous.

Diseases of Domestic Animals

575

Foals—Keep in stable, give salt by mouth and apomorphine (gr. 1/2-3/4) subcutaneously once or twice weekly.

Diabetes Insipidus. Horses.
Commonly due to dusty or moldy fodder, or symptomatic of other diseases. Change diet, or steam, boil or kiln-dry moldy food; give physic ball; place sodium bicarbonate in drinking water to relieve thirst, 43 daily. Lugol's solution or potassium iodide, most successful remedies. Contract renal vessels with ergot. Tonics: iron, nux vomica, arsenic. Restrict water to slight degree.

Diabetes Mellitus.
In dogs, restrict diet to cooked meat and fat and broths; avoid liver. Sodium bicarbonate in enormous doses to prevent coma, codeine, opium.

Horses, compound spirit of ether; chloral, spirit of chloroform. Give purge and use lavage; lobeline or morphine subcutaneously, with atropine; inhalation of amyl nitrite or chloroform. Fomentations over diaphragm, traction on tongue. Enema, laudanum (3iv) with sodium bromide (3il), in pint of boiled starch solution. In hogs when due to ascarids give appropriate treatment for parasitism.

Dogs:—Emetic: Ipecac.

Diarrhea.
Laxatives to remove source of irritation in all cases at the onset.
Horses:—Linsed oil, castor oil or calomel.
Cattle:—Magnesium sulphate, calomel, castor oil.
Foals and calves:—Castor oil, 5ss; gray powder or rhubarb.
Special diet and restriction of water. Rest and warm covering. Opium most useful after purge, with one of the following astringents: bismuth, chalk, catechu, kino, tannic acid, aluminum hydroxide, lead acetate, mineral acids. Antiseptics, especially with flatulence and foul discharges; carbolic acid, creolin, salol, naphthalene, boric acid.

In Fowl:—Dry, warm housing. Boiled rice and boiled milk. Laudanum, mli-v.

White diarrhea (White Scours) of calves. From absorption of colon bacilli from dirty teats or through infected navel. Also occasionally due to B. necrophorous which may cause omphalophlebitis and arthritis and necrosis of navel. Prevention. Give pasteurized milk in sterile pail. Sterilize the mother's perineum and udder before and after birth; disinfect navel with tincture of iodine; isolate sick. Disinfect the dead and stable. Give colon vaccine or horse serum from animal immunized to polyvalent colon bacilli, as preventive. White diarrhea of new-born chicks—1. Due to B. pullorum in ovaries and eggs of infected hens. Resemble typhoid bacilli. Diagnosis made by injection of wattles with a vaccine. Reaction in 24 hours: Also by agglutination test. Disease communicated from hen to egg and from infected chicks during first four days of life. Use eggs from uninfected farms for 1 year. Keep new-born in dark place so will not pick up droppings for first four days.

Keep absorptive litter on floor of brooder and food and water in uncontaminated vessels. Feeding sour milk useful. Only strongest birds at 8 to 10 weeks selected for breeding. 2. White diarrhea of chicks due to Coc-cidium avium. Oocysts in droppings and live in soil 1 year. Outside of egg infected. Sterilize eggs in alcohol and use incubators for hatching. Remove newly fledged chicks to new premises. Kill infected birds. Surface soil removed 3 inches down and burned, disinfect the houses, roosts, premises and utensils.

See also Enteritis and Dysentery. Arsenic in chronic cases.

Diphtheria.
Due to Klebs-Loeffler bacillus in man, is occasionally seen in cats and dogs. They should be killed to prevent spread of the disease to man.

See Group, Pseudo-Membranous.
Disinfection or Sterilization.

Of skin. See wounds.
Of eye, irrigate with 2 per cent. boric acid solution. Tears act as normal salt solution and prevent sepsis.
Of horses' feet. Remove shoe, trim horn and paint with tincture of iodine.
Of uterus, irrigate with 2 per cent. lysol solution.
Of vagina, swab out with green soap and warm water and sterile gauze and 2 per cent. lysol solution, or swab with ½ strength tincture of iodine without washing.

Dislocations. Luxations.

Reduce by aid of anesthetics. After reduction, fix joint by plaster of Paris splint for 10 days, and rest (in slings, if necessary). When splint not possible, apply fly blister to secure rest of joint.

Distemper in Dogs and Cats.

A bacterial vaccine prepared from B. bronchisepticus is the surest mode of prophylaxis if given a month before exposure. Three injections necessary. In animals already exposed use antitoxic serum combined with bacterin.
Treatment of the disease is most successful with an antitoxic serum combined with a mixed bacterin of B. bronchisepticus and pus coeci, sodium cacodylate,
Keep the patient constantly clean with 2 per cent. lysol baths. The kennels must be frequently washed with same and feces constantly removed to avoid secondary staphylocoecic infection which is generally the cause of death.
Give gr.ii calomel night and morning at onset, till free catharsis produced. For conjunctivitis, boric acid gr.x; and zinc sulphate, gr. i; in 3i water. If severe, 10 per cent. argyrol solution. If opacity or ulcer of cornea, see Corneal Opacities and Ulcers for treatment.
Cough:—Wet flannel bandage and oil silk about neck; also syrup ipecac (m.v-xv), in syrup squill (3i), with codeine (gr.¼-½), if necessary.
Anorexia overcome by tincture nucis vomicae (m.v-xx), with equal amount of dilute hydrochloric acid in water after eating.
Vomiting and diarrhea treated with bismuth subnitrate (gr.x-xxx) with tannigen (gr.v-x) and laudanum (m.v-x).
In delirium, use chloral (gr.v-xv) with bromides (gr.xx-xxx), by mouth or rectum.
With weakness and paralyses, syrup of the phosphates of iron, quinine and strychnine (5ss-ii); strychnine.
In anemia, reduced iron in pills.
In eruption, use zinc oxide ointment.
Diet:—Milk, scraped beef, bovine, beef juice, strong broths, brandy with milk and white of egg. Boiled milk in diarrhea.
Patients isolated, and when recovered the premises must be cleaned and disinfected. Country air favors recovery.

Dourine. See Maladie du Coit.

Dropsy, Cardiac, Renal, Hepatic. Ascites.

Increase function of heart, kidneys and liver by stimulants to these organs, and use purges and diaphoretics. Digitalis, and squill are often combined with spirit of nitrous ether and potassium citrate or acetate. Restrict fluids; give horse physic ball; cattle: magnesium sulphate in concentrated solution; dogs: compound jalap powder (5ss) in capsules three times daily; potassium iodide to absorb exudate.
In ascites, aspirate dogs just behind navel and bandage belly; cattle: aspirate belly midway between navel and stifle, right side.
Diet.
Other remedies are: Caffeine, strophanthus, oil of juniper, pilocarpine, calomel, colocynth, elaterin, sugar of milk.
Withhold salt from the food when there is nephritis.
See also Hydrothorax.
Dysentery.

Common in new-born, especially calves, when it is usually fatal. Prevent by antiseptic treatment of aborting and parturient cows; by isolation of patients and disinfection of their discharges; by segregation of cows about to calve. Add formalin to the milk (mill-v-x to the gallon). Treatment of little value in calves. In other animals, give purge, calomel, or magnesium sulphate, or castor oil. Ipecac is a specific, especially Dover's powder. Irrigations of rectum with creolin, or lysol, or silver nitrate. Internally, opium with astringents, as: lead acetate, white oak, catechu, kino, tannic acid, hematoxyylon. Rest; external warmth; and diet. Antiseptics: naphtalin, turpentine. Arsenic.

Dysentery, Chronic Bacterial, of Cattle. Johne’s Disease.

Treatment is chiefly prophylactic. Isolate and destroy diseased animals. Feces burned or buried deeply. Scrub and scrape fecal contamination from barns and apply quicklime to floors and 3 per cent. formalin to walls and whitewash containing the same. Internally, salol, bismuth subnitrate, turpentine, etc., have little but temporary effect, as the disease is fatal.

Dyspepsia. See Indigestion.

Dyspnea. See Laryngitis, Broken Wind, Croup, Asthma.

Pulmonary and cardiac: Nitroglycerin, nitrites, chloroform inhalation or morphine in asthma or angina pectoris.

In chest diseases, counter-irritation externally. Tracheotomy in mechanical obstruction. Treat causal disease.

Eclampsia. See Convulsions.

Ecthyma in Horses and Sheep.

Deep-seated pustules leading to formation of dark crusts, communicated by contact with other animals, or by brushes, harness, or objects touching the lesions. Isolate patients and secure cleanliness and proper hygienic surroundings. Give tonics, bitters and good feeding. Remove crusts with soap and water. Apply to lesions, salve containing salicylic acid (gr.xv-3i) in zinc ointment; or, when animal can not lick it off, hydrargryrum ammonium (gr.v-5l) in zinc ointment. Ulcerations are treated with Peru balsam covered with zinc ointment. Disinfection of premises and utensils.

Eczema.

In Dogs—Avoid water except to remove crusts after soaking in sweet oil for 24 hours; in chronic cases, shampoo skin with green soap and water; clip hair; employ muzzle or bandaging to prevent biting and scratching and avoid external preparations which will poison if swallowed. In acute eczema, carron oil or calamine lotion. In moist stage, zinc oxide ointment after the application of black wash. In weeping patches, silver nitrate solution (2-6) per cent. after cleansing with hydrogen dioxide. If suppuration, astringent dusting powders: bismuth, starch, dermatol, glycerite of tannin, and use bacterins of pus cocci prepared for such cases. With much itching, zinc ointment with creolin (2 per cent.). In chronic eczema with scaly, thickened skin, tar ointment, oil of cade in olive oil (1-8), or with zinc ointment (1-8). Relieve constipation by cascara sagrada; give liver occasionally and dog biscuit. Avoid fleas, dirt, friction. In acute cases, bread, soup or milk and avoid oatmeal; starving in overfed animals, and 2-3, compound cathartic pills. Fowler’s solution in chronic form.

In the Horse—In the scaly form (wrongly styled psoriasis), thorough grooming and destruction of parasites. Remove scales by soaking in olive oil and washing. Apply oil of cade, liquid tar or creolin in alcohol (1-10). Pustular form on mane and tail, avoid constant wetting and common soap; clip hair; and apply hydrogen dioxide and 5 per cent. silver nitrate solution and dust with tannic acid and iodoform (1-8), or use tar ointment. In eczema of heels (grease), in acute stage apply zinc ointment, or white lotion, or pink ointment. In later stages, with moisture and scabs, cleanse and apply balsam of Peru, wool dressing and bandage, or tannic acid and iodo-
form (1-3). Exuberant granulations treated with lunar caustic or actual cautery.

In Cattle—Treatment similar to eczema in horse. With total loss of hair use liquid tar in alcohol (1-10). Other remedies include:—Ichthyol, sulphurated potash, sulphur, yellow wash, iodine, boric acid, chalk, lead acetate, zinc sulphate, white precipitate ointment, citrine ointment, carbolic acid, salicylic acid, oleate of mercury, blue ointment, thymol, chrysarobin, hamamelis, glycerine of starch, pilocarpine, phosphorus, cod liver oil.

Elephantiasis of Horses.

Chronic swelling or dermatitis with proliferation of dermal tissues and deformity of limbs following repeated lymphangitis.

Bad cases with skin in folds incurable. Laxative diet, iodine ointment, fibrolysin, potassium iodide internally, exercise. Tonics, see *Grease*.

Emphysema, Subcutaneous.

Air generally becomes absorbed without treatment. If external wound, try to prevent sepsis. If absorption delayed, strap with adhesive plaster, or make pressure by bandage. Incision and puncture undesirable as they favor sepsis.

Emphysema, Pulmonary.

Chief lesion in "Broken Wind." See *Broken Wind*.

Empyema Thoracis.

Incision into intercostal space, or better, excision of a portion of a rib for drainage, and great care in asepsis, under local anesthesia, to facilitate expansion of lung through coughing. All adhesions to lung must be broken; bleeding is stopped by hot, normal salt solution from pitcher; drainage tube, self-retaining, of spool shape. Irrigation of the chest advisable if discharge fetid. Use chlorazene or dichloramine-T or iodine and potassium iodide, each gr.6, to pint of water for irrigation. In localized abscess, aspiration is sufficient sometimes.

Encephalitis. Cerebritis. Meningo-Cerebritis.

Quiet, dark, cool quarters. Box stalls with slings for horses, if animal unable to stand. At onset, horse, aloes ball with calomel. Cattle—Glauber's salt with croton oil. With high fever and bounding pulse, venesection and aconite, or veratrum. In excitement and mania, morphone, chloral, bromides. Lumbar puncture behind 5th lumbar vertebra, to relieve pressure and for bacterial examination of cerebro-spinal fluid. In convalescence, overcome paralysis by ergot, given with potassium iodide.

Endocarditis.

Acute—in acute rheumatism give sodium bicarbonate and salicylates, and blistering over heart. If pulse strong, give aconite, and fasten ice-bag over heart in acute stage. Morphine to quiet dyspnea. Digitalis in irregular pulse, with nux vomica. Aconite only at onset; later, digitalis, and strychnine. Nourishing, concentrated diet, absolute rest.

Enteritis.

In horse—No solid food allowed, warm water in moderation. At onset only: castor oil, laudanum and belladonna, or calomel with powdered opium in ball. To quiet peristalsis: opium or morphone every few hours. With high fever and strong pulse: venesection, aconite or veratrum. Turpentine stupes. Stimulants: external heat, alcohol and strychnine, in case of threatened collapse. In convalescence: cooked gruels, followed by scalded oats and a little green food.

In dogs—Avoid food or drink in vomiting. Calomel, followed by opium and bismuth subnitrate. In convalescence: meat juice, broths, lime water and milk.

In cattle—Glauber's salt at onset. Externally, turpentine stupes. Laudanum with chalk to stop diarrhea. With bloody diarrhea: laudanum with tannic acid; also ergotin under the skin. Strychnine and alcohol. Diet: boiled milk, raw eggs, flour gruel with sodium bicarbonate, cooked roots.

In calves—In those not suckling, replace milk by whey, made by adding
rennet to warm milk and straining. Also by broths, rice or barley water or thin flour gruel. When milk is again given, it should be scalded and diluted with an equal part of water. Give at onset castor oil (5i). Sucklings fed every three hours, so as not to gorge. Cows giving milk containing over 4½ per cent. fat may be unfit mothers. After castor oil, give bismuth subnitrate (gr.xxx) three times daily. Brandy for debility, and paregoric (5i) if much pain and diarrhea.

Entropium.

If only interumed eyelashes, they may be pulled out at intervals. The application of a finely pointed stick of caustic potash in a line parallel and near to ciliary border of under lid on the skin—once or more—may cause lid to regain its normal shape. Otherwise remove elliptical piece of skin from eyelid and suture. At same time split margin of lid lengthwise, leaving all eyelashes on outer flap, and lengthen palpebral fissure at outer canthus by cutting with scissors.

Epilepsy. See **Convulsions.**

Epistaxis. Nose Bleed.

Pack nostril with gauze soaked in hydrogen dioxide. Inject vinegar and water (1-2). Insufflation of powdered alum or tannic acid. Internally, ergot, hamamelis or turpentine. In purpura inject fresh horse serum; ergot, calcium chloride, gelatin. Raise head and place ice-bag on forehead. Examine for polypus, or causative general disease of brain, heart, lungs.

Erysipelas.

In horses on head, enzootic. In sheep, attacks head. Swine, as mal rouge or swine erysipelas. See hog cholera.

Antistreptococcus serum in horse. Generous diet with alcohol, milk and eggs. Isolate patient and after recovery disinfect premises. Well-ventilated quarters. Antiseptic treatment of any wound present. Paint affected area with pure phenol followed by alcohol. Cold compresses of saturated boric acid solution. Heavy coat of collodion about lesion to limit spread, first shaving hair. If pus forms, it must be liberated by incisions; otherwise avoid the use of knife. Quinine and tinc. ferric chloride.

Erythema.

In horses. "mud fever," or "scratches."

Leave hair long on pasterns; do not wash legs after driving but wait until dry and brush off dirt. Pink ointment, white lotion, calamine lotion, zinc oxide and starch, lead acetate, boric acid, camphor, vaseline, hamamelis, tar. When erythema results in a dermatitis, as in cracked heels of horses, stimulate with stick silver nitrate, or Peruvian balsam, and use astringents, as pink ointment and white lotion. In general erythema, give purge and light diet.

Esophagus. (Dilation and Obstruction. Inflammation and Paralysis.)

In dilatation, feed frequently with small amounts of concentrated and soft food. Resect esophageal pouch. In obstruction—If foreign body, give soft food. In dogs, pass a bristle probang or coin catcher; in horses, inject apomorphine or use stomach tube and stillet and inject water. Or expose gullet and ligate (temporarily) gullet about stomach tube, above obstruction, and forcibly inject water. Esophagotomy. Apomorphine subcutaneously in dogs. Inflammation of esophagus due to irritants—Give linseed gruel with 1 per cent. boric acid, cold milk. Externally, Priessnitz poultice. Later, rub externally with equal parts oil of turpentine and sweet oil. In paralysis, apply fly blister, give strychnine internally, pass sound.

Estrus Equi. See **Bots.**

Estrus Larvae in Accessory Sinuses of Sheep. False Gid or Sturdy. Gadfly Vertigo.

Treatment is unsatisfactory. Tar on salt boxes or on nose of sheep to prevent entrance of gadflies (see pix liquida). Impossible to insufflate or inject agents to expel larvae. Early slaughter often most satisfactory. Trephine
either side of median line between eyes and remove with forceps and irrigation (2 per cent. lysol), or by injection of a little benzine and water (Moussu).

Exostoses.
In early stages treat as for Periostitis, which see. For later outgrowth of bone, iodine or cantharides. Red mercuric iodide, point firing; rest.

Fainting. See Syncope.

False Quarter.
Blister coronet; cantharis. Treat wound in coronary band which causes defect in wall of hoof. Apply bar shoe. Cut dead horn away. Keep dirt out of fissure by filling it with gutta percha and ammoniacum.

Farcy. See Glanders.

Favus. in Cats, Dogs, Horses, Cattle, Fowl.
Remove crusts by soaking in sweet oil and washing in green soap and water. Sulphur ointment, or 5-10 per cent. ointments of the following: Naphthol, resorcin, thymol, tar, or creolin and salicylic acid. Sulphur and salicylic acid least toxic. Or apply tinc. of iodine and goose grease (1-8).

Fever.
Cold air and moderate covering, and bandaging of limbs (horses). Cold applications. Cold drinks, cold enemata. Spirit of nitrous ether with aconite and potassium citrate, especially in catarrhal conditions. With intestinal autointoxication, calomel, magnesium sulphate, castor oil.
In hyperpyrexia, phenacetin, acetenilid, antipyrin. Diet. In most infections, as septicemia, and in continued low fevers: quinine, alcohol, strychnine.
In convalescence, see Convalescence.

Fissure.
Of Anus—Expose with speculum and touch with pure phenol on a small swab. Iodoform in carbolized vaseline (1-8), applied daily after enema. Keep bowels loose with salts or oil. Orthoform, belladonna.
Of teats—Udder and teats thoroughly washed with soap and water and saturated boric acid solution. Milk removed with boiled milking tube. Touch fissure with solid silver nitrate, and coat with compound tincture of benzoin frequently, and keep covered with boric acid in vaseline (10 per cent.). Also Peru balsam or tannin.

Fistula.
Surgery should receive first consideration.
The following ointment has proved of value. The ointment is softened by heat and injected with a sterile syringe of glass or metal, through the nozzle alone, or through a sterile rubber tube—until the fistula is filled. Every third day enough more is injected to replace that which has escaped. B. Bismuth subnitrate, 6 parts; white wax and soft paraffin, each 1 part; vaseline, 12 parts. Boil and mix and place in a sterile jar. Substitute chalk for bismuth to avoid poisoning when several ounces are required. In fistulous withers and poll a 7% solution of dichloramine-T in chlorocasane has proved curative.
Or inject daily with hydrogen dioxide (8 oz.) containing 2 m. of formalin, if free opening. To secure healing, inject daily—after above—carbolic acid in glycerine, or tinc. of iodine; or 3 per cent. silver nitrate solution. Curette and open up sinuses. If milder measures fail, use arsenic or corrosive sublimate. If fistula refuses to heal, suspect foreign body or dead bone or tendon in wound. In fistulous withers and poll evil the use of a mixed bacterin has been successful.

Flatulence. See Tymanites, Colic, Indigestion.

Fleas.
In Dog and Cat—Frequent grooming and 2 per cent. creolin or lysol baths, followed by clean water and drying. Clean bedding of sawdust or shavings, frequently changed. Application of pyrethrum to dampened hair, but not in puppies and kittens. Carbolic soap. Oil of anise.
DISEASES OF DOMESTIC ANIMALS

Fly-Blow in Sheep.
Dress wounds with tar, and 2 per cent. solutions of lysol or creol.

Foot-and-Mouth Disease. Epizootic Eczema.
In Cattle, Sheep, Swine and Goats.—The only rational treatment is prophylactic. Strict quarantine of infected premises and animals, and kill all exposed and diseased animals as soon as possible. After diseased animals removed, disinfect premises. Healthy animals not put in disinfected premises for three months. Burn or bury dead carcases and infected manure. Older treatment follows: Diet: Gruels, mashels, green fodder, pulped roots. Wash mouth often with saturated boric acid, hydrogen dioxide, or potassium chlorate solution on swab. Drinking water constantly at animal's command. Clean, dry bedding. Feet washed with 2 per cent. lysol or creolin. Compresses wet with white lotion containing phenol, 1 per cent., constantly kept about coronets of cattle. Tar also applied to feet. Carbolized vaseline is used on the teats. Milk of patients unfit for food; boil 20 minutes before feeding it to animals. Two weeks after recovery, cleansing and disinfection of premises. During enzootic, inoculation of saliva of patient into well animal will cause a milder form of disease.

Foot-Rot in Sheep.
Two forms. 1. Infections, due to B. necrophorus. 2. Traumatic from long journeys over rough ground.
Segregate newly bought animals for three weeks. Isolate patients and treat by driving (thrice weekly) through foot baths of creolin 3 per cent. or ferrous sulphate, 4 per cent., or milk of lime. Furnish clean litter and dry quarters. If severe, treat feet locally by removing dead horn, applying ointment of cresol, 5; sulphur, 10; lard, 100; or carbolic acid in glycerin (1-10), or iodine or creolin ointment (5 per cent.). Cauterize fungous growths with pure phenol and protect parts with tar. In the form originating in bruises of sole, and purely traumatic, treatment consists in putting sheep on soft, dry pastures, cutting away dead horn and applying tar.

Founder. See Laminitis.

Foreign Bodies in Alimentary Tract. See Choking.
Dogs—When swallowing of foreign body is known to occur, give bread and porridge as diet. Cathartic 36 hours after ingestion, providing it is a blunt body. Remove from within anus if symptoms of straining and lodgement there. Abdominal section, if foreign body is not passed.
In ruminants the treatment is purely surgical.

Foul in the Foot of Cattle. Canker.
Often due to B. necrophorus. Isolate the sick. Lameness, swelling, heat and tenderness of claws with resulting abscesses, ulcers and sinuses about the heels and pasterns. Curette necrotic areas, apply Lugol's solution, and dust with calomel.
Avoid wet, dirty stables and litter. Remove all loose horn and expose sensitive diseased parts for treatment. May also apply carbolic acid in glycerin (1-10), 2 per cent. creolin or lysol, and protect with oil of cade or tar on tow and bandaging. Stimulate by applications of nitric acid, and dress with powdered alum and iodoform, or iodoform and tannin, equal parts.

Fowl Cholera.
Treat with dilute hydrochloric acid (m.v), and ferrous sulphate (gr.v), or tannic acid (gr.v), in ounce of peppermint water; dose: 5ss hourly for fowl; 1 teaspoonful for pigeons. Prevent by isolation of well in new quarters, and administering hemorrhagic septicaemia bacterin. Burn dead and discharges. Before reoccupation of premises, hen yard must have surface soil removed and replaced by new earth. Thorough cleaning, disinfection and whitewashing of hen house.

Fractures.
Examine and set under anesthetic. Large animals, slings. Plaster of Paris or starch bandages or splints. In non-union, rub ends of bone together; or puncture ends of bones with drill; or suture with silver wire or
chronic cat-gut; or use bone plugs or metal plates. Compound fractures treated antiseptically through window in plaster of Paris splint. Fracture of jaw, rectal feeding.

Frontal and Maxillary Sinus, Diseases. See Catarrh Chronic, Estrus Larvae.

Frost Bite.
Rub part with snow or cold water to gradually restore warmth—temperature of premises low for first twenty-four hours. In mild cases, rub on turpentine liniment. With vesiculation and destruction of tissue, treat as advised in burns of second and third degree. Ichthiol, glycerite of tannin.

Fungus Hematodes.
A sarcomatous growth protruding from the orbit in cattle and sheep, less often in horses.
Enucleate the eyeball and fatten for slaughter.

Gall Stones. Also see Colic.
No medical treatment will remove gall stones when they are once formed in the gall bladder.

Galls, Wind. See Teno-synovitis.

Gangrene.
Apply antiseptics to wound, as dichloramine-T, or compress wet with corrosive sublimate (1-3,000), Dakin’s solution, etc., while waiting for line of demarcation to form. Remove dead tissue by knife or actual cauterity. Or apply bromine with glass rod, or phenol and glycerine (1-8), to slough. In moist gangrene, apply following paste: phenol (5ss), powd. charcoal (5ii), glycerine (5iv). Tonics: tinc. of ferric chloride and quinine.

Gapes (In Poultry). See Parasites.

Garget. See Mammitis or Mastitis.

Gastritis and Gastro-Enteritis. See Indigestion, Acute.

Gastrocudenitis. See Jaundice.

Gid. See Cænurosis.

Glanders.
After isolation of suspicious cases in a cow barn, the premises previously occupied must be most carefully cleaned, including harness, utensils, stable fittings, mangers, walls, floors, and disinfected. Exposed or suspicious cases tested with mallein, or 50 to 100 cc, of blood withdrawn from the jugular by aspirating syringe or trocar and canula. The serum which separates should be sent to a laboratory for complement fixation or agglutination test. All animals reacting to this test should be removed and killed and stable cleaned and disinfected.
The remaining animals should be retested by complement fixation test every 3 weeks until no more react and stable redisinfected after each test, including harness, stable utensils, fittings, mangers, walls and floors.

Glandular Swellings.
Apply a mixture of ichthyl and mercury and belladonna ointments and lard, equal parts, in acute and subacute cases, to aid resolution. Tincture of iodine painted on gland. May prevent abscess by fly blister. When abscess inevitable, hot poultice. See also mercury and mercuric oxides. Red mercuric iodide. Internally, to avert abscess, calcium sulphide, sodium sulphite or yeast. See Boils.

Glaucoma.
In the inflammatory form, give a smart purge and low diet. Drop eserine sulphate solution (gr.ii to 5i) in the eye thrice daily. After acute attack subsides, mild eserine solution (gr.1/4 to 5i). Iridectomy, in most cases.
In chronic form, weaker eserine solution (as above) and potassium iodide internally.
In traumatic form, treatment depends upon injury and is chiefly surgical.
Glossitis, Idiopathic or Traumatic.
Swab often with saturated solution of boric acid in boiled solution of starch or barley flour. Ice water at animal's command constantly. If much swelling and edema, scarification of the tongue superficially in many places. If difficulty in swallowing, rectal feeding or stomach tube through nose in horse. When tongue lacerated, save all of the organ possible, and suture. If caused by alkalies, use vinegar and water (1-2) on swab.

Glycosuria. See Diabetes Mellitus.

Goitre. See Bronchocele.

Grapes. See Grease.

Grease. Dermatitis seborrhoeica of pasterns and fetlocks in horses.
In the early stage apply white lotion or pink ointment (2 per cent.). To either, with fetid discharge, carbolic acid may be added. In the later stages, with copious greasy discharge, the hair should be clipped and the parts cleansed with soap and water and Lysol solution (2 per cent.). Then balsam of Peru should be applied and a dry wool dressing and bandage. For exuberant granulations, use a powder of tannic acid and iodine (1-3). When these become large and of fungoid character ("Grapes"), they must be removed by knife, scissors or white-hot shovel or firing iron and parts dressed first with gauze moistened with creolin solution (5 per cent.) and later with Peru balsam and dry dressing. In chronic swelling of the legs (Elephantiasis) with grease, give a course of tonics: iron, arsenic, biters.

Grogginess. See Navicular Disease.

Haematemesis. See Hemorrhage.

Heart Disease, Chronic.
In hypertrophy with violent action of the heart or palpitation, spirit of chloroform and tincture of aconite; also in palpitation, belladonna may be useful with aconite or bromides.
In palpitation, with feeble heart-beat and weak sounds, give digitalis, or strophanthus, or camphor. See Nervous Palpitation of Heart.
In valvular disease, with dyspnea, weakness, and other signs of failing compensation, give fluidextract of digitalis, or this with strychnine. As substitutes for digitalis: strophanthus and caffeine. With high-tension pulse, combine nitro-glycerin with digitalis. With urgent dyspnea, give morphia.
In dropsy, give Horse and Cow aloe and salts; Dog, compound jalap powder (3ss). Also digitalis with squill and potassium acetate; see Dropsy. With dilated heart and urgent dyspnea and cyanosis, venesection. Atheroma as a cause of heart disease in the old is treated with potassium iodide (H., 5i; D., gr.x) thrice daily.
In chronic heart disease, rest, concentrated, nutritious diet, with water between meals and not directly before exercise, are indicated.
Myocardial weakness demands treatment as for valvular disease—rest. diet, stimulants, iodides. In myocardial weakness of over-fat animals, reduce fat. See Obesity.
In chronic heart disease with infrequent pulse, digitalis is contraindicated; use camphor, ether, alcohol or aromatic spirit of ammonia. When there is anemia, iron is of great value.

Heat Stroke. See Sun Stroke.

Hematuria.
Ice to loins. Aqua hemamelimis internally. Ergotin under the skin, or extract ergot internally. In hematuria of acute nephritis, after first week, give tincture cantharis (H., 5ss; D., m.i) with same amount of fluidextract of cannabis indica. In bleeding from bladder, irrigate with adrenalin with 1-5,000 solution; also inject water at 120 deg. F. Ururethral hemorrhage stopped by retention of catheter in urethra. If adrenalin stops bleeding, when injected into bladder, the source of the trouble is proven. Hematuria
in young cows: This is enзооіic in low-lying pastures; change pastures, drain pastures and fertilize them with lime and phosphates.

Hemoglobinuria. Azoturia in Horses.
Support in slings in box stall. Quiet with lobeline. Empty bladder by pressure through the rectum or by catheter. Adrenalin solution intramuscularly, 5i;iv, purge with arecoline hydrobromide or eserine. Apply hot blankets. Venesection, and replace by saline infusion in strong animals. Allow normal salt solution to flow slowly into rectum to stimulate kidneys. In restlessness, chloral; with heart weakness, digitalis or strychnine.
Diet—Bran mashes, hay, roots, green food, little hay. Prevent by light feeding, when not working, or by exercise every day.

This is caused by a protozoan parasite conveyed by ticks or their ova to cattle. Prevention.—Remove ticks from cattle by brushing or scraping them off; or by spraying cattle with following dip: Dipping cattle (15 to 30 seconds) in this mixture in concrete or wooden vats 5½ ft. deep and 40 ft. long is most successful in eradicating ticks in large numbers of cattle. Boil white arsenic (10 lbs.) and sal soda (25 lbs.) in 25 gallons of water for 15 minutes, or till arsenic dissolves. Cool with cold water to 140° F. and add 1 gallon pine tar gradually, while stirring. Bring the mixture to 500 gallons by adding sufficient water. (U. S. Dept. Agr.).
Application of dip or spray must be made every 3 weeks till ticks disappear, or only twice (a week apart) when cattle can be placed in tick-free pastures. Cattle must not be dipped when tired or thirsty, or allowed to drip on grass or to form pools which they may drink. They must not be driven hard or over heated for a week after treatment. By keeping cattle in spring in tick-free inclosures, three weeks in each in turn, the ticks fall off and the cattle are not reinfested. The inclosures are then disinfected by spraying with kerosene and burning.

Freeing Pastures of Ticks.—Exclude animals from June to November. Cultivate or burn over pastures. Pasture rotation.

Immunitizing.—Young stock may be immunized by inoculation with 1-3 mil of defibrinated blood from an immune animal. The treatment involves a mortality about 7 per cent.

Hemophilia.
In "bleeders," inject fresh normal horse serum or antidiphtheric serum (H., 5iv) or better, transfusion of blood, and make local application of adrenalin chloride solution or subcutaneous injection of it into bleeding part (1-10,000). Very hot or cold water, compression. Pure tannic acid. Internally, calcium chloride and gelatin.

Hemoptysis. See Hemorrhage.

Hemorrhage from Wounds. See Wounds.

Hemorrhage, Internal.
Quiet and rest of animal and bleeding part, with lowering of blood pressure in internal hemorrhage; opium. Infusion of salt solution after arrest of bleeding. Gelatin and calcium chloride to coagulate blood. Adrenalin chloride best hemostatic when can reach bleeding spot.
Subcutaneous injections of fresh horse serum (antidiphtheric serum is most convenient, but fresh serum is more effective) has given successful results in persistent hemorrhages of all kinds. The serum should not be repeated at intervals longer than 10 days. That from the same species of animal as the patient is best.
The dose is about 3ss for small animals; 52-4 for large patients. Transfusion of blood most successful.
Gastric (hematemesis) and intestinal hemorrhage (enterorrhagia), hot blankets externally; ice water internally; and bandaging of the limbs.
In hematemesis, adrenalin by the mouth or Monsel's salt in pill (H., 5i; D., gr.x) every fifteen minutes for an hour, if adrenalin is inefficient; or hamamelis or tannic acid by mouth.
In enterorrhagia, tannic acid with opium, or Monsel's salt, as above. Hammer melis. Diet, oil of turpentine in slight enterorrhagia.

In bleeding from rectum, enemata (H., Oi; D., 52-4). Enemata to contain either adrenalin (5ss to Oi), Monsel's salt, or alum, or tannic acid (5ss-Oi).

In hemoptysis, morphine under the skin, or chloral and bromide by mouth. To prevent recurrence, give calcium chloride every 2 hours, and gelatin.

Hemorrhage, Post-Partum.

Hemorrhagic Septicemia. Cattle, Sheep, Swine.

Bacterins containing B. boviseppticum, B. ovisepticum, B. suisepticum (swine plague), B. avisepticum will afford immunity. Organisms from the same species are preferable to those from other species. A curative serum from hyperimmunized animals gives good results in treatment of existing cases in doses up to 100 mls intravenously. Forage disease or corn stalk poisoning (cerebro-spinal meningitis) due to B. botulinus may confuse diagnosis. Bodies of dead burned or buried deeply.

Hernia.

Umbilical Hernia in New-Born—Give purge, and, after 12 hours' fast, cast and return protrusion and draw 2 folds of skin together covering umbilical ring. The folds are held together by wooden or iron clamps, with not sufficient pressure to cause the skin to slough; or by skewers introduced down to fascia, on either side ring, and held together by string wrapped around folds of skin, not tight enough to cause sloughing.

Ventral Hernia—This occurs in any part of belly wall from injury to wall, except at natural rings. Treatment is not often required. If small, same method as for umbilical hernia may be used, or blister applied over protrusion. If strangled or large, an open operation under strictest asepsis with return of contents of sac and suture of wall in layers, and overlapping of external oblique aponeurosis, may be done.

Inguinal Hernia—Rare in gelding; return bowel by taxis under anesthesia if possible, and apply clamps to skin as for umbilical hernia. If taxis fails, open operation with division of the ring must be done. In the stallion, covered castration operation, followed by clamps applied to skin, or suture.

Herpes, Pemphigus, Bullae.

A vesicular eruption at the juncture of the skin and mucous membranes, especially about mouth and genitals. Laxative in indigestion. In adult horses there may be purulency. Tinct. camophor; a mixture of equal parts, starch and zinc oxide; bismuth nitrate as dusting powder; zinc ointment.

Hog Cholera.

Under this title three distinct diseases are sometimes confounded—1. Hog cholera or swine fever, in U. S. and Great Britain. 2. Swine plague, hemorrhagic septicemia or contagious swine pneumonia. 3. Swine erysipelas or mal rouge. Life immunity is secured by simultaneous injection of anti-hog cholera serum and hog cholera virus at distant points in the body. Serum alone protects young pigs till weaning (when simultaneous treatment is given), or cures hogs with beginning hog cholera. Severe cases should not be treated. It is sometimes necessary to also inject bacterin of B. suisepticum as swine plague not infrequently complicates hog cholera. In erysipelas, form immunity which lasts a year is secured by vaccination with an attenuated virus, but is attended with 1 to 2 per cent. mortality. Not common in U. S. Compulsory inspection and control; notification; isolation of diseased, suspects and new arrivals; examination of live and dead animals in markets; burning or deep burying of dead, with thorough disinfection of premises and feces, are indicated.

Hoose. Husk. Verminous Bronchitis.

Due to presence in the bronchial tubes of S. filaris in lambs; S. micrurus in calves.
By inhalation—Lambs. Give chloroform inhalation till animals stagger. After 3 hours follow with dose of Epsom salt to remove worms coughed up and swallowed. 2 or 3 treatments 3 days apart will cure. Calves, 3½i each of oil of turpentine and ether poured in each nostril of upturned head for one or more treatments (Read). Inhalation equal parts tar, sulphur and turpentine from kettle for 25 minutes for three treatments.

Lambs—Internally, oil of turpentine (3½i), or oil of turpentine and tinct. camphor; of each 3½i once daily in milk; or creosote (3½i), benzine (3½i), and water (2 qts.) in teaspoonful doses for week (Moussu) once daily.

Intratracheal Injections—Calves, oil of turpentine (3½i), phenol (m.xx), with chloroform (5ss) for one injection. Generous feeding. Iron and bit ters. Slaughter of severe cases.

Hydatids in Cattle and Sheep. See Coenurosis.

Hydrocele (Dropsy) of Scrotum.

Distinguishing from hernia by failure to reduce and translucency. Insert hypodermic needle, and then completely empty with aspirator or fine trocar. Screw on hypodermic syringe to needle and inject pure phenol (m. x to xxx small animals; 3½i or more in large animals). In failure to cure, open scrotum, swab tunica vaginalis with pure phenol, and drain.

Hydrocephalus (Dropsy of Lateral Ventricles). Sleepy Staggers.

In Horses; rare in Cattle, Dogs and Swine. Impossible to effect a cure. General care as to excess in exercise, with laxative, restricted, nutritious diet. Quiet and cool quarters. Potassium iodide. Tap lateral ventricle.

Hydrophobia. See Rabies.

Hydrothorax.

Purge with concentrated solution of salts in large animals; in dogs, give compound jalap powder (5ss) in capsule.

Internally, digitalis and oil of juniper, and sweet spirit of nitre thrice daily to horse. For dogs, calomel and digitalis. Also give strychnine as heart stimulant.

Externally, applications of mustard paste. Pilocarpine (Friedberger) subcutaneously. In severe dyspnea and in large effusions, aspirate pleural cavity.

Impaction of Colon in Horse. See Colic from Impaction.

Impaction of Omasum, Dry Murrain, Farde1 Bound, Stomach or Grass Staggers.

In cattle; more rarely in Sheep and Goats. Epsom and common salt, with croton oil (C., m.xx). In non-febrile cases, two or three pails of linseed tea daily. Eserine (gr.i) with pilocarpine (gr.iii), in urgent cases. Enemata—Fluidextract of nux vomica thrice daily. With head symptoms, ice to poll. After free purgation, give sloppy food with plenty of salt and continue nux vomica thrice daily.

Impaction of Rumen in Sheep and Cattle.

To relieve tympany, puncture with trocar in most prominent point in left flank. Follow with daily doses of Glauber’s salt and linseed oil, and fluidextract of nux vomica thrice daily, and light diet of hay and mashes. Or give subcutaneously eserine (C., gr.i), and pilocarpine (C., gr.ii), in urgent cases. In less urgent cases give the salines, nux vomica and mashes as above. In acute and chronic cases, rumenotomy is indicated when medical treatment is unsuccessful, except in febrile cases and old cows; not more than two-thirds of rumen contents should be removed (Moussu).

Incontinence of Urine. See Urinary Retention and Incontinence.

Impotence, Inability to Copulate.

1. Loss of sexual desire and power (functional).—Regulate exercise and work, by deceasing or increasing, if either excessive. Avoid excessive or early copulation. Yohimbine hydrochloride. Give tincture cantharides and fluidextract nux vomica well diluted, thrice daily.

2. Organic impotence—Growth, disease and malformations or paralysis rarely yield to drugs.
3. Premature ejaculation in male—Prevent masturbation and excessive copulation. Cold enemata and improvement in hygiene by outdoor life.

Indigestion, Acute, in the Horse.

Includes acute gastro-intestinal catarrh.

Use stomach tube with eructations, retching, pain and distension of stomach. With flatulence, aloes ball with calomel, (5ss). With violent pain, see **Colic.** Lysol (5iv) in ball of use in flatulence. Follow later with powdered sodium bicarbonate, ginger and nux vomica thrice daily. After an acute attack give dilute hydrochloric acid and fluidextract of nux vomica to stimulate gastric functions. When diarrhea is chief feature, give calomel (5ss) in a quart of linseed oil; then prescribe opium and tannie acid (each 5ii) twice daily in ball. If dysentery with straining and mucus, enema of 1 per cent. tannie acid. Diet—Fasting first 24 hours; then gruels, green food, chopped hay.

Indigestion, Acute, in Cattle. **Acute Gastritis, Rumenitis, Reticulitis, Omasitis, Abomasitis.**

Indigestion, Chronic. **Chronic Gastric—Enteritis (Horse).**

Diet. Attend to condition of teeth. Powder (sodium bicarb., ginger and nux vomica) thrice daily on feed. Dilute hydrochloric acid in some cases. Carlsbad salt (5i) on feed for constipation. Also daily, soapsuds enema. In diarrhea, with putrid feces, copper sulphate or lysol (5ss) daily.

Indigestion, Chronic, in Cattle. **Chronic Typanites.**

Without diarrhea or constipation, give fluidextract nux vomica with Carlsbad salt (2 tablespoonfuls) on feed thrice daily. In constipation with mucus, add to Carlsbad salt sodium bicarbonate. With diarrhea, give dilute hydrochloric acid (5i-iii) in drinking water twice daily, and nux vomica and salt on feed. When blood in feces, give fluid diet (milk and gruels) and sodium bicarb. on food.

Indigestion in Calves. **Milk Indigestion.** **Abomasal Indigestion.**

To stop vomiting and diarrhea, use only sterile, feeding utensils and clean warm milk in hand-fed patients. In sucklings, see that mother's milk is not over rich and feed at short intervals. Skim milk from creameries must be scalded. In hand-fed, give scalded milk and pure water (half and half), warm, till digestion good. At onset, castor oil (5ii). Pepsin, scald utensils after feeding. Do not give meal at too early age.

See also **Enteritis** in Calves.

See that udder and perineum of mother are clean in sucklings.

Indigestion, Acute, in Swine. **Acute Gastritis.**

Calomel and tartar emetic (each gr.v) or calomel (gr.v) and ipecac (gr.xxx) in pill with meat. To check severe diarrhea, chalk (5ii) or bismuth subnitrate (5ss) on food thrice daily. Avoid improper food, sour swill, hotel washings, etc. Give boiled milk and gruels. Clean utensils, trough and pen.

Indigestion, Acute. **Acute Gastronenteritis in Dogs.**

Restrict water and starve patient. Encourage vomiting by fluidextract ipecac (5i). If emesis prolonged, bismuth subnitrate and cerium oxalate in capsules. Also potassium bromide (5i), with chloral (gr.xx-xxx) in enema in boiled starch solution. Diarrhea is checked by castor oil (5i-iii), followed by bismuth (gr.xx), and salol (gr.v) with food thrice daily; or pills of lead acetate (gr.i), and camphor and powdered opium (each gr.ss), three times a day. Enemata (1 per cent. tannin) if much straining. Diet—Milk and lime water; raw scraped beef. In diarrhea, boiled milk and rice. In convalescence, tinc. nux vomica thrice daily.

Induration.

Apply Priessnitz poultice. Rub into parts frequently, equal parts, ich-
Inflammation.

Acute—General treatment with aconite, veratrum, or, in robust patients and with very urgent symptoms, venesection. Cool, airy, box stall, moderate body covering and bandage for limbs, in case of horses. Internally, laxatives. Calomel is an intestinal disinfectant as well. Externally, counter-irritation in some form. When trouble localized, hot poultices or ice. To relieve pain and quiet animal, opium, bromides, chloral. Stimulate renal secretion: spirit of nitrous ether, potassium citrate, or nitrate. Diet. Stimulants to support the heart, strychnine. In convalescence, bitterns and alcohol, hydrochloric acid.

In chronic inflammation, supportive treatment. Internally, iodides to aid resolution. Externally, in local troubles, counter-irritants.

Cool, airy box stall. Moderate covering of body and bandaging of limbs. Clean and disinfect floors, walls and feed boxes daily. Provide separate attendants for sick. Move bowels by enemata or milk laxatives. Diet—Bran mashes, boiled oats, milk, beef tea, eggs, green food. Strychnine solution dropped on tongue thrice daily and turpentine liniment rubbed daily onto limbs and belly to prevent edema. Steaming with compound tincture benzoin and application of turpentine liniment and bandage to throat, to relieve catarrh of upper air passages. With laryngitis, apply fly blister to larynx. With weak, feeble pulse, give strychnine as above and alcohol. as gin and digitalis; or strophanthus, or camphor, or caffeine, or coffee. Antipyretics rarely desirable, except in hyperpyrexia, then a few doses of aceta nnilid at 3-hour intervals. Spirit of nitrous ether, aconite, and solution of ammonium acetate may be given. Alcohol as food and nerve sedative. With icterus, give 1 pint of linseed oil and sodium bicarbonate on food. When conjunctivitis, keratitis and iritis complicate, see these disorders. In shipping fever a variety of bacteria have been found. Prominent among these are streptococci (in 80% of cases); also staphylococci, pneumococci, B. equisepcticus, B. coli, etc. These are probably secondary infections in most cases. Shipping fever includes influenza (due to unknown filtrable virus), strangles, due to S. equi, and contagious pneumonia. In these three diseases bacterins of the above organisms have a distinct preventive and curative effect by averting secondary infections. The antitoxic serum taken from horses recovered from influenza (preferably in the same outbreak) has most curative and temporary preventive action. The same remarks apply to the great 1918 human influenza outbreak, due to unknown organism, where bacterins afforded some transient immunity against secondary and chiefly streptococcal infections. Suspects showing rise of temperature and all cases of influenza should be isolated. Communication of influenza by utensils and attendants should be avoided. Disinfect premises when cases no longer exist. For special complications, as pneumonia, purpura, enteritis, meningitis, paraplegia, synovitis, laminitis, etc., see titles of these disorders.

Interfering.

Improve the general condition and shoeing. Set shoes a little away from inner margin of foot or employ three-quarter shoe, or a shoe thin on inside web, without heel on outside. Apply an interfering strap on fetlock which is struck.

Intertrigo. See Erythema.

Intestinal Hemorrhage. See Hemorrhage, Enterorrhagia.

Intestinal Indigestion and Catarrh. See Indigestion and Enteritis.

Intussusception or Invagination. See Colic.
Iritis.
Darkened quarters. Brisk purge. Hot fomentations to eye for one-half hour thrice daily. Two or three leeches on temples, after shaving hair. 1 per cent. atropine solution four to six times daily in large animals; m.i three times daily in smaller animals; dropped in the eye. Internally, sodium salicylates and potassium iodide in acute rheumatism. Enucleation of an injured and useless eye when it threatens sympathetic iritis in the other.

Iridectomy for sequel of iritis, as occluded pupil or posterior synechiae.

Priessnitz poultices over liver.
In dogs, calomel at outset, and bismuth subnitrate, and sodium bicarb., thrice daily in capsules. Diet, skim milk and lime water, lean meat, broths and bread. Massage over gall bladder and cold enemata.
In the horse, artificial Carlsbad salt on feed thrice daily. Diet—green fodder, pulped roots, boiled potatoes, steamed and cracked oats. An abundance of water.

Johne’s Disease. See Dysentery.

Keratitis. Abscess and Ulcer of Cornea.
Brisk Purges. Quinine in good doses. Extr. opii (gr.x), boric acid (gr.lv) in water (5iv), on gauze and oil sink, bandaged over eye. Atropine (gr.i-iv to 5i) dropped in eye thrice daily (stronger solution with much photophobia and lacrimation) with application to lids of yellow oxide of mercury ointment (gr.iv-5ss). Or holocain hydrochlorate (gr.ii-5i) in place of atropine. In spreading ulcer, apply very carefully pure phenol to cocainized eye on a toothpick. Then flush eye with normal salt solution (5i-oi). Fine galvanocautery may be used instead. In abscess of cornea and pus in anterior chamber, rarely advisable to incise.

Keratoma and Keraphyllocele.
Horny tumor from sole or horny laminae of horse’s foot. Excision and antiseptic dressings. Recurrence is frequent.

Laminitis, Horses and Cattle.
Horses—Remove shoes, thin horn on soles and place in well-bedded box stall. Let animal stand several hours at a time in hot water (frequently changed) and apply poultice in intervals. Or use cold water foot baths and ice poultices with bran. Diet. Give acetalnilid (5iv), or bleed from jugular or toe in severe cases. Inject adrenalin locally. Give arecoline subcutaneously, employ enemata and linseed oil, and encourage animal to lie down, or cast or sling in very acute cases. Give two ounces of alum in capsules every two hours until eight ounces are given. After subsidence of acute inflammation, keep heels low and toe short, apply thick, wide, rocker, bar shoes; exercise in soft, wet ground and apply blister to coronet. Neurectomy for prolonged lameness.
In cattle, same general treatment. Full dose of salts and mustard to chest at the beginning.

Laryngitis, Acute.
Chiefly in Horses and Dogs.
Locally, cold wet compress applied to throat and covered with oiled silk; or ice bag; or turpentine and sweet oil (equal parts); or, in severe cases, mustard paste, tincture of iodine, or fly blister. Steam inhalations with compound tincture of benzoin (5i-0i). Internally, brisk cathartic and tinc. aconite with spirit of nitrous ether every few hours for fever. Laryngeal cough and spasm relieved by morphine or Dover’s powder and ammonium chloride on feed (horse), and by codeine and ammon. chloride mixture (dogs).

Laryngitis, Chronic.
Chiefly in Horses and Dogs.
Locally to throat, wet compresses, tincture of iodine or stimulating turpentine liniment, as above.
Dogs—Application to larynx of 2 per cent. silver nitrate solution on human
applicator, or inhalations of benzoin and ipecac. Also insufflation of larynx with bismuth and orthoform equal parts with powder-blower.

In the horse, injections into the larynx, through the crico-tracheal ligament, with a hollow needle (1 to 2 per cent. solutions of alum or lead acetate) are most effective. Also give ammonium chloride and Carlsbad salt on the feed thrice daily.

LARYNGITIS, MEMBRANOUS.
Chiefly in Cattle, occasionally in calves, lambs, pigs, dogs and cats, see **Group**.

Bleed from jugular (1 to 6 qts.), or give tartar emetic (3 ii to 3 ii) in strong animals at onset. To throat, hot poultices frequently changed, or sinapisum. Potassium iodide thrice daily. Salts on feed; Diet—mashes, green food and milk. Tracheotomy in threatened suffocation. In dogs and cats, give dram doses of syrup of ipecac in threatened asphyxia. Edema of the glottis occurs as result of acute laryngitis and proves rapidly fatal unless tracheotomy is done.

LEUKORRHEA. See **Vaginitis, Septic Metritis, Metritis, Puerperal Fever**.

Symptomatic treatment with injections of 1 per cent. liquor cresol compound, 1 per cent. solution of alum, or zinc sulphate. Iron and gentinian in young and under-nourished. Generally secondary to endometritis, metritis, contagious abortion, tuberculosis, granular and B. necrophorous vaginitis, etc.

LEUKEMIA.

Rare in horses, cattle, swine, dogs and cats. Generally fatal. Fowler’s solution of arsenic pushed to fullest extent—H. and C., from 38 to 3 ii; D., from m.v to m.xxx, twice daily. Otherwise the treatment is as for **Anemia, Pernicious**.

LICE, PEDICULOSIS, PHITHRIASIS.

Horse: *Hematopinus macrocephalus, Trichodectes pilosus,* and *T. pubescens*.

Cattle: *H. eurysternus,* large ox-louse; *H. vituli,* calf-louse; and *T. scalaris,* small ox-louse.

Sheep: *T. sphaerocephalus.* The pupiparous dipteran, *Melophagus ovinus,* commonly called the “sheeptick,” ked or fag, also infests the skin of the sheep.

Dog: *H. piliferus,* and *T. latus.* Cat: *T. subrostratus*.

Pig: *H. suis*.

Goat: *H. stenopsis* and *T. climax*.

Fowls: *Goniodes dissimilis, Goniococites hologaster, G. gigas, Lipeurus variabilis, L. heterographus, Menopon pallidum, M. biseriatum.*

In large animals, apply pure kerosene night and morning for two days, then wash off with soap and water. Hair washed with vinegar for a few days to remove nits or eggs. In dogs, use tincture staphisagria, or oil of anise in sweet oil (1 to 10); also creolin in 5 per cent. solution; and corrosive sublimate in 1 per cent. solution, applied in spots and carefully dried, may be used. Blue ointment often applied in cattle, but not if there is dermatitis. When the animal is greatly infested and the hair is long, the hair may be clipped, but this is usually not necessary. In sheep, use dip as for scab. Fowl: Apply sodium fluoride in small pinches to the skin under the feathers of the neck, breast and back, and under the wings and tail. Apply kerosene to roosts and nests. Wash floors and sprinkle with sulphur. Whitewash walls. Keep hens out of stable to prevent hen mites from infesting horses. Isolate infested animal till cured and disinfect its former quarters. Employ general cleanliness and generous feeding.

LICHEN. See **Eczema**.

LICKING HABIT. See **Depraved Appetite**.

LIP-AND-LEG ULCERATION IN SHEEP.

Enzoötic, communicable, due to B. necrophorus. Cuts, bruises and abrasions about mouth and limbs exciting cause. 1. Lips swell and covered with papules, pustules and scabs, nasal discharge and conjunctivitis. Nose and lip slough. May be similar lesions about coronets and pastern joints and
Lameness ensues. Chin, cheeks, gums, roof of mouth, feet, penis, vulva, udder, may be attacked by necrotic process. 2. In lambs. Sudden swelling of lips, warty patches or fissured crusts on lip and muzzle with suppurating ulcers underneath. Necrotic areas at corner of mouth. Usually heal in time. 3. Venereal. Angry ulcerating sheath, and penis sometimes swollen and ulcerated. In ewes ulceration about perineum, vulva, and anus. 4. Foot rot. Ulceration about cleft and claw with foul, purulent discharge. Prevention. Isolate newly-bought animals for 2 weeks and frequent examination of exposed with segregation of sick. Disinfect infected premises, remove manure and surface soil from corrals and disinfect with saturated chlorinated lime solution. Transfer healthy sheep to new pastures and bed grounds. Frost kills bacteria in pastures. Scrape off crusts and scabs with sharp stick and apply cresol, 5 parts; sulphur, 10; and lard, 100. Apply thrice weekly to ulcerations nitric acid (1 to 70), after removing scabs, and follow with ointment as above. In foot cases same treatment or drive sheep through 5% cresol solution thrice weekly. Venereal lesions clip wool and apply lylol solution (2%) daily and stimulate occasionally with nitric acid solution. On warty lips in lambs, use 5% cresol ointment and swab sore mouths with 2% potassium chlorate. Resistant cases killed. Dip sheep in 5 per cent. cresol solution before returning to flock.

Lithiasis. See Calculi.

Liver Rot in Sheep. (Occasionally in cattle.) Due to Distomum hepaticum and other species of Distomata or fluke worms; Order, Trematoda. Aspidium and kamala have both been found to effect cures. Give concentrated, dry food with plenty of salt. Avoid overstocking pastures or give up pastures, if seriously infested. Sprinkle lime and salt or copperas (250 to 400 lbs. to the acre) on pastures from May to August. Drain pastures to destroy snails, the intermediary host of the distomata. Diseased animals should be slaughtered and their livers burned. Keep sound sheep away from infested pastures. Disinfect manure of infested animals with quick lime.

Louping Ill in Sheep. Due to bacteria conveyed by ticks living in tall grass and damp spots. No cure; treatment wholly preventive. Isolate and kill diseased sheep. Dip the rest of flock as for seab. Wet pastures avoided or drained. Long grass and rushes must be avoided.

Luxations. See Dislocations.

Lymphangitis. Cellulitis. Inflammatory Edema. Idiopathic in horse in hind legs. Apply from the beginning hot compresses of 2 per cent. lylol or creolin solution, covered with waterproof protective and bandage, to whole limb; change frequently. Give aloe, 5iv, calomel, 5i, in ball, and light diet—mashes, green food and hay. Enforce absolute rest. Tincture of aconite and spirit of nitrous ether may be used for fever every two hours, but local treatment most useful. Alcohol and milk in debilitated subjects. When acute symptoms subside, use dry bandaging, friction with oil of turpentine and sweet oil (equal parts), and gentle exercise to reduce swelling of limb. Internally, potassium iodide may be given to hasten resolution, together with laxatives to remove water from the system, as artificial Carlsbad salt on the food.

Lymphangitis, Mycotic or Epizootic, of Horses. Excise or remove limited area of diseased lymphatics with actual cautery and knife. Incise, curette and cauterize abscess cavities with Paquelin cautery. Isolate diseased animals and disinfect harness, contaminated objects and premises contaminated by affected animals.

Lymphatics, Inflamed. See Glandular Enlargements.

Maggots From Flyblow. Apply kerosene, or turpentine and oil. Other antiseptics.
MALADIE DU COIT. DOURINE IN STALLIONS AND MARES CAUSED BY TRYpanosoma EquiperDUM.

Prevention. Kill the diseased mares, and kill or castrate the diseased stallions.

Kill, or quarantine for three months the exposed stallions. Quarantine and inspect frequently the exposed mares. Medical treatment is rarely advisable in the United States. Avoid sexual excitement or copulation of patients.

Seen in stallions and mares. 1. Vesicles, ulcers and swelling of penis, urethral discharge and swelling of inguinal glands, edema of belly and legs, and often orchitis. Mares, vesicles, papules and ulcers about vulva, congestion and vaginal discharge. Animal acts as if in heat. White, puckered scars left on vulva. 2. After 2 months to year weakness, emaciation and paraplegia occur. Gait is swaying, there are large urticarial swellings, pruritus and discharge from nose and eyes. Does not occur in geldings.

Treatment. Kill diseased mares, castrate infected stallions, castrate or isolate exposed stallions and frequent inspection of exposed mares. Castration cures if done before nervous symptoms appear. Copulation starts up disease in mares when apparently well. The U. S. Gov't. enforces above treatment. Where medical treatment allowable may use antiseptic irrigations of penis and vagina. Stallion, 2 per cent. lysol or creolin, or 1-2,000 solution of corrosive. In mares, injections of 2 per cent. lysol. Also apply local application of 5 per cent. argyrol solution after cleansing as above. Great swelling is reduced by constant hot fomentation (saturated boric acid solution), or by incisions. After acute conditions subside, may inject sheath and vagina with 1 per cent. lead acetate or zinc sulphate solution, and use black wash externally. Treat ulcerations with 10 per cent. silver nitrate solution. In the beginning, sloppy food, mashes, green food and milk may be given. Iron and arsenic are indicated. With the appearance of emaciation, urticaria or paresis, give sodium cacodylate (gr.xl), hypodermically every four hours. Also give strychnine thrice daily. The treatment must be persisted in for months; three years should elapse before a stallion is safe for service. Vesicular exanthema may be treated locally, as advised for dourine, but often disappears spontaneously.

MALIGNANT CATARRHAL FEVER IN CATTLE.

Prophylaxis: clean, dry, well ventilated stables and removal of infected soil from barns. Isolate sick and disinfect discharges. Give creolin (3ii) twice daily in a pint of milk. Irrigate nose with 2 per cent. lysol solution; eyes with saturated boric acid solution. Soft diet with milk and gruels. Enemata or laxatives.

MALLENDERS AND SALLENDERS IN THE HORSE. SQUAMOUS ECZEMA. See ECZEMA.

Attacks flexures of hock and knee. Soak over night in sweet oil. Wash next morning with green soap and warm water, to remove scales. Apply oil of cade, liquid tar, or creolin, in alcohol (1 to 10). Carlsbad salt on the food. Regular exercise. Arsenic and iron.

MALNUTRITION. See DEBILITY.

MALTA FEVER.

In goats and sheep, occasionally solipeds, ruminants, dogs, cats, rabbits, rats, fowl and duck. Has occurred in this country in Texas and Mississippi valley region. Infection through milk and urine and by copulation with infected animal. Infection also by food and bedding contaminated with urine. Possible that dust and mosquitoes convey the infection. In man infection is gained by ingestion of infected goat's milk, and vegetables contaminated by animals. Also by direct exposure to infected animals. Abortion in fourth month in goats and sheep and failure of lactation with lameness, vaginal discharge and conjunctivitis. Orchitis and lameness in rams and goats. Absence of symptoms in other animals. Causes severe and prolonged febrile illness in man. Diagnosis by agglutination test of serum of infected animal.

Prophylaxis only of importance. A vaccine is still in the experimental
stage. Animals showing symptoms should be killed and premises thoroughly disinfected. All suspected animals must be tested by the agglutination test.

Those reacting should be quarantined until test negative. Flesh of killed animals may be used for food under supervision. Milk from infected animals must be pasteurized before use. Herd restocked with immune progeny of infected animals, or from uninfected regions.

Entire males in infected regions should be tested before copulation is permitted, if they react they should be castrated and quarantined until the test is negative.

The removal of animals from infected districts must not be permitted.

Infected solipeds should be isolated from other animals, although they may be worked.

Mammitis. Mammitis. Garget.

At onset, milk every hour and give frequent massage of udder with full dose of Glauber's salt and common salt. In no case of mastitis is the milk fit for human consumption, it may be boiled for animals, in mild cases, or else boiled and thrown away. Restrict food and water. Attend to abrasions of teats. (See Teats, Fissured, etc.) Also, to abort, either use constant hot fomentations or ice bag, and support udder by bandage and wide band about body. The surgeon should cleanse udder thoroughly and irrigate each quarter of the udder with warm 3 per cent. borax solution through sterile milking tube, in parenchymatous form. After gentle manipulation, draw off fluid in 15 minutes. If suppuration threatens, apply mercury binoxide ointment (10 per cent.). With interstitial form and surrounding edema, puncture swelling in points by actual cautery, avoiding the veins. Then apply boric acid ointment (10 per cent.). For suppuration of udder, incise and drain, and, if severe, amputate in part or altogether. In chronic suppuration, the pus poisons the milk; remove teats with scissors for drainage; fatten and kill. Segregate cows and separate milkers in mammitis to avoid infection of sound cows. To prevent mammitis, cleanliness of animal and premises; use of proper stalls, so that teats are not stepped upon; immediate treatment of abrasions of the teats.

Mammitis. Contagious Streptococcus.

Curdling of milk on standing, later hard nodule above teat and milk thin and blue. Segregate diseased cows and provide separate milker for them. Cleanliness of udder and compelling milkers to wash hands after each cow is milked will prevent spread of the disease. After isolation of sick, disinfect premises and keep newly-bought cows away from exposed cows and infected stable for a month.

Treat mild cases with warm injection of 3 per cent. boric acid solution in teats. In more severe cases use one per cent. sodium fluoride. Chronic mastitis due to tuberculosis, actinomycosis, botryomycosis. Also mastitis caused by colon bacilli, B. necrophorus and staphylococci.

Mange. Acariasis. Scabies. Itch. Scab.

In the horse—Sarcoplates scabei, beginning on head, neck and shoulders. Also Dermatodectes communis infesting inner thighs, root of mane and tail, sheath; and Symbiotes equi, seen on feet and pasterns. Clip hair, apply cottonseed oil with 5 per cent. creolin over night. Remove scabs with green soap and water next morning. No better remedy than lime and sulphur dip as for scab in sheep. Rub in one of the following remedies with brush and, when rubbed off by animal, reapply daily for a week. Then wash off and after a few days, repeat the treatment two or three times. Use 1 pint crude petroleum oil, 1 pint oil of tar, 3 quarts white rose oil, mix; or liquid tar and sulphur, each 3; with soft soap and alcohol, each 3; or creolin and soft soap each 3; alcohol 3. Also balms of Peru and sulphur ointment, (1 to 7), 3 per cent. lycos or creolin solutions. Ointments in localized mange. In dermodectic and symbiotic mange, milder remedies—Peruvian balsam, carbolic soap, or creolin and glycerin (1 to 10).

In Dogs—Follicular mange, caused by Dermodex foliculorum, var. canis, attacks head, neck and limbs, invading hair follicles and sebaceous glands;
difficult of cure. Sarcoptic mange, caused by Sarcoptes squamiferus, attacks head, chest, belly, elbows, root of tail and claws, and spreads to whole body. Readily cured. Isolate to prevent spread to man or dogs. Apply muzzle and clip hair over lesions. In sarcoptic mange, Peru balsam and sulphur ointment (5i-5i), or 1 part each, liquid tar and soft soap, and 8 parts of alcohol. For follicular mange, weeks or months are required and result is doubtful. Shave hair from affected area. Give bath of potassa sulphurata (½ of 1 per cent.) for 15 minutes; follow by friction with pure Peru balsam. Creolin in 2 per cent. bath, followed by friction with equal parts creolin and alcohol, once or twice daily. Squeeze pus from all pustules. Try staphylococcus bacterin for suppuration.

Masturbation. Onanism.

Dogs and Rams; Bulls and Stallions.

Regular exercise or work, and light diet. Punishment; moderate amount of copulation. Castration, if habit incurable.

Megrim. See Vertigo, Blind Staggers.

Melanosis. Melanotic Sarcoma.

Seen chiefly in grey horses. Remove by knife; recurrence rather the rule.

Meningitis. See Encephalitis and Cerebro-Spinal Meningitis.

Metritis, Acute and Chronic. See also Puerperal Fever or Septic Metritis.

Examine uterus with speculum. Treatment purely local and takes time and money. Animal may recover spontaneously at pasture. Otherwise, irrigate with 2 per cent. lysol solution daily. Apply Churchill’s tincture of iodine to lacerations of cervix and eroded os; or light application of actual cautery. Also dilate cervix and curette uterus, followed by loose packing with iodoform gauze for a few days. Afterwards daily lysol irrigations.

Muscular Rheumatism.

Warm covering. Give a purge: H., physic ball, C., Glauber’s salt, D., two compound cathartic pills. Rest of affected parts. Give sodium salicylate and potassium iodide in combination, in capsules, to dogs, to large animals in solution, thrice daily. Or the iodide may be reserved for subacute and chronic cases. Externally, rub into affected part methyl salicylate or chloroform liniment. Heat is also very efficacious; hot wet blankets covered with rubber sheet and dry blanket, or apply dry blanket and iron over it with hot flat iron. Puneture of affected muscles with sterile needles, or injection of sterile water, sometimes effective. Shoulder lameness—Inject veratrine into muscle (H., gr. ¼ to ½ in alcohol, m.xxx), followed by walking exercise. Chronic cases—Tonic treatment; cod liver oil; massage with liniment, moderate exercise and attention to hygiene.

Myalgia, Myositis. See Muscular Rheumatism.

Myocarditis. See Heart Disease.

Nagana or Tsetse—Fly Disease.

Horses, Cattle and Dogs. Caused by Trypanosoma Brucei conveyed by Glossina morsitans or tsetse fly.

Arsenical preparations as atoxyl, sodium-cacodylate most useful.

Nasal Catarrh or Rhinitis, Chronic. Gleet (In the Horse).

Use cleansing, antiseptic, astringent solutions by atomizer, or fountain syringe and rubber tube in nostrils, by trephining chambers above, or by stomach tube introduced through posterior nasal openings. Cleansing and antiseptic solution, sodium bicarbonate and biborate (of each, 3iiss to Oi), with 5i tincture of iodine. Dobell’s solution. Astringents, cupric sulphate or alum (½ per cent.); tannic acid or zinc sulphate (½ per cent. solution). Solutions changed each two weeks. Outdoor life, feeding on ground; good food; bitters and iron. Isolation, unless glands can be surely excluded. Gleet very often secondary and due to ulceration of pituitary membrane, carious teeth, facial sinusitis, glands, catarrh of guttural pouches, tumors, parasites, abscess, etc. Employ a rhinoscope and inject mallein or use com-
plement fixation or agglutination test. Discharge from one nostril is not usually simple gleet.

Navel Disease. See **Umbilical Infection.**

Navicular Disease (in Horse).

In acute cases remove shoes and use foot bath of hot or cold water, for hours at a time, with flaxseed poultice each night. Give green food, mashes and hay. Prescribe a physic ball. When heat and tenderness in foot subsides, apply fly blister about coronet after clipping hair. Shoe with rubber pad (shoe thick at heels and thin at toe), after a few weeks of rest. If lameness persists, plantar neurectomy may be done in animals with good feet and limbs.

Necrobacillosis. See **Lip-and-Leg Ulceration in Sheep.**

Nephritis, Acute. (In Horses, Cattle and Dogs.)

Prophylaxis—In acute infections, avoid draughts, and use warm covering for patients; enforce rest, secure activity of bowels and skin and give abstemious diet. In acute nephritis, withhold all food and drink for the first few days. Diet—D., milk; large animals, mashes, green food and milk, after starving period. Give aloes ball (horse), Glauber's salt to cattle; compound jalap powder to dogs (51) at onset. Hot blankets over whole body and mustard paste over loins. Pilocarpine, with strychnine, hypodermically. With marked hematuria, fluidextract ergot thrice daily. In later stages, as a diuretic, tinc. digitalis with potassium citrate. In convalescence, tinc. ferric chloride. Uremia is combated by cathartics and venesection; and convulsions by chloral hydrate, chloroform inhalation and morphine under the skin.

Nephritis, Chronic. (All Animals.)

Tincture of chloride of iron and sweet spirit of nitre thrice daily. In dropsy, see **Dropsy.** Withhold common salt from the food. Protect animal from exposure to cold. In dogs, chiefly milk diet. Sodium bicarbonate for acidosis and edema. In Uremia, treat as recommended for Acute Nephritis.

Nephritis, Suppurative. Pyelo-Nephritis. Pyelitis.

Seen in all animals; often in cows and mares following septic parturient states. In cattle it is often best to fatten and slaughter. Secure drinking of large amounts of water by placing an abundance of salt upon food. In early stage, spirit of nitrous ether and potassium acetate thrice daily. Hexamethylenamine, best remedy in all stages of disease. When urine alkaline, give sodium benzoate to large animals; to small animals, give urotropin with salol and boric acid, as urinary antiseptics. In chronic conditions in dogs, give sandalwood oil in capsules (m.x). In large animals in chronic pyelitis, give fluidextract buchu. Accompanying anemia is treated with strychnine and tincture of ferric chloride on the tongue. Isolation of patients is desirable to prevent infection of parturient animals.

Nervous Palpitation of the Heart.

Seen in horses and dogs from over-exertion, indigestion, “nervousness.” In severe cases, morphine. Also spirit of chloroform in less urgent cases. Or chloral and potassium bromide may be given. In asthenia and over-exertion, especially with irregular pulse, prescribe tincture of digitalis with tincture of aconite thrice daily. In anemia, give ferrous sulphate and nux vomica to horses. Indigestion, as a cause, demands a physic and restriction of food.

Nettlerash. Surfeit. Hives. See **Urticaria.**

Neuralgia. Neuritis.

Give laxatives, especially castor oil. In debility and anemia, give strychnine in increasing doses; also iron, arsenic and phosphorus in combination (in pill or otherwise). Locally, freeze nerve with ethyl chloride spray, or apply Priessnitz poultice, or menthol, or blister over root of, or along course of, nerve, or nerve-stretching or cutting. Potassium iodide in rheumatic cases. To simply relieve pain, morphine injected locally under the skin, antipyrine, internally. Aconitine locally, gelsemium internally. In wound or injury, apply antiseptic poultice. In asthenia, see **Debility.**
NNYMHOMANIA. See Sexual Excitement.

Obesity.
Diet the chief remedy. In dogs, tablets of desiccated thyroid gland, (gr.i-iii each) thrice daily. Restlessness and palpitation show overdosage; otherwise increase above dose. Potassium iodide, after meals thrice daily. Daily laxative and exercise.

Omphalophlebitis. See Umbilical Infection.

Opacity of Cornea. See Corneal Opacities.

Open Joint.
In recent wound, shave adjacent parts, wash them carefully with soap and water and 70 per cent. alcohol. Douche wound with force for 15 to 30 minutes, using corrosive sublimate (1 to 2,000), or lysol (2 per cent.), or other antiseptic solution, or simply inject ether. Often best to simply cover puncture with sterile gauge, shave hair away without wetting skin, wash skin with gasoline, and then swab wound and surrounding skin with tincture iodine. Then suture and close wound with iodoform collodium (1 to 10), sterile gauge and bandage, if latter possible. If suturing impossible, apply fly blisters about joint. If bandaging is not feasible, apply constant cold antiseptic irrigation to the joint for next few days. Try Bier's hyperemia. Remove shoes from horses and place in slings. Prescribe purge. Whenever possible place over bandage a firm plaster of paris, wood or tin splint.

Open Joint, Infected.
Open so as to irrigate and drain thoroughly, then flush with ether. Bandage and dress with sterile gauge daily, after thorough irrigation with antiseptic fluid, as above. Fixation by splint, if possible. (Bier's hyperemia.) Repeated blisters in large animals may aid. Recovery occurs only with stiffness, or ankylosis, in most cases. Treatment in large animals of open, infected joints having much motion is not usually profitable. Laxative diet—H. and C., mashes, gruels, roots and green food. Dogs, gruels and milk, during acute stage.

Ophthalmia. (Periodic in Horses.)
Confine in dark quarters. Foment eye with hot boric acid (2 per cent.) solution for one-half hour at time, thrice daily. Drop 1 per cent. solution of atropine sulphate in eye four to six times daily. Internally, give physic ball, and sweet spirit of nitre and sodium salicylate (3ii), thrice daily, and sloppy or green food. Iron and gentian during convalescence.

Ophthalmia, Simple. See Conjunctivitis.

Orchitis or Epididymo-Orchitis.
Seen in males owing to infections, trauma and tuberculosis. Support and compress testicle by thick pad and bandage. In acute stage, apply ice-bag to testicle, or hot flaxseed poultices, or lead and opium lotion, or antiphlogistine in a thick coating. Give smart purge and restrict diet to soft food. After acute symptoms subside, touch scrotum lightly in 10 or 12 points with Paquelin cautery every few days and cover with compress of cotton and bandage. Also, to aid resolution, ointments of guaiacol (10 per cent.), or ichthyol (20 per cent.), or mercury may be rubbed in daily. Aspiration of fluid in tunica vaginalis advisable if done aseptically. In hema-toma resulting in abscess, incise tunica vaginalis and stitch it to edge of skin incision; wipe out with pure phenol and drain sac. Tuberculous form associated with tuberculosis of kidneys, bladder and prostate (examine per rectum); if only testicle affected, castrate.

Osteomalacia.
In enzootic cases treatment is unavailing. Treatment must be undertaken early. Food from other localities best. Beef meal, peas, beans, oats, bran, linseed or cotton seed meal, green clover or alfalfa are among the best foods. Change water and pasture. Apply phosphatic fertilizers on pastures or meadows. Mix equally bone meal and precipitated lime phosphate, give C. 3i; Sh. and Sw., 3i-ii. To this add equal parts ferrous sulphate and nux
Osttits. See Spavin, Ring Bone.
Sometimes tuberculous. In acute stage, rest of part and cold application, as cold swab or continuous irrigation, or ice bag. Physic, soft and restricted diet. In subacute and chronic stages, firing, blistering and rest.

In the acute stage, with much pain, give frequent and long-continued injections of hot solution of saturated boric acid, or 3 per cent. carbolic, or 1 to 8,000 corrosive sublimate. Use fountain syringe and avoid any forcible injection, allowing water to flow in slowly. Carbolic solution most anaesthetic. Dry out canal after syringing and blow in dry pure boric acid. It is well to keep loose absorbent cotton plug in ear during treatment. If there is much swelling of the canal, scarify it. In the acute stage, give two to three compound cathartic pills. Diet of milk, broths and bread. When the acute stage subsides, use astringent injections, as 2 to 4 per cent. solutions of lead acetate, zinc or copper sulphate, or silver nitrate. To avoid pain of injection one may blow in a little powdered cocaine first. Diachylon ointment is also useful in chronic form, and boric acid in alcohol (1 to 20). The occurrence of granulations in the canal calls for use of stick nitrate after cocainization.

Over-Reach, Wound of Coronet From, (In Horse).
Treat wound with continuous wet compress of 2 per cent. lysol for a few days; then with Peru balsam and bandage. To avoid: protect coronet with pad, and rasp off toes of hind feet, setting shoes back and rounding off toes of hind shoes.

Oxyurides. See Parasites.

Palpitation. See Nervous Palpitation of Heart.

Paralysis.
1. Hemiplegia, one-sided paralysis. Rare, due to apoplexy, cerebral thrombosis or embolism, tumor, fracture of skull, abscess, parasites, etc. Attend to bladder and rectum, change position of patient and supply good bedding. Later use electricity, and administer potassium iodide. Treatment generally inadvisable, as recovery is protracted and partial.

2. Paraplegia or paralysis of the posterior extremities. Treatment depends upon the cause. Thus spinal inflammation (meningitis), fracture, hemorrhage, tumor, may induce it.

In dogs, obstinate constipation, worms, indigestion, abnormal dentition, nephritis, cystitis, lumbago and heart disease (disturbed spinal circulation or thrombosis of the femoral arteries), occasion paraplegia. Make a thorough physical examination to eliminate heart disease, lumbago, nephritis and cystitis. In teething, lance the gums if inflamed. Usually, thorough evacuation of the bowels by castor oil and enema or manual removal of feces, and light diet of broth, will lead to a cure, when constipation is a cause. If there is vomiting, give 2 to 3 compound cathartic pills or calomel, cerium and bismuth by the mouth, and use enemata and manual removal of feces.

In the horse, paraplegia occurs sometimes transiently during colic, and in mares in heat. There is also an infectious enzootic form. Apparent paraplegia in the horse if often really hemoglobinuria. Treat causative disease.

In cattle, paraplegia is seen in impaction of the rumen and parturient apoplexy. (See Indigestion and Apoplexy, Parturient.) In general, evacuate the rectum and bladder and apply hot fomentations and sinapisms to loins, and later give strychnine and blister loins (unless there is a nephritis), and potassium iodide.

3. Local paralysis due to a neuritis, from blows, pressure, injuries, cold, or central lesion. Commonest form of paralysis in the horse. Paralysis of the facial, trigeminus, radial, crural, tibial, obturator, etc., not infrequent, and recovery commonly occurs. Treatment—Remove sources of pressure or irritation, as halter in facial paralysis. Use preferably galvanic current from...
the onset of paralysis over the nerve root and paralyzed area, or faradic current, if it causes contraction of muscles and is not too painful. Also apply sinapisms or capiscum, or light applications of thermocautery over the course of the affected nerve. In chronic stage, employ massage with a liniment, hot and cold douches, alternately; electricity, as above, and strychnine hypodermically in large doses.

Parasites, Intestinal.

Order, Cestoda, Tapeworms.

Of the dog—Taenia marginata, T. serrata, T. coenurous, T. echinococcus, T. serialis, and Dipylidium caninum.

Cattle—Moniezia expansa and M. planissima.

Poultry—About 20 species of tapeworms.

Treatment—Withhold all food for 24 hours, give anthelmintic, purge immediately following it, and repeat dose 2 weeks later if ineffective. Isolate the infected animal, burn feces and tapeworms, and prevent animals from eating raw meat or entrails of other animals.

Special treatment.—Dogs—Oleoresin of male fern or areca nut in capsules, followed by compound cathartic pills or castor oil. If the head of the worm is not removed, repeat the treatment in 2 weeks. Also pelletierine, pomegranate, and kousso are used as taeniacides.

Sheep—Give areca nut (5i to ii) to lambs and repeat in 2 weeks if not effective.

Cattle—Arsenous acid (gr.xv), once daily for two or three days, followed by 1 lb. of Glauber's salts, has been used. Also tartar emetic, 5iss to liiss, or male fern.

Horses—Treat with male fern or kamala.

Poultry—Areca nut (gr.xxx) in pills with butter; repeat in three days.

In the Horse and Ass—Ascaris equorum. Carbon bisulphid in capsule, 3 doses of 5iii each at 1-hour intervals. Other treatments that have been used are: Tartar emetic (5iii-iv) in a physic ball of aloe. Oil of turpentine (5iv) with oleoresin of aspidium (3i) in pint of linseed oil; or, santonin (5v) in oil, or calomel (5i) with santonin in ball. Follow this treatment with course of iron and nux vomica on feed thrice daily for weeks.

Dog—Belascaris marginata and Toxascaris limbata. Cat—Belascaris mystax. For roundworms in dog, oil of chenopodium, miiss per 2 lb. live weight, immediately preceded or followed by castor oil 3i. For cat use smaller dosage. Santonin daily for several days in castor oil or in pill with equal amounts of calomel, or areca nut in capsules.

Poultry—Fowl: Ascaridia persicillum. Oil of chenopodium, mi.iii per pound of live weight, with castor oil 5i-ii, to birds fasted 24 hours. Or oil of turpentine and olive oil, each 30 ml. For 100 fowls, soak 1 lb. chopped tobacco stems in enough water to cover for 2 hours. Mix stems and water and feed with half of the usual ration after fasting for 24 hours. Two hours later ¼ usual ration fed to fowl with Epsom salt, 10 ounces. Efficient for A. persicillum and to some extent for Heterakis papillosa and tapeworm.

Pigeons: Areca nut (gr.xv) in pills with butter every third day. Other remedies which have been used include: Arsenic, creolin, naphthol, ether, copper sulphate, tannic acid, and kamala.

Horse—Oxyuris equi, pinworm. Enemata of strong solutions of common salt, of quassia, or of lime water, after flushing bowel with soap and water. Or fast 86 hours and give oil of chenopodium 5iv-v with a quart of linseed oil, or give turpentine 3iii-iv with a quart of linseed oil.

Dog—Trichurus depressiusculus, whipworm: Santonin, gr.ss-i daily, with calomel ââ, for a week. Then suspend treatment for 1 week and repeat for 1 week.

Horse—Strongylus equinus, S. edentatus, and S. vulgaris, and Cylicostom-
mum spp. (including Cy. tetracanthum and numerous other species). Oil of
chenopodium or turpentine, as given above for pinworms in the horse.
Thymol (H. 5iii, foals 5i), in ball coated with keratin, for five mornings,
followed at end of treatment by afoes ball, has also been used.

Dog—Ancylostoma caninum. Hookworm disease. For hookworms in dog,
3 doses of 5 to 10 minims of oil of chenopodium, according to size of dog,
each with half ounce of castor oil, at hour intervals, followed an hour later
by chloroform 5ss-i in castor oil 5ss. Use diminished doses for weak animals.

Swine—Ascaris suum. For roundworms in swine, oil of chenopodium mi
to 2 lbs. live weight in castor oil 5ii-iv. Fast animal 24 hours and withhold
feed or water for 2 to 3 hours afterward.

Strongylidae in cattle, sheep, lambs, and goats. Internally, oil of turpen-
tine (5iv), to cattle. To sheep, oil of chenopodium, miii per 2.2 lb. live
weight, emulsified in milk or given in oil. Numerous species occur in aboma-
sum, and, with tapeworm, in intestines. Prophylaxis: Isolate sick, rotate
pastures, disinfect pastures with copperas (80 lbs. to acre in 10 per cent
solution); generous diet with plenty of salt. Stomach worms (Haemonchus
contortus) of sheep and cattle: Give 50 mils of 1 per cent solution of cop-
per sulphate to lambs, 50 to 100 mils to adult sheep, and 200 mils to cattle.
Areca nut (gr. 100), on bran with arsenous acid (gr.ii), once daily for five
or six doses, is also used.

Dictyocaulus micrurus and D. filaria. See Verminous bronchitis, Hoose or
Husk.

Gapes in poultry and birds, due to Syngamus trachealis: Oil of turpentine
on feather in trachea; or tracheotomy; or removal by wire or horsehair loop.
Inject a few drops of turpentine or ether into trachea. Inject a 5 per cent.
solution of sodium salicylate intratracheally. Medicinal treatment not satis-
factory. Clean thoroughly and disinfect premises and utensils, and isolate
sick animals.

Parotitis.

Secondary to various infections as strangles, pharyngitis; idiopathic; trau-
matic and actinomycotic. Also due to salivary calculus. In acute inflamma-
tions, treat as recommended under glandular enlargements. In chronic,
idiopathic, massage with turpentine liniment and give pilocarpine internally.

Parturient Apoplexy, Paralysis, or Mammary Toxemia. See
Apoplexy.

Parturient Fever. See Puerperal Fever.

Patella, Dislocation of. (In horses and cattle; foals and calves.)

Reduce by pulling the leg forward and upward toward the elbow of the
same side, with side line about neck and attached to fetlock of dislocated
limb, while the operator pushes the patella into position. To prevent recur-
cence, the limb is kept in a less degree of this position for several hours
and a smart fly blister is at once applied to the patella region. Prevent the
animal from lying down by tying up head. In the horse, apply shoe with
high and projecting toe for three weeks to avoid recurrence.

Pericarditis, Acute.

In horses and dogs, from acute infections and trauma. In cattle and goats,
from swallowing sharp bodies which penetrate the pericardium. The treat-
ment of the latter form is unsuccessful. At the onset, bind an ice bag over
the heart and give morphine and atropine to quiet the heart. For same
purpose, with fever, also prescribeaconite every two hours till frequency of
pulse is decreased. As the pulse begins to weaken with progress of the dis-
ease, administer strychnine with whiskey and aromatic spirits of ammonia
and digitalis. With large effusion, weak pulse, and much dyspnea and cyano-
sis, puncture pericardial sac. Incision over anterior border of 5th or 6th
rib, four inches above lowest point on the breast in large animals, and wall
punctured with trocar and canula. Apply fly blister over the cardiac area,
and give potassium iodide internally to aid absorption of exudate. Absolute
rest and digestible, laxative diet.
Peritonitis, Acute and Chronic.

Acute form—In all animals; generally secondary to some local inflammation, injury, as operation for hernia and castration, or lesion in the belly, as perforation of stomach or intestines, or pelvis. Parturient sepsis is a frequent cause. Treatment must be chiefly directed to primary cause. In dogs, the treatment should be laparotomy, to remove the cause, and drain, if need be. Medically, use opium heroically to quiet pain and peristalsis and enable nature to wall off infection with protective barrier of lymph. Withhold all food by mouth for week or more. Move bowels by enema and give normal saline and food per rectum. Apply externally hot turpentine stupes, frequently renewed. Tymanites relieved by turpentine or asafetida, per rectum.

Chronic form—Treatment depends on cause, as inflammation of abdominal and pelvic viscera, tuberculosis, new growths. Ascites is often present (see Dropsy). Repeated blistering in small areas, and the use of tincture of ferric chloride with oil of juniper and sweet spirit of nitre—in combination—are of service in ascites. If unsuccessful, potassium iodide may be tried. In dry peritonitis, with formation of adhesions, medical treatment is unavailing.

Pharyngitis, Acute.

Occurs in horses, dogs, pigs; less often in cattle and cats; rare in sheep and birds, except pseudo-membranous form. In enzoötic type, isolate patient. Good ventilation and housing; liquid or soft diet. Gruels, cooked roots, mashes, milk and green food for larger animals. Milk, gruels and soups for smaller patients. Drenches are dangerous in leading to foreign body pneumonia. Tincture of aconite hourly is useful till fever is reduced. In large animals, an electuary of kermes mineral and potassium chloride (each 5ii in dose) is beneficial. Externally, applications of ice, hot poultices, stimulating liniments and blisters are of advantage. A wet compress covered with oil silk and bandage; or equal parts of camphor liniment and oil of turpentine rubbed in and applied on cloth, wet with same, are useful in less urgent cases. Antiphlogistine spread on hot and thick, after shaving skin, and renewed each 12 hours, is also beneficial. When abscess of glands threatens, frequent hot poulticing or application of a fly blister are in order. Relieve constipation by carron oil or artificial Carlsbad salt in doses of a few ounces on the food, and by enema. Inhalations of 2 per cent. carbolic acid are efficacious, with cleansing and greasing of nostrils with vaseline. Abscess about the pharynx calls for incision of skin and exploration with director or fingers. Severe dyspnea demands immediate tracheotomy. In dogs, silver nitrate solution (10 per cent.) may be painted on throat, or m.v. of tincture of ferric chloride may be given in one-half dram of glycerine every 2 hours for effect on throat. In swine, apply a good fly blister from ear to ear and give veratrum or ipecac (of either, gr.xxx) on food to cause emesis and avert suffocation.

Phlebitis.

Due to infection following injury and operation. If diffuse it is incurable.

Excise thrombotic portion of infected vein. Open abscess. Give a purge.

Apply warm covering, secure rest of part. Apply Credé's ointment.

Phrenitis. See Encephalitis.

Phthiriasis. See Lice.

Pica. See Depraved Appetite.

Piles. Hemorrhoids (In Dogs).

Keep bowels loose with liquid petrolatum, or equal parts of sulphur and compound licorice powder (5ss-i in capsules), or with two parts of sulphur and one of potassium bitartrate (5ss in capsules). Apply externally fluid-extract of hamamelis, and inject some into the rectum. With much itching and pain: acidi gallici, gr.x; orthoformi, gr.x; extract opii, gr.iv; extract belladonnae, gr.iv; unguentum ad. 5iv; apply externally. If aggravated and
persistent, give an anesthetic; stretch sphincter ani until it is paralyzed; clamp base of piles and burn off pile down to clamp with dull red thermocautery. Lock bowels for three days with opium. Then give injection of sweet oil and castor oil, or two or three compound cathartic pills.

Piroplasmosis. See Texas Fever.

Pleuroneumonia op Cattle.

Destroy patients and those exposed. Slightly diseased are fit for beef. Premises cleaned and disinfected.

Pleuritis and Empyema. Pleurisy.

Venesection with much pain and dyspnea. Fever and pain are relieved by acetonilid. Also by the application of mustard paste and hot blankets with rubber covering to the chest. Instead of acetonilid, we may give—to relieve pain and dyspnea—laudanum, 5ii, in a pint of linseed oil to the horse; or morphine subcutaneously. With effusion, administer calomel, and also a combination of fluidextract of digitalis (5i), oil of juniper (5i), and potassium acetate (3i) in water thrice daily to horses; to dogs, powdered squills and digitalis (aa gr.1), in pill with calomel (gr.ss), three times daily. Use wet compress about chest continuously, and applications of mustard occasionally. Give dry diet with water reduced to minimum. With large or persistent effusion, puncture the chest. In the horse, in the 8th and 9th intercostal spaces at the anterior margin of the rib and near the lower border of the lung, shave hair and use strict asepsis. After puncture, or in the later stages, employ potassium iodide, and give tincture of ferric chloride with gentian or nux vomica on the feed. Also give to larger animals nourishing diet with milk, eggs, and whiskey; to dogs—milk, bovine and meat juice. In empyema or purulent pleurisy, the chest wall must be incised and often a portion of two or more ribs resected; all adhesions to pleurae broken under partial anesthesia; and wound closed, save for drainage. Irrigation of the chest is not desirable except in case of fetid discharge.

Pneumonia, Croupous, and Broncho-Pneumonia.

At the onset in rare cases with great dyspnea and full, bounding pulse, venesection. Tincture of aconite in repeated doses every two hours, is more often useful in the beginning, to reduce the frequency of the pulse, except in influenza and asthenic conditions. An abundance of fresh cold air to stimulate the respiratory centers is of great import. In the horse, bandage the legs after rubbing mustard paste on them. For large animals, the diet should include hay, grain, roots, mashes, and, if animals do not eat well, eggs and milk; for dogs—milk, bovine, broths, meat juice and a little meat. In the stage of hepatization, high fever (104.5 deg. F.), acetonilid (3iv) may be given to horses in a single dose. Usually, however, cold enemata, cold air, and cold compresses on the chest, changed frequently, will be safer and more efficient. Weakness of the pulse calls for digitalis, strychnine, camphor, ammonium carbonate, singly, in alternation or combination, and repeated every few hours. The action of the kidneys is favored by spirit of nitrous ether. Keep the bowels active by enemata or with oil by the mouth. With the approach of crisis, stimulants are especially indicated, but should not be used until weakening of the pulse demands them. With overloading of the right heart and jugular pulse, employ venesection. During resolution administer expectorants, as ammonium chloride and carbonate in combination, particularly in broncho-pneumonia, and in this disease nutritious feeding is urgently demanded. In delayed resolution, give potassium iodide twice daily. In convalescence, appetite and digestion are stimulated by whiskey with tincture of gentian and nux vomica.

Poisoning.

See Table of Antidotes. Use of stomach tube most effective. Emetics in dogs, cats and swine—mustard, zinc sulphate, apomorphine. Stimulants, as strychnine, camphor.

Poll Evil. See Abscess and Fistula.

Polyuria. See Diabetes Insipidus.
Post-Partum Hemorrhage. See Hemorrhage.

Post-Partum Paralysis. See Apoplexy, Parturient.

Prolapse of Rectum (In Cattle and Swine).
If slight, of mucous membrane alone, apply ice cold water, and astringents—as fluidextract of hamamelis—and replace bowel, after washing and greasing it, and raising the hind quarters, or, if impossible to reduce, apply actual cautery to prolapse in lines radiating from its center to the circumference, and burn through the sphincter in two places to aid its contraction after return of bowel. Introduce morphine suppository, or give drug subcutaneously to prevent straining. If all coats of bowel are prolapsed, as happens in large prolapses, return bowel if possible, and then apply cautery in lines parallel to long axis of the bowel—just within the anus—to cause contraction there and prevent prolapse. Then apply pad over anus, and give opium. In severe (old or gangrenous) prolapse of great size, one must empty lower bowel by enema, push back any loop of small intestine in the prolapsed portion and amputate the prolapsed portion, performing an end to end anastomosis between the two ends of the bowels. To prevent escape of the upper segment of bowel back into the belly, the two layers of bowel should be fixed by two or three silk sutures placed just outside the anus, before amputating.

Prolapse of Uterus or Vagina.
After cleansing and replacing parts, prevent recurrence of prolapse by the use of opium, as above; elevation of hind quarters; and by truss; West's vulval clamp; or closure of the vulva by wire sutures of the quilled type.

Prostatitis (Occasional in All Entire Males).
Occurs from extension from urethritis and cystitis, and from frequent copulation or masturbation. Rarely diagnosed. The symptoms suggest cystitis with frequent, intermittent and painful micturition; and also rectal trouble with rubbing of the anus against objects. Examination shows enlarged and painful swelling about the neck of the bladder. Treatment—Frequent hot rectal injections through double tube to allow of return flow; smart cathartic and diet of gruels, mashers or milk; entire rest. Internally, give a mixture of spirit of nitrous ether, potassium acetate and tincture of belladonna in full dose thrice daily. If there be much pain and straining, administer morphine in suppository, or subcutaneously. If swelling of prostate blocks urethra, pass a catheter. Abscess opened, not through rectum, but via perineum by careful dissection with catheter in bladder and finger in rectum as guides.

Pruritis. Itching.
Attacks Horses and Dogs and other animals independent of any skin eruption. First endeavor to remove or treat the cause. Hepatic or digestive trouble, constipation, piles, fissure and worms cause pruritus ani; pregnancy leads to pruritus vulvae, diabetes, exposure to cold and heat, nervous debility. In general itching—baths—sodium bicar. (lb. 1-2 to 30 galls.), or sponging with vinegar. Local itching: Phenol, 5i; liq. potass., 5i; ol. linii, 5i. M. Sig. Use externally. Where there is danger of poisoning from licking or absorption, use liquor picis alkalimus (1-32), or hydrogen dioxide pure. All antiseptics appear to be antipruritics. In pruritis of anus or vulva, apply hot fomentations, dry by sopping gently with soft cloth, and dust on powdered starch. Also, saturated boric acid solution or silver nitrate in spirit of nitrous ether (3 per cent.), are efficient in these troubles. In debility, give iron, arsenic, and nux vomica. Other agents relieving itching are: Carbolic acid, hamamelis, chloral, alcohol, prussic acid, corrosive sublimate, tobacco, cocaine, salicylic acid, potassium bicarbonate, tar, oil of tar, oil of cade, menthol, lime water, alum, yellow wash, black wash, thymol.

Psoas Muscle Strain in Horses and Dogs.
Complete rest and the application of hot blankets about the loins and body with waterproof covering and dry blanket outside, frequently renewed. Give morphine suppository to dogs; laudanum, §iv in boiled starch solution; to horses, per rectum. Use slings in case of strain of both muscles in horses.
Psoriasis. See Eczema, Scaly or Squamous Mallenders.

True psoriasis is unknown in veterinary practice.

Ptualism. Salivation.

To combat the symptoms, give belladonna or atropine, or alum.

Puerperal Fever, Parturient Fever, Parturient Septicemia, Septic Metritis.

Infection following labor is treated by removing local sources, as retained membranes and blood clots; by initial repair of lacerations; and by irrigating the vagina and uterus twice daily with Lugol's solution (0.01 to 0.001), after washing the external genitals with the same and lowering the hind quarters. Abrasions should be dusted with dry boric acid. Keep the bowels loose with salts in cows; castor oil in bitches; linseed oil or mineral oil in mares. Give ergot thrice daily to contract the womb. Administer large doses of alcohol (6yi large patients), with nourishing diet of grains, milk, eggs and (for small patients) beef juice and bovine. Strychnine in full doses is also indicated. Enemata of normal saline solution (sodium chloride, 5i-Oi), in large amounts, so as to be retained, are of much value. Raise the receptacle holding the enema but a short distance above the patient so as to allow it to flow slowly. Try injection of antistreptococcus serum or bacterin. Prophylaxis: Isolation of animals about to calve or threatened with abortion. Treat as contagious disease. Avoidance of same utensils, sponges, attendants, food and water for sick and well. Disinfection of premises. Quarantine of patient till all discharge stops.

Pulmonary Congestion and Edema.

Large doses subcutaneously of atropine in edema of the lungs. With severe dyspnea, venesection is the most effective measure in congestion. Externally, apply turpentine stipes or mustard paste and hot blankets to chest, frequently renewed. Also give a powerful hydragogue cathartic. In passive congestion due to heart disease or weakness, give digitalis, strychnine and other heart stimulants.

Pumiced Foot in Horses.

Weakness and convexity of the sole as sequel to laminitis. Apply blister to coronet and wide bar shoe, leather and oakum packing with tar.

Punctured Foot in Horses.

Remove shoes and pare away horn till the bottom of the puncture is exposed. If this treatment has not been applied at time of puncture and inflammation and pus have formed, expose suppurating area and then employ bran and flaxseed poultice mixed with 3 per cent. lysol or creolin solution for few days. Later, dress with Peru balsam and aseptic gauze, pad of oakum and bandage.

Purpura Hemorrhagica in the Horse.

Employ remedies increasing the coagulability of the blood—give fresh horse serum (5ii) subcutaneously, or blood transfusion, calcium chloride and gelatine by the mouth or rectum. Also turpentine thrice daily, to avert hemorrhages. If turpentine unsuccessful, try adrenalin chloride solution given intramuscularly. With streptococcus infection, antistreptococcic serum, intravenously, has given good results (10 to 50 mls), and the dose of this may be repeated in 12 hours if improvement is slow. Good hygiene and food are of chief importance. Supply an airy, light, dry, warm box stall; a ration of oats, bran, roots, green fodder; and milk and eggs, if there is anorexia. Only mild laxatives, as linseed oil, are indicated. During convalescence, a powder of arsenous acid (gr.iii), ferrous sulphate (5i), with nux vomica (5i), may be given thrice daily on the food. Swelling about the nostrils may be reduced by constant bathing in cold water. Sores and ulcers demand treatment (see Decubitus). Tracheotomy is demanded for severe dyspnea. No harness of any sort should be permitted. Skin swellings are best overcome by the remedies preventing hemorrhage and increasing the coagulability of the blood. Incisions and local applications are generally harmful or unavailing.

Pyemia. See Septicemia.
QUARTER EVIL. See Black Quarter.

QUITTOR. (In the Horse.)

Fistula of the coronet. Remove shoes. A bar shoe may be needed if the foot is broken down. If there is pus in the sole, make counter-opening here. Open up sinus to the bottom with knife or actual cautery. The latter is best in destroying pyogenic membrane of the fistula. Remove necrotic tissue. Give mixed vaccine. Irrigate wound with 1% lysol solution, and apply aseptic gauze and jute, wet with lysol solution, and bandage. Keep this wet antiseptic poultice on for several days, or a week, till acute inflammation subsides. Inject fistula occasionally with dichloramine-T or phenol in glycerine (1-16). Apply dry aseptic dressing after the wet antiseptic poulticing. Repair of the horn hastened by fly blister to coronet.

RABIES IN ANIMALS. HYDROPHOBIA IN MAN. (See Bites.)

When persons or animals are bitten by a dog, supposedly rabid, a diagnosis is imperative. An animal suspected of rabies should be kept caged for inspection. Death occurs invariably within 4 to 10 days in rabies. If suspected dog runs away, dies or is killed inside of 10 days Pasteur treatment advisable. If suspected rabid animal alive and in good health, after 10 days, rabies is improbable. If there is any doubt about the diagnosis, microscopical examination of the brain—for Negri's bodies in Ammon's horn (Hippocampus Major) and changes in the plexiform ganglion of the vagus—by a trained pathologist will determine the diagnosis. Specimen for pathologist should be head and neck above 3rd cervical vertebra on ice, or brain with upper part of cord in glycerin.

Otherwise, grind small amount of fresh cerebellum with twice weight of normal salt solution. Drill hole through frontal bone of guinea pig aseptically, little to one side of middle line, to dura. Use cocaine. Inject 10 drops of brain emulsion through dura with hypodermic syringe.

Average incubation, 14 days, but animal must be kept 100 days to prove test negative.

All persons bitten by rabid dogs should at once be sent to a Pasteur institute for Pasteur treatment, or virus may now be procured from Pasteur institutes, and makers of biological products for home treatment, if the history of case, duration and location of bite are given. For immediate treatment of bites of rabid animals, See Bites. Pasteur treatment is successful in preventing hydrophobia in 99 per cent. of persons having recent rabid infection. If clinical history and autopsy are suggestive of rabies, it is unwise for bitten persons to await results of inoculation experiments before undertaking Pasteur treatment. Prophylaxis: When a case of rabies develops all dogs within a radius of twenty miles should be muzzled for six months. Animals bitten by rabid dogs should be killed at once, or given prophylactic treatment. The newer Hogyes dilution from fresh brain of rabid rabbits requires but six injections of vaccine.

RHEUMATISM, ACUTE ARTICULAR. (In Cattle, Dogs, Horses, Pigs and Goats.) See also Arthritis, Infectious.

Give sodium salicylate with an equal amount of sodium bicarbonate in solution. If the salicylates cause vomiting in dogs, administer aspirin in capsules thrice daily. To the affected joints, apply cloths wet in pure methyl salicylate, or cloths soaked in a hot, saturated solution of Epsom salt, baking soda, and covered with waterproof and bandage. Inject joints with formalin and glycerin. In the later, or subacute stages, prescribe equal parts of sodium salicylate and iodide three times daily. Iodine ointment rubbed on the joints, or firing and iodizing, are most effective in chronically enlarged and stiff joints. Rest, and liquid diet are indicated at the onset. In the later period, cod liver oil, quinine, iron, arsenic and strychnine with generous feeding, are required. For complications, as pleuritis, endocarditis, see these titles.

RHEUMATISM, MUSCULAR. See Muscular Rheumatism.

RICKETS. Rachitis.

In the case of sucklings improve the mother's food in nitrogen, fat and
DISEASES OF DOMESTIC ANIMALS 605

salts. Give the mother cottonseed or linseed meal, or beef-meal, with rich ration of grain. Or the suckling may be weaned and receive—if herbivorous—oatmeal gruel of milk and a tablespoonful of linseed meal daily; cod liver oil; raw eggs and beef meal. Carnivora may be given milk, strong broths, gruels with milk, juice squeezed from rare beef, bovine, cod liver oil. With anemia, syrup of ferrous iodide (foals and calves, m.xv; puppies, m.ii-v). Phosphorus and phosphates are bone foods. Prescribe syr. of calcium lactophosphate, or glycero phosphates, or phosphorated oil (foals and calves, 3i; puppies, m.ss to m.i). General care and hygiene are of chief importance. These include grooming, cleanliness, warm, dry quarters, and fresh, country air. Pigs must be removed from dark, unhealthy styes.

Ringbone in the Horse.

Either a periartthritis or osteoarthritis of the pastern bones or os pedis, and in the first involving the external, and in the second case, the articular surfaces of the bone. When a fore limb, apply a thin-heeled bar-shoe; when in hind limb, a high-heeled shoe, to favor the natural shifting of weight attempted by the patient. When the animal is in the stable, place a wet swab about the pastern, only work on soft ground, if possible. In acute cases, with lameness and heat in the part, apply cold swabs and enforce rest; follow by firing and blistering to secure resorption or ankylosis, if lameness persists. If this is unsuccessful, perform neurectomy.

Ringworm. (Trichophytosis. Tinea or Herpes Tonsurans.)

Attacks cattle, dogs, horses, pigs, sheep, goats, cats and poultry.

Horse. Trichophytic ringworm, caused by Trichophyton mentagrophytes, T. flavum, T. equinum, T. verrucosum; and Microsporous ringworm, by Microsporum Audouini.

Cattle. Ringworm always a Trichophytosis and due to T. mentagrophytes.

Dog. Four varieties of ringworm occur: (1) Trichophytic (T. caninum); (2) Microsporous (M. Audouini var. caninum); (3) Eldemellian (Bidemella spinosa); and favus (Oospora canina). See Favus.

The disease is transmitted from animal to man and from individual to individual of same species; rarely from one species to another species among animals.

Isolate patients, and disinfect premises, harness, clothing, bedding, cleaning utensils and objects in contact with the patient. Burn hair and crusts from the skin. The disease may be spread over the body by grooming. First soak crusts in oil and remove them with green soap and water. Paint diseased area daily with tincture of iodine, or rub in ointment (1 to 8) of iodine crystals and goose grease once daily. Moussu recommends on cattle with localized spots, equal parts of chloral, phenol and tincture of iodine. When generalized, wash the body with green or tar soap and apply boric acid (3i) in alcohol (5x) and ether (3iis). Salicylic acid in alcohol (1 to 10) may also be used over large areas without fear of poisoning from absorption or licking of the drug. Many other drugs are curative, as 10 per cent. ointment of either creolin, lysol, or tar. In small areas, ung. hydrargyri ammoniati. It is best to clip the hair about diseased patches and pull out that on the patches, if feasible.

Roaring.

In horses; rarely in cattle and dogs.

Due to left-sided paralysis of the larynx, from toxemia of acute infections; also to thickening of the mucous membrane, obstructions, stenoses, and new growths in the upper air passages. Paralysis of the larynx is relieved only by denudation of mucous membrane from left ventricle or rarely from both. Temporary or false roaring is common after influenza and laryngitis and is curable by the application of a fly blister over the larynx, or better, red mercuric iodide. Give internally potassium iodide, thrice daily for some time. The local injection of strychnine into the region of the larynx once daily is said to delay the onset of paralysis. Arsenic internally may aid the action of the iodide in promoting resolution of thickened mucous membrane.
Rot in Sheep, Distomiasis. See Liver Rot.
Roup. See Laryngitis, Diphtheria, Croup.

Saddle Galls.
Avoid friction and undue pressure of badly fitting harness, and heavy cloth or felt linings. Use only harness linings of light leather. Treat at first with wet dressing of two parts of saturated boric acid solution and one part alcohol on aseptic gauze, covered with oil silk blanket and surcingle. Treat inflamed sebaceous follicles as advised for acne (see Acne). Islands of necrotic tissue, or siftables, must be removed by the knife. To the remaining wound apply balsam of Peru and aseptic dressings, or an astringent, stimulant and antiseptic powder.

Sand Crack. Quarter-Crack.
Prophylaxis:—Avoid weakening the foot by paring away sole and frog, and thus putting all the horse’s weight on wall of foot. Occurs in inner quarter of fore foot; in toe of hind foot. Remove the shoes, and pare thin the edges of the fissure. Apply flaxseed and bran poultice mixed with 2 per cent. creolin, and rest, to relieve the inflammation. After the inflammation has passed, treat the crack by either removing a V-shaped piece of horn; by paring away the upper portion of crack to sensitive laminae and coronary band above, and clamping the crack below; or by grooving the wall above at right angles with the crack. All these measures tend to immobilize the edges of the crack and allow of formation of new horn. To stimulate growth of horn, also blister the coronet. Apply bar shoe, with thin heels and side clasps in fissure of toe; a three-quartered bar shoe in quarter-crack. Employ covering of wood tar on hoof continuously.

Sarcoma.
Use knife freely and try Coley’s mixture of toxins of erysipelas and B. prodigiousus. At times successful in human practice.

SatyrIASIS. See Sexual Excitement.

Scab in Sheep.
Due to Dermodectes communis, var. ovis. Lambs and yearlings most susceptible.
Segregate and dip newly-bought sheep. Isolate sick and disinfect premises and contaminated objects. Shear sick and remove crusts with soft soap solution (1 to 50), aided by brush. Treatment is done with baths or dips. They are given only four hours after feeding and at body heat. Repeat dip in ten days and keep animal in bath two minutes. Dip head under once, in sulphur dip; keep mouth, nose and eyes out in poisonous (tobacco, arsenical) dips. For horn sheep, use U. S. Bureau of Animal Industry dip which is cheap, safe and efficient. Flowers of sulphur, 24 lbs.; unsulphated lime, 8 lbs.; water, 100 gallons. Mix lime in box with water to make paste; sift on sulphur; stir all well together. Boil with 25 gallons. of water for two hours or longer, till solution of chocolate-liver color and sulphur mostly disappears from surface. Settle mixture in a barrel with bunghole four inches from bottom; allow four hours for settling. Draw off only clear liquid into dipping vat and add water to make 100 gallons. For animals in full fleece, use manufactured tobacco, 1 lb.; flowers of sulphur, 1 lb.; water, 5 gallons. Soak tobacco 24 hours or more, on night before dipping, boil tobacco solution for a minute and allow tobacco to remain in it over night. Mix sulphur to paste with water in a pail. Strain liquid from tobacco by pressure, and add liquid to sulphur paste and enough water to make 5 gallons. After dipping, turn sheep into clean yard. Dip apparently healthy sheep first; then scabby ones, when a flock is attacked. There are many excellent commercial dips on the market; follow specific directions with each. Other agents include: creolin, 2 gallons; arsenic, 1.5 lbs.; iron sulphate, 10 lbs.; water, 100 gallons, etc. Good pasturing and generous feeding aid resistance against scab.

Scabies. See Mange.
Scratches. See Erythema.
Seedy Toe in Horses.
Sequel to laminitis.
Remove all diseased horn and apply Peru balsam to the exposed tissues. If there is lameness, use bran and flaxseed poultice mixed with 2 per cent. lysol solution. Otherwise, blister the coronet. Apply a bar-shoe with sole pressure and keep the cavity dressed with the balsam. Frequent changing of the shoe and trimming of the foot is required to restore and keep it in normal shape.

In blood poisoning, with germs or their products, the treatment is chiefly surgical: the use of antiseptic poultices or other antiseptic applications to wounds; the removal of septic and dead tissue by the knife; the drainage of purulent foci, etc. Nourishing diet—reinforced by milk and eggs, beef juice, bovinine, alcohol and quinine, etc. The fresh horse serum (D., 5ii-iv, H., 3ii-iv) given subcutaneously has germicidal effect. Blood transfusion in protracted sepsis. Oil of turpentine may be used as a stimulant and antiseptic (H., 3i) in emulsion with milk and eggs. Calomel is useful as an antiseptic cathartic. Saline infusions are often most valuable. Collargol intravenously. Antistreptococcic serum is remedial in streptococcus infection. The tincture of ferric chloride is indicated during and succeeding an attack.

In female (nymphomania), sexual excitement depends upon various inflammatory diseases, as vaginitis, metritis and other disorders of the vagina, womb, ovary. Retained testis is a common cause in males. Over feeding, lack of exercise, and constant companionship with females favor sexual excitement in the male. Treatment consists in removing the cause, as surgery in organic lesions yielding to the knife. Secure only proper amount of coition and avoid proximity of male to opposite sex. Give hard work, low diet, and full doses of potassium bromide. If trouble due to spinal or cerebral lesions, little can be done. As a last resource, castration of either sex or slaughter.

Shipping Fever. See Influenza.
Shoe Ball. See Capped Elbow.
Shoulder Ball (In the Horse).
Sprain of the spinati and, to a less extent of the teres muscles, with swelling, followed by atrophy of these parts. In the acute stage, apply constant, hot fomentations to the shoulder muscles, and secure absolute rest. When local tenderness and swelling abate, apply cantharides blister to muscle, and later exercise at pasture may lead to recovery. Local intramuscular injections of veratrine may be of service in atrophy of the muscles. Occasional blistering is of most service. Avoid ploughing to prevent return of trouble.

Sick, Destruction of.
Strychnine, chloroform, prussic acid, venesection.

Side Bone in the Horse. Ossification of the Lateral Cartilages.
Rest and cold swab about foot with heat and lameness. In other cases, firing and blistering are indicated, and the application of a bar-shoe. The effects of concussion may be somewhat averted by making a groove below the cartilage in the wall of the foot with a knife or firing iron. Neurectomy in otherwise sound limbs.

Sitfast. See Saddle Galls.
Sleepy Staggers. See Encephalitis.
Snake Bite. See Bites.
Sore Throat. See Pharyngitis.
Sores. See Wounds.
Sore Shins. See Periostitis and Ostitis.
Spasm of the Diaphragm (In the Horse). Thumps.

Give spirit of chloroform or compound spirit of ether. If persistent try lobeline or morphone under the skin; also inhalations of amyl nitrate. Apply hot applications over the diaphragm; pull out the tongue. If breathing becomes difficult, use venesection to avert pulmonary apoplexy.

Spavin, Bog. See Bog Spavin.

Spavin, Bone (In the Horse).

In acute cases, rest and the application of a compress kept constantly wet with cold water. This may be followed by firing and blistering—to secure ankylosis—in young animals. The use of a high-heeled shoe may benefit many cases. Other operations which may relieve the lameness are cunean tenotomy and anterior and posterior tibial neurectomy.

Splint.

Apply cold compresses, when the animal is in the stable, and later the ointment of red mercuric iodide, every other day till blistering occurs. When this is not curative, fire in points and blister with cantharides, followed by rest. In very acute cases, incise the periosteum at the onset.

Speedy Cut (In the Horse).

Apply antiseptic gauze, wet with 2 per cent. lysol and cover with rubber or oil silk, and bandage, to injury on cannon or knee. Otherwise treat as for Wounds. Employ a boot to save knee from being struck. To prevent, pare away inner wall of striking foot and use accurately fitting three-quarter shoes. Shoe once in three weeks. Avoid too rapid work.

Traumatism, tuberculosis, septicemia, pyemia, distemper, strangles and growths are etiological factors. Treatment depends on etiology to some extent. In acute spinal meningitis, treat as for cerebro-spinal meningitis, except cold should be applied to spine rather than to the head. In the later stages, blisters applied over the lumbar region—or over centers corresponding to the peripheral lesions—are indicated. Potassium iodide may be useful in aiding resolution. Tonics, as strychnine and iron, are valuable. When there is marked paraplegia, keep horses in slings and empty bowels and bladder regularly. Employ faradism and massage of paralyzed muscles. Recovery is uncertain and treatment is often economically inadvisable.

Sprains or Strains of Muscles, Tendons or Ligaments.

Usually involve actual rupture of the fibres of these structures. At the onset, secure rest and immobilization of the part as far as possible. Take off weight by slings; apply high-heeled shoe in strain of flexor tendons of feet in horses. Apply compresses wet with hot saturated solution of Epsom salt and covered with waterproof cloth, or cold irrigations and Priessnitz poultice at night, with rubber bandaging to prevent exudation and swelling of the part. After the acute symptoms abate, alternate hot and cold applications of water—to stimulate circulation—and begin soon with massage and movement of the part and gradually increasing exercise. Keep the part bandaged if possible when not applying treatment. Various liniments may be used to aid massage, as chloroform or turpentine liniment. Firing and blistering, or simply blistering, and turning out animal to pasture, may secure recovery. Subsequent cicatrization with contraction of tendons and ligaments can not be prevented except in part by early movement of the injured limb. Tenotomy may be used for contraction. Fibrolysin, may be injected for induration. Neurectomy is occasionally advisable for lameness.

Sterility (Sexual). See Barrenness and Impotence.

Stomach Staggers. See Indigestion.
Stomatitis.

In simple stomatitis, use mel boracis (B. P.) on a swab in the mouth. The food should be liquid or soft. Give potassium chloride internally. With ulceration, swab out mouth with 1 per cent. lysol or creolin solution several times daily and touch the ulcers with 10 per cent. silver solution, or with tincture of iodine. To the large animals, give a few drams of Glauber's salt and saleratus on the food thrice daily. There is also an infectious putustral form of stomatitis affecting horses. The local treatment is the same as above but isolation of patients followed by disinfection is indicated. To sheep, sodium chloride and salicylate in their drinking water (in the proportion of 15 gr. each to the pint). Hydrogen dioxide is perhaps the most effective antiseptic mouth-wash, but more expensive than boric acid. Stomatitis is very prevalent in the young. Fresh air, cleanly premises and exercise must be given. Nourishing food is a requisite to recovery. Isolate the sick and avoid common use of utensils for eating or drinking. Stomatitis is a complication of infected umbilicus in calves; gangrenous tissue must be cut away and the navel swabbed with tincture of iodine and packed with iodoform and boric acid.

Strains. See Sprains.

Strangles in Horses.

Give antistrangle bacterin or serum as a preventive and polyvalent antistreptococcic serum as a curative agent. A bacterin made of S. equi is a good prophylactic agent given to horses in doses of 1 to 2 mils.

Isolate the sick in roomy, airy box-stall and disinfect the vacated premises. Diet—Gruels, mashes, steamed oats, grass, roots; and milk, eggs and alcohol, if there is anorexia. Apply, and frequently renew, hot flaxseed poultices to the inflamed submaxillary gland, and open when "ripe." Syringe abscess cavity with hydrogen dioxide and dress with Peru balsam. Remove induration by a fly blister to the surrounding area. Treat complications as they arise. Tracheotomy is required for obstruction about the larynx.

Stringhalt in Horses.

Several forms.

1. In some cases it is purely a functional nervous disease like chorea; treatment on this basis includes the use of bromides, improvement in general hygiene, and rest.

2. A form dependent on retraction of peroneo-philangeus, which may be cured by peroneal tenotomy and aponeurotomy.

3. A form produced by tarsal deformatie arthritis, or spavin. Treat as recommended for spavin.

4. Patellar form. Sometimes cured by section of the tibio-patellar ligament.

Sturdy. See Coenurus Cerebralis.

1. Apoplectic form, with coma and very high rectal temperature. Turn hose of cold water on the head and body and make vigorous friction of the body with ice. With injected mucosa and labored breathing, venesection. With failing pulse, inject under the skin of the horse camphor (gr.xv), with ether (5ss), and sweet oil (5ii). Also cocaine, strychnine subcut.

2. In the form with weak pulse and prostration (without hyperpyrexia), give stimulants as above, and externally hot pack.

Prophylaxis: Head coverings; give cold water frequently and apply it to head; moderate work; avoid work in heat of day.

Surgical Shock.

Give morphine hypodermically, and adrenalin intramuscularly, and apply heat externally with mustard. Inject normal salt solution into the rectum, intraperitoneally, into a vein, or under the skin. Blood transfusion. Also camphor, atropine, pituitrin, strychnine and tincture of digitalis given hypodermatically.

Surfeit. See Urticaria.
Surra.
Surra occurs in solipeds, dogs, rats, camels and elephants and is transmitted by inoculation by flies (Tabanidae) into cattle, sheep, goats, buffalo, guinea pigs and rabbits. Due to Trypanosoma evansi. Appeared in imported cattle in U. S. in 1906 but was immediately eradicated. Characterized by irregular, intermittent fever, urticaria and edematous swellings on various parts of the body, catarrh of nose, eyes and vagina, with progressive emaciation, weakness and anemia. Diagnosis is made by inoculation of rabbits with blood from infected animals. The trypanosomes appear in rabbit's blood in 4 to 9 days accompanied by fever.
Prevention. Isolate suspected animals in individual fly-proof stalls and inoculate rabbits with their blood. Kill those affected. In India, where disease is indigenous, increasing doses of arsenic, or of sodium cacodylate, atoxyl, or arsenophenylglycin. Usually fatal in horses, not in cattle which act as "carriers."

Swine Fever. See Hog Cholera.

Syncope. Heart Failure. Fainting. See Cerebral Anemia.
Keep the head low and inject under the skin pure ether. Give subcutaneously caffeine with digitalone every few hours. Also the injection of camphor is useful.

Synovitis.
Rest and fixation of joint most important. Slings or the use of splints secure rest and fixation. The application of an ice and sawdust poultice, or ice bag bandaged on to the joint or constant cold irrigation, or sometimes more useful, is hot saturated solution of Epsom salt on compresses covered by waterproof protective and bandage. Compression of the joint by rubber or flannel bandage is serviceable after the more acute symptoms abate. In subacute stage, firing and blistering are to be recommended. When effusion and most of the thickening about the joint disappear, allow gentle exercise, which may be gradually increased.
See also Open Joint, and Arthritis.

Tapeworms. See Parasites, Intestinal.

Teats, Fissured, Cracked.
Wash udder thoroughly with soap and water and saturated boric acid solution. Withdraw milk through sterile milking tube. Coat fissures with compound tincture benzoin, or with solid lunar caustic. Keep teats anointed with 10 per cent. boric acid vaseline.

Teats, Obstructed.
Concretions removed by manipulation of teat or by passing bougie, or teat siphon.
Inflammatory thickening relieved by poulticing and fomentations. It may be necessary to cut the teat with teat bistoury to relieve a stricture. Growths within the teat and warts without are removed by scissors or ligature.

Tendons, Rupture of.
Splints, slings, and treatment as for fracture. If open wound, suture the tendon and sheath. Subcutaneous rupture unites more surely with aseptic suturing in human practice. But there is great danger of sepsis in veterinary practice.

Tenosynovitis.
General treatment as for synovitis. Bier's hyperemia. Rest, fixation, applications of heat and cold, counterirritants, and finally exercise. See Thorough-Pin.

Tetanus.
Common to all animals; especially to horses, cattle and sheep.
Therapeutic treatment with antitoxin is often unsuccessful. In slowly developing and chronic cases tetanus antitoxin is successful as a therapeutic agent. Prophylaxis (within 4 days after inoculation) is usually very effec-
tive in preventing tetanus when antitoxin is injected. In wounds of the feet, in regions where tetanus is prevalent; also in the new-born, in cows just calved, and for all animals after surgical operations in regions infected by tetanus, the antitoxin preventive treatment should be employed. Immunity thus conferred lasts about a month and is without danger. Repeat these injections of antitoxin at the end of the first and third week, to prevent the intoxication caused by belated crops of tetanus bacilli. Locally, any wound likely to contain tetanus germs must be opened freely to the bottom and tincture of iodine used. In new-born lambs and calves sterilize the stump of cord after ligation with iodine. Magnesium sulphate is the most successful drug in the treatment of tetanus (see magnesium sulphate). To relieve spasm of jaw and elsewhere, give lobeline (gr. 1/5); subcutaneously, or chloral (3ii-iii) in boiled starch solution by rectum. Chloroform by inhalation may give temporary freedom from spasm. The use of slings, a quiet, darkened box-stall, and gentle management are desirable. The diet should be of a sloppy character—milk, gruels, and perhaps some green fodder, with water within reach at all times. Empty the bowels manually or by enema; the bladder by catheter or pressure within the rectum. Thorough disinfection of the premises after a case of tetanus is imperative.

Texas Fever. See Hemoglobinuria in Cattle.

Thick Wind in Horses.
Treat as for Broken Wind.

Thorough-Pin of the Hock and Knee.
Tenosynovitis of the perforatus tendon just at the summit of the os calcis. Usually chronic, as hydrops of the tendon sheath. In acute cases, apply a high-heeled shoe and secure rest, and apply wet compresses and flannel bandage about the lower limb and hock. In chronic cases, apply spring truss, or operate by aseptic excision or curettage of wall of the sac and free drainage, to secure obliteration of the sac and adhesion of the tendon to the tendon sheath. There is considerable danger of sepsis, however, in the operation. Aseptic aspiration of the sac and injection of tincture of iodine or of phenol (m.x-xx) may produce the same result with less danger of infection. Unless the animal is valuable, operation is inadvisable. Firing and blisters have little curative value. Hydrops or hygroma of the common tendon sheath of the perforatus and perforans at the back of the carpus. This is treated exactly as recommended for hydrops or dropsy of the perforatus tendon (thorough-pin) at the hock.

Thrombosis.
Of the Cerebral Arteries. See Apoplexy.
Of the Anterior Mesenteric Artery. See Colic.
Of Femoral and Axillary Arteries.
Shown by intermittent lameness and complete paresis, with loss of pulse, in affected limb. Treatment by rest for many weeks and potassium iodide thrice daily. The clot in femoral artery may be felt per rectum, and massage over it has been recommended, but is liable to cause sudden death by embolus. Swelling of the limb may be combated by bandaging.

Thrush (In the Mouth). See Stomatitis.

Thrush in Frog of Horse.
Keep the feet out of manure and urine by constant cleanliness of stable or by movable leather sole and calks, to prevent moisture from reaching the foot. Remove from wet yard or pasture. Dust calomel and iodoform (equal parts) on the frog and work the powder into cleft of the frog, by means of a probe, and pack with tow on top of it. Application of wood tar and tow and leather soles may be placed over this. If seen in fore feet, without apparent cause, or if there is swelling of the limbs and evidence of poor circulation, give a purge, tonics and regular exercise.

Ticks. Wood Ticks. IXODES.
Ticks are the means of transmitting tick or Texas fever to cattle (Boophilus annulatus or Rhipicephalus annulatus), and the allied disorders—
Australian tick fever and ixodic anemia of cattle—by inoculating the organisms of these diseases through their bites. In sheep, louping ill is likewise communicated by ticks (Ixodes ricinus or redivius), which inoculate a special organism by means of their bites. The Ixodes americanus—common in dogs, cattle and man—is the most frequent in the U. S. I. redivius attacks dogs and cattle, as well as sheep. Ticks should not be torn away from the skin, as their bodies will be severed from their heads and the latter be left in the skin. Unless buried deep in the skin, the application of butter, kerosene, oil of turpentine or benzine will cause the ticks to loose their hold. The whole tick may be removed by cutting them out with scissors, skin and all. Ked or Keb refers to Meloplagus ovinus, which is not a tick, but a wingless fly attacking sheep and usually confused with ixodidae. This insect may be removed by baths, as for scab in sheep, and their inroads prevented by applications of kerosene. Baths or dips are also prophylactic in louping ill.

Tinea Tonsurans. See Ringworm.

Toothache.

In the Horse—Extraction by forceps, or by trephining and punching out the offending molar.

In the Dog—Counter-irritation of gum by tincture of iodine; filling the tooth with dental amalgam after proper removal of carious matter; lancing the gum for alveolar abscess; or extraction.

Tracheitis, or Tracheo-Bronchitis. See Bronchitis.

Tread.

Bruise of coronet by opposite foot or by foot of another horse. Apply wet compress (3 per cent. creolin) and treat as for Wounds.

** Trematoda, Fluke Worms.** See Liver Rot.

Trichinosis.

The Trichina spiralis attacks all animals, but more often swine. Treatment is wholly preventive in destroying rats and mice, where pigs are kept, and in not feeding flesh to swine. Trichinous meat should be burned.

Tuberculosis.

In order of frequency affects Cattle, Birds, Swine, Cats, Goats, Horses, Sheep and Dogs.

Most animals are infected by the bovine type of B. tuberculosis. Dogs and cats are somewhat susceptible to the human type of bacillus. Infections occur through the digestive and respiratory tracts, and extend by the lymphatics—sometimes by the blood stream (leukocytes) or by continuity—and bacteria often penetrate a part without producing lesions at the point of entry. Tuberculosis is acquired by the bacilli in the nasal and uterine discharge and feces of patients, infecting the water, fodder and dust of a barn; also through the young feeding on milk from tuberculous animals. Crowding, poor ventilation and poor nutrition favor the disease. Tuberculosis is not usually inherited; the young are most susceptible; some six months' habitation in infected surroundings may be required for the disease to be acquired by the previously healthy.

Treatment—This is rarely advisable in animals, since it is so often unsuccessful and because the existence of the disease threatens the life of other animals, and man through diseased meat, milk, and—in the case of cats and dogs—through their sputum. An outdoor life, day and night, together with highly nutritious diet, may lead to recovery and is the most hopeful and successful form of treatment for animals, as for man. Prophylaxis is secured by an outdoor life, or one in clean, well-ventilated and uninfected stables. Milk from tuberculous animals should be boiled before it is fed to hogs or other animals. The sick should be isolated and killed, or Bang's segregation method may be used. Cows showing physical signs of tuberculosis—particularly of the lungs, uterus and udder—should be killed. Animals reacting to tuberculin test should be isolated; their calves removed to separate farm, barn, or partitioned portion of same barn.
Calves fed from mother on day of birth, thereafter on boiled milk from same, or milk from healthy cows. Two sets of employees if possible. If not, then the healthy animals should be first tended, and the overall and shoes should be changed before tending the tuberculous. Also there must be separate utensils for the healthy and tuberculous. The healthy and sick should be separated in pasture. The healthy animals must be tuberculin tested as usual. The infected barn should be washed and cleaned and sprayed with 3% formalin, or 1-500 corrosive sublimate solution, on the walls, floors, and feed boxes; the floors should be covered with quicklime; and the premises then disinfected with formalin or sulphur vapor. The tuberculin test must be applied to all newly-bought animals, before they are included in the herd, and the whole herd should be tuberculin-tested every 3 months until no animals react. Raw milk from tuberculous cows is unfit for food and is a means of transmitting the disease to man, especially to infants. Von Behring's bovovaccine—of dry, living, tubercle bacilli of the human type—appears to confer immunity, for a more or less indefinite period, in cattle. It is indicated for injection into young animals, as a preventive agent, when tuberculosis is prevalent in a herd. Its value is still a matter for the future to determine.

Typanites, Acute (In Cattle and Sheep).

Gaseous distension of the rumen is common in sudden changes of diet from dry fodder to clover or lush grass. Perform active massage of the left flank. Pass a stomach tube. To stimulate peristalsis, throw a stream of cold water against the left flank, and give half an ounce of formalin in one quart of water, and one hour later Epsom salt (cattle), internally. With increasing distension, plunge a knife, or, better, a trocar and canula, into the most prominent part of the left flank, midway between the angle of the hip and last rib. Compress the tissues about the canula, to prevent gas and food from entering the tissues. The canula may be left in place 24 to 48 hours and the animal should receive but little food—hay and bran mash. If the rumen is impacted, see Indigestion.

Udder, Inflammation of. See Mastitis.

Ulcers.

Wounds with general tendency to break down (necrosis) and suppurate rather than to heal. These include ulcers at point of ear (dogs) and point of tail (cattle and dogs).

Ulcers in hind legs of horses, associated with swelling and general debility.

Gangrenous ulcers, carbuncle of coronet or foot rot in horses—from injury, special infection and frost bite about the coronal region.

Indolent ulcer about the coronet of old horses.

Corneal ulcers and stomatitis ulcers in dogs and other animals.

Ulcers due to carcinoma of the skin (horses and dogs); to tuberculosis, actinomycosis and glands in horses.

Decubitus, or ulcers due to pressure in lying down.

Ulcers due to treads on coronet and to pressure of collar and saddle on the neck and withers.

Treatment—In general, the treatment consists in destroying and removing the unhealthy necrotic tissue and substituting in its place a healthy wound. For this purpose we use the actual cautery, curette, scissors, knife or caustics, as in the case of gangrenous ulcers. For less urgent cases we may apply the stick lunar caustic, tincture iodine, phenol, or strong solutions of mercuric bichloride, formalin (10 per cent.), or zinc chloride. If there is much surrounding inflammation and tissue to be gotten rid of by sloughing, we should apply aseptic gauze soaked in Dichloramine-T dissolved in oil or 2 per cent. lysol and covered with waterproof and bandage till sloughing has proceeded and inflammation subdued. Then we may dress with ointment of scarlet-red, Peru balsam, or stimulating and antiseptic powder, as calomel and iodoform. For ulcers due to specific diseases see names of those diseases. Removal of cause of irritation is essential, as of
foreign body or dead tissue. Rest of the part is also requisite, as bandaging or ear-cap in case of ulcer of the ear in dogs.

Umbilical Infection.

Foals, calves and lambs. Due to streptococci, staphylococci, colon bacilli, B. necrophorus, etc. Prevention. Segregate cows about to calve. Excise cord aseptically and ligate. Swab stump with tincture of iodine and cover with salicylic acid and starch (1 to 4). Clean surroundings and bedding. If navel necrotic do not ligate cord but cut away dead tissue and syringe navel sinus daily with 2 per cent. lysol solution, being careful not to force it through urachus into bladder. With persistent urachus inject saturated solution of alum and boric acid containing 2 per cent. phenol. Udder and perineum of mother kept clean so that suckling will not swallow necrophorus or colon bacilli.

A bacterin made from navel exudate will prevent if given to a new-born, and sometimes 10 mls of antistreptococcus serum given within 24 hours of birth will prevent when disease enzootic. Septic arthritis often follows. Disinfect premises used for parturition before a new animal is admitted.

Urethritis in Dogs.

Associated with balanitis very often.

At first give cathartic and light diet of milk and bread, and enforce rest. Foment frequently with hot saturated boric acid solution and inject hot 2 per cent. solution of the same into the urethra. Internally, give tincture hyoscyamus (m.x to xx) and sweet spirit of nitre (m.xxx) with potassium citrate (gr.xv) in solution thrice daily. After subsidence of more acute symptoms, inject 1 per cent. solution of zinc sulphate and lead acetate in combination or use 5 per cent. argyrol solution; or silver nitrate solution (1-16,000 to 1-4,000). Use boiled, soft-rubber catheter, if there is urethral obstruction. Obstruction from swelling of urethra, or urethral stone, may require perineal section.

Urinary Retention and Incontinence.

If retention is due to spasm of the sphincter, as in colic, then the application of hot fomentations to the loins, morphine and atropine subcutaneously, or warm baths in small animals, will relieve. Pressure on the bladder through the rectum, or the use of the catheter, are most rapidly effective in horses. If retention of urine is due to stone in the ischial region or S curve of the urethra in oxen, then massage it out; do urethrotomy; or slaughter before the bladder ruptures and absorption of urine spoils the meat. In sheep with urethral stone, massage the urethra and excise the spiral filament at the end of the penis; or slaughter. In retention from phimosis, paraphimosis, and stone in the bladder, circumcision, incision of the sheath, and cystotomy are respectively indicated. Stone in the bladder in sheep and cattle may be prevented by giving sodium bicarbonate with the food and allowing water at the animal's constant disposal; and this generally is necessary in fattening. (See Calculus.) Retention of urine from paralysis of the detrusor muscles, in nervous disease, may be overcome by the use of strychnine and remedies combating the primary disorder.

Urinary incontinence may be caused by paralysis of the sphincter muscle of the bladder from prolonged retention of urine; or from obstruction by stones and new growths in the bladder. In parietic conditions, the administration of strychnine, alternate injections into the bladder of cold and hot water, and treatment indicated for general debility are in order.

Urticaria, Nettlerash, Surfeit, Hives.

In horses, cattle, pigs and dogs.

Due to external irritation by nettles; bites of insects, fleas and lice; chemicals, and sudden cooling of the skin. Also to irritants within the body—as products of indigestion and toxins from infections, pregnancy rheumatism, and hemoglobinemia; and to specific foods and medicines.

Treatment—Give a purge—H., aloe; C., Epsom salt and calomel; swine, calomel; dogs, the same, or two to three compound cathartic pills. Exter-
nally, bathe with saleratus and water (3l-Oii), or vinegar, pure or diluted. Sanitas (1 to 2) and terebene (1 to 8) in water, are also beneficial.

Uterine Subinvolution.

Give fluid extract of ergot in full dose thrice daily for two weeks, and it may well be combined with a moderate dose of quinine sulphate. In subinvolution or hypertrophy of the womb following labor, the use of hot vaginal injections also aids the action of ergot in restoring a normal condition.

Vaginitis and Vulvo-Vaginitis.

Due to infection of injured parts after labor; to the action of strong injections or foreign bodies; and a third form to infection from the bull. Croupous vaginitis is sometimes seen as a variety of puerperal infection. In the acute stage, with swelling of the vulva and inflammation and discharge from the vagina, anoint the vulva with carbolized vaseline and inject sodium bicarbonate solution (3ss-oi) through a sterile, perforated soft-rubber tube. If there are lacerations in the vagina, it should be irrigated with 1 per cent. lysol solution and the vagina filled with dry boric acid and packed with sterile gauze. Renew the dressings frequently. After the subsidence of the acute stage, inject zinc or copper sulphate solution (of either, 5I-Oi) twice daily. An occasional swabbing of the vagina with freshly made 10 per cent. argyrol is also beneficial. Examine the vagina with a speculum, as a vaginal discharge may arise from the uterus.

Vaginitis, Infectious Granular of Cattle.

Cows, urinary frequency and straining, thin vaginal discharge; swelling congestion of vulva and vagina. Gray coat on vagina through which minute, red, and later translucent, follicles seen. In bulls some balanitis. Sterility abortion, nymphomania, loss of milk in cows; often sterility in bulls. May last for months.

Prevention. 1. Segregate the sick and kill cows with uterine infection. 2. Examine cattle for disease before purchase. 3. Infected bulls not permitted to serve cows. Service not allowed before 10 weeks in cows, or 8 weeks in bulls, after onset of disease. Wash penis of bulls with 1 quart 1 per cent. lysol after service where disease prevails. 4. Daily cleanliness and use of chlorinated lime on floors, with destruction of infected uterine. 5. Wash hind quarters with soap and antiseptic solution daily. Give daily injection 2% per cent. solution of liquor cresolis compositus, followed by insertion of 10 per cent. lyso1 ointment (5isss) by syringe or capsule in cows, and apply 6 per cent. ointment of same to pens in bulls. Use the ointment daily for 5 days, every other day for 10 days, then every third day for a month. Clip hair of sheath in bull and syringe daily with lyso1 solution before using ointment. Over-strong solutions aggravate condition. Vaginitis and anovulitis in cows and heifers, with yellow, cheesy necrotic patches due to B. necrophorus and enzoiotic—Segregate sick, give 2 per cent. lyso1 vaginal injections, clean and disinfect premises with 5% phenol solution.

Varicose Veins.

Permanent dilatations of veins.

Very rare in the domestic animals. Treatment—Support by bandage. Radical cure can only be obtained by excision of the vein or double ligation, at either end of dilatation.

Variola. Pox of Sheep, Catyle, Swine, Dogs, Birds and Monkeys.

Sheep pox is the most common and important disease—variola ovina. It is not readily communicable to man but occasionally to dogs, swine and goats. Variola in sheep is highly infectious and very fatal (90 per cent.). In sheep pox, slaughter of the sick and exposed animals and thorough disinfection of the infected premises are essential. Infection may last for six months in the infected premises, and for six weeks about sheep after their recovery from variola. The sheep—on recovery—should therefore be dipped in 2 per cent. creolin or lyso1 solution. Ovination, or inoculation of sheep with the virus of sheep pox, has been done with greatly varying
mortality (from 2 to 20 per cent.). Inoculation from an already inoculated sheep, by means of the virus taken from a pustule at the tenth day, and introduced into the tail of a healthy sheep, will produce immunity without eruption. No inoculations must be made until variola breaks out in a flock, or the disease may be spread by the process. Medical treatment includes cleanliness of surroundings and bedding; warm shelter; fresh air; soft and nourishing food. The nostrils and eyes should be cleaned with saturated boric acid solution; and chalk may be put in the drinking water, if diarrhea is present.

Cow pox and horse pox appear to arise from contact of healthy animals with variolous or vaccinated persons. Cow pox therefore usually occurs in cows; occasionally in bulls, oxen and young stock. Cow pox is rare and valuable in providing a source of vaccine lymph. The use of a milking tube; frequent hot fomentations; and measures advised for mastitis are indicated, when the udder is inflamed.

In horse pox, clip the hair and cleanse and bathe the parts with 2 per cent. lysol solution, and apply wet compresses of the same. In later stages, the use of carbolized vaseline is to be recommended.

Verminous Bronchitis. See Bronchitis.

Vertigo. Megrims. Blind Staggers in the Horse.

Occasionally seen in dogs, pigs, cattle and sheep.

Cover the eyes with a blanket; remove harness about the neck; and walk the animal about. Also throw cold water forcibly over the head. Cerebral congestion from pressure on the neck, or from short over-draw check, from overheating, and from chronic lung or heart disease, may cause it. Cerebral anemia or general anemia may induce the disorder. A strong glare of light affecting the eyes, foreign bodies in the ears, and perhaps indigestion, may induce megrims. Often it is an inexplicable neurosis. If cause can be discovered, it should be remedied, if possible. Animals may often be ridden without danger of an attack (which would appear if they were driven). Certain blinders favor the disorder. Regular and hard exercise is often beneficial. Following a seizure, give an aloes ball.

Vesicular Exanthema. See Maladie du Coit.

Villitis. Coronitis (In Horses).

Inflammation of the coronet with heat, bulging and tenderness of the coronet; and brittle, striated appearance of hoof. If severe, separation of the hoof may occur. Remove shoes and enforce rest, with bran and flaxseed poultice to the forefoot. With the subsidence of acute symptoms, apply fly blister to the coronet. May work with bar shoes, or the animal may be sent to pasture if recovery is not rapid, but wet pastures or standing in water and snow are often responsible for the disease.

Volvulus or Twist of the Bowel. See Colic.

Twist of the pelvic flexure of the colon in the horse is often mistaken for enteritis. Death from colic is more often death from twist. Pelvic flexure absent from proper position in left flank by rectal examination. Eserine subcutaneously is the most successful treatment.

May be reduced by rectal manipulation. If this is unsuccessful, one may do a laparotomy.

Warbles. Hypodermosis (In Cattle, Rarely in Horses, at Pasture).

Caused by Hypoderma bovis and lineata,

Prophylaxis—Prevent gadflies from lighting on cattle by the use of covers, by the application of Stockholm tar, and by spraying 3 per cent. creolin solution on the skin; also by thorough brushing to remove the eggs laid on the skin. Injection of kerosene into the openings of the swellings on the skin, by means of a machinist's oil can (when done at the earliest moment) leads to killing the larvae and subsidence of the swellings. Otherwise there is nothing to do but gently express the larvae by pressure with mouth of bottle when they are ready to escape. Incision of the swellings is undesirable.
WARTS. VERRUCAE. PAPILLOMATICA.

In young animals on the belly, prepuce, mammae, lips, eyelids, ears, mouth and vagina (bitches); and about the fetlocks (grapes) in horses. They should be removed by excision with scissors, or the knife. Torsion and ligature are also employed. Strong acetic or nitric acid may be applied to small growths, but are not so certain as scissors and should never be used about the mouth or eyes. Warty growths of the lids are apt to become malignant and should be removed with a free elliptical incision; also warts on the penis should be freely removed with scissors and their base cauterized with strong nitric acid. The actual cautery may be employed, as in grapes.

WEED. See Lymphangitis.
WHISTLING. See Roaring.

WIND GALLS.

This condition is a tenosynovitis and hygroma of the sheath of the perforatus behind the metacarpus. See Tenosynovitis.

WIND-SUCKING. CRIB-BITING IN HORSES.

Cover stable fixtures with metal and give so much work that vicious habits will not be acquired. The use of a muzzle or spiked strap about the larynx may sometimes prevent wind-sucking. Avoid any articles which can be bitten; feed off the ground, or remove manger after feeding. Cut hay and grain with an ounce of carron oil are indicated in tympany. Isolation of wind suckers is advisable, to avoid acquisition of the trick by other animals.

WITHERS, FISTULOUS. See Fistula.
WORMS. See Parasites, Intestinal.

WOUNDS.

Simple Operative Wounds—The hair should be shaven from the surrounding area. The simplest, and as effective as any method of skin sterilization is the application of tincture of iodine to the dry skin, or the following may be used. The skin should be washed with green soap and water, with 70 per cent. alcohol and finally with pure ether or, better, Harrington’s solution. The operator’s hands should be cleansed likewise and covered with rubber gloves. The wound should be handled as little as may be. All hemorrhage must be arrested. If the wound is deep, it should be closed by layers of buried catgut sutures, the skin by silk-worm gut sutures (interrupted). Drainage should be avoided unless the conditions are very unfavorable. Cover the wound with dry aseptic gauze and bandage. Secure rest by splints if possible. Leave dressings in place for a week or two, unless they become soiled and displaced.

Accidental Wounds—If the wound is fresh, arrest hemorrhage by suture; hot (or even boiling) water; ice water; actual cautery, in very vascular or deep seated parts, using a dull-red heat; rubber tourniquet; acupressure; pressure by fingers or hemostatic forceps; torsion; or chemicals—as adrenalin solution. If hemorrhage not severe or after bleeding arrested, cover wound with sterile gauze and shave or clip hair from surrounding area without the use of water. Cleanse skin with gasoline or ether. Then remove dirt from wound with sterile gauze or scissors and forceps, and also loose tissue. Then apply tincture of iodine to wound and surrounding skin and cover with dry sterile gauze. Or curette, scrub with gauze, and wash wound with sterile salt solution for 15 minutes if soiled, and apply dry sterile gauze. Recently a solution of dichloramine-T (5-7%) in chlorocaros has come into favor as a primary and subsequent dressing in accidental wounds in preference to iodine. Divided structures, as tendons, nerves and muscles, should be sutured with sterile, iodized catgut. If the surroundings are favorable and the wound can be bandaged, it should be closed as an operative wound without drainage. If the wound is deep and the conditions unfavorable, drainage by a sterile rubber tube placed into the deeper parts of the wound, and the rest of the wound sutured—should be the rule. It is always easy
to reopen a wound and remove sutures, if infection occurs, but to secure
a first intention is impossible when the wound has become generally in-
fected. The first dressing should always be retained as long as possible to
avert infection. If the wound becomes infected employ bacterins.

Bier's Hyperemia Treatment.—Passive hyperemia is secured by suction,
as cupping and the use of other suction apparatus, and also by placing an
elastic ligature about a part sufficiently tight to prevent the return of
venous blood, but not so tight as to obstruct the arterial inflow.

Passive hyperemia is useful in infections and inflammations—particularly
of limbs and joints—because of the following actions: 1. Bactericidal
effect. 2. Relief of pain. 3. Resolution of inflammatory deposits and relief
of stiffness in joints. 4. Arrest of absorption of toxins into circulation. 5.
Shortening or aborting infections.

Methods of application.—A rubber Esmarch bandage, about 3 inches wide
and 5 feet long, is wound about the limb of a horse tight enough to produce
a warm edema below the bandage. The bandage is kept in place 20 hours
out of the 24, in severe cases; or 10 hours in the 24, in milder infections.
Just how tight to apply the bandage is not possible to describe. In the
horse the chief point is to avoid producing a cold limb because of too great
constriction. Some animals will bite or paw and so displace the bandage.
The rubber bandage should have tapes sewn on each end, and is wrapped
about the limb and kept sufficiently tight by tying the two tapes together.
The bandage is placed in the forelimb on the forearm above the chestnut
one day, and the next below the knee (on the metacarpus), and so shifted
from day to day. In the hind limb the bandage is placed one day about
the middle of the tibia, and the next day below the hock. It should always be
placed as far above the lesion as possible, but in the horse it can not
be affixed at groin and axilla, as in man. The position of the bandage is
shifted from day to day to avoid necrosis of the skin. It is well to protect
the rubber by a cloth bandage over it. If the infection is of the knee or
hock, the constriction must be above these points.

The bandage should be applied at the earliest stage of infection to secure
the best results. Then edema may be expected from the bandage, but, in
later stages, edema may not occur, and if this is the case the treatment
is of little service. If the treatment is successful either pus will not form
and resolution occur, or else it will be necessary to make but small inci-
sions to liberate pus, and the course of the condition should be much
shortened. The treatment is only applicable to cases which can be under
frequent observation in order that the obstruction produced by the bandage
may be regulated. Placing the finger under the bandage after its applica-
tion will give one an idea of the amount of pressure, and observation of
the limb will show one if the result is obtained—edema, but warmth in
the distal parts, with apparent relief of pain. The turns of the elastic
bandage should spread over some area of skin and not be applied one over
the other.

The appropriate conditions in veterinary practice for Bier's hyperemia
include the following: Infections of the sheaths of tendons and about the
feet from injuries, punctures, etc.; joint infections and stiff joints, in-
cluding rheumatic joints. These embrace purulent tenosynovitis and ar-
thritis, and phlegmons about the hoof in horses. A wet antiseptic dressing
may be applied loosely over the point of infection. It is yet to be proved
of how much value this method is in veterinary practice, although many
favorable reports have been made.

Infected and contused wounds should be treated by the application of
aseptic gauze soaked in 2 per cent. compound cresol solution, covered with
oil silk and bandage and renewed each day, until the septic condition has
been somewhat overcome. The use of a mixed bacterin, at the outset may
greatly shorten the period of healing. Unhealthy granulations are treated by
applications of lunar caustic and stimulant, antiseptic remedies, as Peruvian
balsam or carabolic acid in glycerin (1-10—16). A bandage should always
be employed when possible. Otherwise, healing may be had under a seb
by the application of tannin, silver nitrate stick, or 10 per cent. formalin; or the wound may be kept covered with an ointment of 10 per cent. boric acid in vaseline. Sometimes, if one trims off all septic tissue and disinfects the wound with tincture of iodine, or pure carbolic acid, followed by alcohol and free irrigation with 2 per cent. lysol solution, it may be possible to secure first intention by suture of an old wound. In veterinary practice, asepsis is difficult to obtain, as the application and retention of bandages, the attainment of rest of a part by position and splint, and a pure atmosphere and premises, are often unattainable. But when possible, particularly in canine practice, the methods of human surgery should be closely followed. If a fresh wound is much soiled, it may be treated with pure tincture of iodine, as above.

Perforating Wounds of the Abdomen—The surrounding region should be prepared by shaving and disinfection of the skin, as described for operative wounds. If there is protrusion of the viscera, it should be protected meanwhile by a covering of sterile gauze wrung out in hot water. If omentum prolapse, it should be ligated and excised. If there is a protrusion of bowel, it must be cleansed by the most painstaking and prolonged irrigation with warm (110 deg. F.) sterile normal salt solution (1 teaspoonful of sodium chloride to the pint of boiled water), and then returned into the belly. The abdominal wall should be closed in layers with buried sterile, chromic or tannated catgut; the skin may be approximated by interrupted silkworm gut sutures, while sutures of silkworm gut should be placed through all layers—except the peritoneum—at several points, to reinforce the catgut and prevent hernia. The wound may be sealed with iodoform and collodion (1 to 8) and covered with dry aseptic gauze held in place by adhesive plaster and bandage.

Punctured Wounds—Hemorrhage may be arrested by pressure of an aseptic tampon of gauze, after the external wound has been shaved and thoroughly disinfected with tincture of iodine. If signs of local inflammation and infection occur, then one must incise the wound down to its lowest point and drain.

Gunshot Wounds—The chief indication is to disinfect thoroughly the wound of entrance with tincture of iodine and cover with a dry, sterile, gauze dressing and bandage, and enforce rest so far as possible. Do not probe or try to remove the bullet unless it is subcutaneous. If local and general infection ensue, then incision becomes necessary to afford drainage, but not for the purpose of discovering the missile.

Joint Wounds—Here application of tincture of iodine to the wound and surrounding skin with immediate sealing of the wound with iodoform and collodion (1 to 8), actual cauterity, or suture, and the application of splints, antiseptic dressing, and bandaging, are indicated.

See also Ulcers, Open Joints, Bites and Rabies.

The following agents are used in the treatment of wounds, and their indications may be found by consulting the index for their names: Dichloramine-T, chlorazene, hydrogen dioxide, lime and charcoal, alum, silver nitrate, potassium permanganate, mercuric oxides, corrosive sublimate, resin, napthalin, chloral, chlorinated soda, chlorinated lime, iodoform, iodol, aristol, acetanilid, bismuth, salol, boric acid, sulphurous acid, nitric acid, charcoal, carbolic acid, creosote, creolin, lysol, formalin, glutol, vaseline, salicylic acid, tar, balsam of Peru, benzoin, myrrh, eucalyptol, zinc sulphate, conium, laudanum, oil of turpentine, camphor, thymol, hydrastis, tincture of aloes and myrrh, collodion, glycerite of tannin, cantharides, antiseptic poultices.
Ablution, 498
Abortion disease, 539
Absorption of drugs, 9
Acacia, 430
Aceta, 64
Acetanilid, 240
Acetanilidum, 240
Acetic acid, 203
Acetphenetidin, 241
Acetphenetidinum, 241
Acetylsalicylic acid, 364
Acetylsalicylicum, 364
Acid, acetic, 203
diluted, 203
glacial, 203
carboxylic, 244
crude, 244
citric, 204
syrup of, 204
cresylic, 251
digallic, 419
gallic, 421
hydrochloric, 201
diluted, 201
hydrocyanic, diluted, 258
lactic, 204
muriatic, 201
diluted, 201
picric, 207
sulphuric, 202
aromatic, 202
diluted, 202
nitric, 202
diluted, 202
nitrilotrichloric, 202
diluted, 203
nitromuriatic, 202
diluted, 203
phosphoric, 203
diluted, 203
prussic, 258
pyrogallic, 421
tannic, 419
tartaric, 203
thymic, 394
Acids, 201
Acidum aceticum, 203
dilutum, 203
glacial, 203
benzoicum, 376
boricum, 208
carbolic, 244
crude, 244
Acids, 201
citric, 204
gallic, 421
hydrochloricum, 201
dilutum, 201
hydrocyanicum dilutum, 258
lacticum, 204
nitricum, 202
dilutum, 202
nitrilotrichloricum, 201
dilutum, 202
phosphoricum, 203
dilutum, 203
ticricum, 207
salicylicum, 359
sulphuricum, 202
aromaticum, 202
dilutum, 202
tannicum, 419
tartaricum, 203
Aconite, 340
fluidextract of, 340
tincture of, 340
Aconitina, 340
Aconitinis nitras, 340
Aconitine, 340
Aconitum, 340
Action of drugs on animals, 15
on dogs and pigs, 16
on horses, 15
on ruminants, 15
Adeps, 456
benzoicinus, 375, 456
lanze, 457
hydrosus, 456
Administration of drugs, 11
time of, 16
Adrenalin, 447
Æther, 220
purificatus, 220
Æthylis chloridum, 263
Aggressin, blackleg, 538
Alcohol, 212
absolutum, 212
ammoniated, 118
dehydrated, 212
dehydratum, 212
deodoratum, 212
deodorized, 212
diluted, 212
dilutum, 212
Alder buckthorn, 408
Alkaline earth metals, 124
metals, 102
Alkaloids, 59
Alkaloide, 59
Allyl-iso-thiocynate, 378
Allyl thiourea, 379
Aloe Barbadensis, 402
 Capensis, 402
 Socotrina, 402
Aloes, 402
 and myrrh, tincture of, 403
Aloes, Barbadoes, 402
 Cape, 402
 Curacao, 402
 Socotrine, 402
Aloin, 402
Aloinum, 402
Alteratives, 50
Althaea, 431
Alum, 134
 burnt, 134
 dried, 134
Alumen, 134
 exsiccatum, 134
Aluminum, 134
 and potassium sulphate, 134
 hydrate, 134
 hydroxide, 134
Alumini hydroxidum, 134
Alypine, 324
Ammonia, aromatic spirits of, 120
 liniment, 118
 water, 118
 stronger, 118
Ammoniated alcohol, 118
 mercury, 162
 ointment of, 162
Ammonii benzoas, 376
 bromidum, 184
 carbonas, 120
 chloridum, 121
 valeras, 388
Ammonium, 118
 acetate, solution of, 122
 benzoate, 376
 carbonate, 120
 chloride, 121
 ichthyol sulphonate, 462
 valerate, 388
Amyl nitrite, 232
Amylis nitris, 232
Amylum, 445
Analgiesics, 240
Anatomy and physiology, 15
Anesthesia, 225
Anesthetics, general, 35
 local, 37
Anhidrotics, 55
Animals, action of drugs on, 15
Anise, 386
 oil of, 386
 spirit of, 386
 water, 386
Anisum, 386
Anodynes, 35
 local, 37
Antacids, 18
Antelmiintics, 56
 against lungworms, 57
 removing ascarids, 56
 bots, 57
 pinworms, 57
 strongyles, 57
 tapeworms, 56
Anthrax, 333
 differential diagnosis of, 534
 preventive inoculation for, 534
 spore vaccine, 535
 symptomatic, 536
Anti-anthrax serum, 535
 blackleg serum, 536
 canine distemper serum, 539
 hog cholera serum, 545
 influenza serum, 541
 white scours serum, 549
Antiemetics, 23
Antifebrin, 240
Antigelastogues, 50
Antimonii et potassii tartras, 177
Antimonium, 177
Antimony and potassium tartrate, 177
Antiparasitics, 57
Antipyretic organic agents, 351
Antipyretics, 240
Antipyrina, 241
Antipyrine, 241
Antisepsis, surgical, 512
Antiseptic organic agents, 351
Antiseptics, 20, 56, 244, 505, 509
 urinary, 47
Antisialagogues, 17
Antitoxin, tetanus, 548
Aphrodissiacs, 48
Aphtha, parasiticides against fungi of, 57
Apomorphine hydrochloride, 277
Apomorphinae hydrochloridum, 277
Apotheses, 334
Apothecaries' weight, 73
Aqua, 99
Aqua, 63
Aqua ammoniae, 118
 fortior, 118
 anisi, 386
 camphora, 392
 chloroformi, 223
 destillata, 99
 menthae piperitae, 384
 regia, 202
Areca, 434
Argenti nitras, 140
 fusus, 140
Argentum, 140
Argyro, 142
Aricina, 351
Aristol, 195
Aristolum, 195
Aromatics, 18
Arseni trioxidum, 170
Arsenic, 170
trioxide, 170
Arsenous acid, 170
solution of, 171
Arsenum, 170
Arsphenamine, 171
Asafetida, 389
milk of, 389
Ascarids, anthelmintics removing, 56
Asepsis, mechanical means of, 507
surgical, 513
Aspidium, 432
oleoresin of, 433
Aspirin, 364
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Atropine, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Astringents, 53
Atoxyl, 171
Atropine sulphate, 279
Atropine, 279
Atropina, 279
Bacterin, canine distemper, 539
hemorrhagic septicemia, 542
influenza, 541
therapy, specific, 550
Bacterins, autogenous, 551
definition of, 529
mixed, 551
Baking soda, 110
Balls, 65
Balsam of fir, 371
of Peru, 374
of Tolu, 374
Balsama, 60
Balsams, 60
Balsamum Peruuvianum, 374
Tolutanum, 374
Barii chloridum, 129
Barium, 129
chloride, 129
Baths, cold, 500
hot, 505
local, 500
sheet, 499
Beeswax, 457
Belladonna leaves, 278
extract of, 279
tincture of, 279
liniment, 279
ointment, 279
root, 279
fluidextract of, 279
Belladonnae folia, 278
radix, 279
Benzoic acid, 376
Benzoic acid, 376
compound tincture of, 376
tincture of, 376
Benzoinated lard, 375
Benzoic acid, 376
Benzoic acid, 376
compound tincture of, 376
tincture of, 376
Benzoinated lard, 375
Benzoic acid, 376
Benzoic acid, 376
compound tincture of, 376
tincture of, 376
Benzoinated lard, 375
Berberine, 400
Betel nut, 434
Betanaphthol, 253
Betula, oil of, 364
Bicarbonate of soda, 110
Bichloride of mercury, 161
Biological products, technic of administering, 531
therapeutics, 525
Birch, oil of, 364
Bismuth subcarbonate, 149
subgallate, 149
subnitrate, 149
subsalicylate, 149
Bismuth subcarbonas, 149
subgallas, 149
subnitras, 149
subsaliclyas, 149
Bismuthum, 149
Bisulphide of carbon, 211
Bitter apple, 416
ash, 397
wood, 397
Bitters, 18
vegetable, 396
Black alder, 408
Blackleg, 536
aggressin, 538
filtrate, 537
vaccine, 537
Black mustard, 377
Blaud's pills, 153
Bleaching powder, 182
Blister beetles, 453
Blood, drugs acting on the, 29
vessels, drugs acting on the, 32
Blue mass, 161
ointment, 161
pill, 161
stone, 147
vitriol, 147
Boli, 65
Boracic acid, 208
Borax, 209
Boric acid, 208
Bots, anthelmintics removing, 57
Boxberry, oil of, 364
Brain, drugs influencing the, 34, 264
Brandy, 213
Brayera, 435
Bromine, 184
Bromum, 184
Buchu, 390
fluidextract of, 390
tincture of, 390
Buckthorn, 408
California, 407
Burgundy pitch, 371
C

Cacao, butter of, 445
Cade; oil of, 372
Caffeina, 293
citrata, 293
Caffeinæ sodio-benzoas, 293
Caffeine, 293
citrated, 293
sodio-benzoate, 293
Calabar bean, 304
Calcii bromidum, 184
carbonas precipitatus, 124
chloridum, 128
hydras, 126
phosphas precipitatus, 127
sulphas exsiccatus, 129
Calcined magnesia, 132
Calcium, 124
carbonate, 124
chloride, 128
hydrate, solution of, 125
lactophosphate, syrup of, 127
oxide, 125
phosphate, 127
precipitated, 127
sulphate, 129
dried, 129
Calisaya bark, 351
Calomel, 162
Calumba, 398
tincture of, 399
Calx, 125
chlorinata, 129, 182
Cambogia, 415
Camphor, 392
liniment, 392
monobromated, 392
spirit of, 392
water, 392
Camphora, 392
monobromata, 392
Camphorated tincture of opium, 265
Canada balsam, 371
turpentine, 371
Cane sugar, 431
Canine distemper bacterin, 539
vaccine, 539
practice, gastric sedatives and anti-emetics in, 23
Cannabis, 290
extract of, 290
fluidextract of, 291
Indian, tincture of, 291
indica, 290
Cantharidal collodion, 446
Cantharides, 453
tincture of, 453
Cantharis, 453
Capsicum, 382
fluidextract of, 383
oleoresin of, 383
tincture of, 383
Carbo ligni, 210
Carbolic acid, 244
crude, 244
glycerite of, 244
liquefied, 244
ointment of, 244
Carbon, 210
disulphide, 211
Carboni disulphidum, 211
Carbonate of bismuth, 149
of lithia, 123
of magnesia, 132
Cardamom seed, 386
Cardamomi semen, 386
Carlsbad salt, 113
Carminatives, 19
Carron oil, 126
Cascara sagrada, 407
fluidextract of, 407
Castile soap, white, 425
Castor oil, 406
seeds, 406
Cataplasms, 503
Catechu, 422
kino and rhatany, 422
pale, 422
Cathartics, 23
vegetable, 402
Caustic soda, 109
Caustics, 33, 496
Cautery, actual, 495
Cayenne pepper, 382
Cera alba, 457
flava, 457
Cerata, 65
Cerate, 456
of lead subacetate, 137
Cerates, 65
Ceratum, 456
cantharidis, 453
plumbi subacetatis, 137
resinæ, 371, 456
Cerebral depressants, 34
excitants, 34
Cerii oxalas, 136
Cerium, 136
oxalate, 136
Cetaceum, 457
Chalk mixture, 124
powder, compound, 124
prepared, 124
Charbon, 533
Charcoal, 210
Chartae, 65
Checkerberry, oil of, 364
 Chenopodium, 439
Cherry, wild, 261
Chinoidine, 354
Chinoidinum, 354
Chloral, 236
hydrate, 236
Chloralum hydratum, 236
Chlorazene, 511
Chloretone, 240
Chloride of lime, 182
Chlorine, 182
Chlorine of lime, 182
Chloroformum, 222
Chloroformum, 222
Chlorum, 182
Cholagogue purgatives, 25
Chrysarobin, 410
Chrysarobinum, 410
Cinchona, 351
Cinchonidine, 351
Cinchonina sulphas, 354
Cinchonine, 351
Circulation, drugs acting on the, 29
Citrate of lithia, 123
Citric acid, 204
Copper acetate, 149
Copperas, 152
Copper acetate, 149
Copper chloride, 161
Copper sublimate, 161
Cough, drugs relieving, 43
Counterirritants, 52, 491
indications for, 494
Coxe's hive syrup, 339
Cream of tartar, 123
Crede's ointment, 143
Creolin, 252
Creolinum, 252
Creosote, 250
Creosotum, 250
Cresol, 251
Cusso, 435
Cutch, 422
Dakin's solution, 510
Dandelion, 399
Decantation, 61
Decocta, 63
Decoctions, 63
Definition of drug, 7
of materia medica, 7
of medicine, 7
of metrology, 7
of pharmacy, 7
of pharmacology, 7
of prescription, 73
of therapeutics, 7
of toxicology, 7
Demulcents, 54
vegetable, 425
Deodorants, 56, 506, 511
Deodorizers, 6, 506
Depressants, cerebral, 34
Desiccate, 62
Deutiodide of mercury, 162
Diacetilmorphine, 267
Diachylon plaster, 137
Diagnostic agents, preparations used as, 529
products, 532
Diaphoretics, 54
Dichloramine-T, 511
Digalen, 332
Digallic acid, 419
Digestion, 62
Digestive organs, drugs acting on, 17
Digestives, 20
Digipuratum, 332
Digitalein, 330
Digitalin, 330
Homolle's, 331
Nativelle's, 331
Quevenne's, 331
Schmiedeberg's, 331
Digitalis, 330
fluidextract of, 331
folia, 331
infusion of, 331
tincture of, 331
Digitalone, 331
Digitonin, 330
Digitophyllin, 330
Digitoxin, 330
Dioxy-diamido-arsenobenzol dihydrochloride, 171
Disease influencing action of drugs, 16
Diseases infectious, 527
Disinfectants, 56, 505
chemical, 507
Distemper, canine, 538
Distillation, 62
Dithymol diiodide, 195
Diuretics, 44
Dogs, action of drugs on, 16
Dosage, 14, 98
Doses of drugs, 464
Douches, 500
Dover's powder, 265
liquid, 265
Drastic purgatives, 24
Drench. 66
prescription for, 92
Drinks, cold, 501
Drop chalk, 124
Drugs, absorption of, 9
acting mechanically, 445
acting on blood, 29
on blood vessels, 32
on brain, 264
on circulation, 29
on digestive organs, 17
on ear, 39
on eye, 38
on heart, 30, 330
on kidneys and genito-urinary tract, 390
on motor nerves, 312
on nerves, 37
on nerves of special sense, 38
on nervous system, 34
on respiratory mucous membrane, 39
on respiratory organs, 39, 348
on secretory nerves, 326
on sensory nerves, 317
on sexual organs, 48
on skin, 52
on spinal cord, 36, 296
on urinary organs, 44
circumstances modifying action of, 11
classification of, 97
containing tannic acid, 418
decreasing force and frequency of the heart, 340
definition of, 7
depressing the interior cornua, 304
motor nerves, 312
respiratory centers, 42
sensory nerves, 317
destroying microorganisms and parasites, 56
disease influencing action of, 16
doses of, 464
eliminated in milk, 49
elimination of, 9
habit influencing action of, 16
idosyncrasy influencing action of, 16
increasing force and decreasing frequency of the heart, 330
influencing blood vessels of the skin, 52
bodily heat, 50
brain, 34
composition of urine, 47
female sexual organs, 48
male generative organs, 48
metabolism, 50
milk secretion, 49
reaction of urine, 46
secretions of sweat, 54
killing parasites, 432
medicinal bodies and principles in, 59
mode of action of, 7
mode of administration of, 11
of animal origin, 447
relaxing spasm of bronchial muscular tunic and relieving cough, 43
softening, soothing and protecting skin, 54
stimulating the inferior cornua, 296
nervous system, 387
respiratory centers, 42
unstriated muscle, 440
to expel round and hookworms, 439
to destroy fleas, 440
lice, 440
roundworms, 437
tapeworms, 432
used for action on skin, 366
vegetable, 264

E

Ear, drugs acting on the, 39
Ecboletics, 49
Elaterin, 416
Elaterinum, 416
Electuaria, 67
Electuaries, 67
Electuary, prescription for, 94
Elimination of drugs, 9
Elixir ferri, 354
of vitriol, 202
Elixirs, 64
Elixiris pro, 403
Elutriation, 61
Emetics, 20
Emmenagogues, 48
Emollients, 54
Emplastra, 65
Emplastrum elasticum, 371
picis, 371
plumbi, 137
resinae, 371
saponis, 426
Emula, 64
Emulsions, 64
Emulsum asafoetidae, 389
Enemata, 27
cold, 501
Enteroclysis, 519
Epinephrin, 447
Epsom salt, 131
Ergot, 440
Ergota, 440
Ergot, extract of, 441
fluidextract of, 441
Ergotin, 441
Ergotoxine phosphate, 441
Escharotics, 53, 496
Eserine, 304
salicylate, 304
sulphate, 304
Ether, 220
amylo-nitrous, 232
spirit of, 220
Ethyl chloride, 263
Eucaine hydrochloras, 324
Eucaine hydrochlorate, 324
Eucalyp, 380
Eucalyptus, 380

F

Fats, 59
Favus, parasiticides against fungi of, 57
Feeding, artificial, 490
Fel bovis, 460
Female sexual organs, drugs influencing, 48
Fennel, 387
Fenugreek, 387
Fern, male, 432
Ferri carbonas saccharatus, 153
chloridum, 153
et ammonii citras, 154
potassii tartras, 154
quininæ citras, 154
hydroxidum cum magnesii oxido, 154
sulphas, 152
exsiccatus, 152
granulatus, 153
valeras, 388
Ferric chloride, 153
solution of, 153
tincture of, 153
hydroxide with magnesium oxide, 154
subsulphate, solution of, 154
valerate, 388
Ferrous carbonate, mass of, 153
carbonate, saccharated, 153
iodide, syrup of, 153
sulphate, 152
dried, 152
granulated, 153
Ferrum, 152
reductum, 152
Fibrolysin, 379
Felix mas, 432
Filtrate, blackleg, 537
Filtration, 61
Flaxseed, 429
oil of, 405
Fleas, drugs to destroy, 440
parasiticides against, 58
Fleming's tincture, 340
Flowers of sulphur, 197
Fluidextracta, 64
Fluidextracts, 64
Fluidextractum aconiti, 340
bELLADONNAE RAdICis, 279
bucHÜ, 390
canNabiS, 291
capsici, 383
cascaræ sagradæ, 407
sagradæ aromaticum, 408
cinChone, 352
cusso, 436
digitalis, 331
ergoïte, 441
eucalypti, 380
frangula, 408
gelsemii, 310
gentiana, 396
glycyrrhizæ, 429
granati, 436.
hamamelis foliorum, 424
hydrastis, 400
hyoscyami, 288
ipecauanhæ, 348
lobelie, 315
nucis vomicæ, 297
pilocarpæ, 326
rhei, 409
scille, 339
sennæ, 411
taraxaci, 399
valerianæ, 387
veratri viridis, 344
zingiberis, 384
FeNiculum, 387
Fomentations, 504
Food and feeding, 479
Formaldehyde, 255
Formalin, 255
Formic aldehyde, 255
Formol, 255

Formula for acute bronchitis in dogs, 179, 350
for alopecia, 329
for anemia in dog, 176
for anesthetic for horse, 240
for anodyne in colic in horses, 274
for anthelmintic for horses, 169
for antiseptic dusting powder, 195
for application to dead tissue, 136
for asthma in dogs, 287
for Basham's mixture, 158
for blister, 447, 455
for blister for cattle, 414
for brain stimulant, 295
for bronchitis in dogs, 370
for bronchitis in horses, 106, 179
for burns, 249
for burns, wounds and ulcers, 249
for calves with diarrhea, 111
for camphor oil for use in alcohol and opium poisoning, 394
for Carlsbad salt, 113
for carron oil, 405
for catarrhal conjunctivitis, 210
for caustic to destroy pyogenic membranes, 167
for chronic conjunctivitis, keratitis and ulcer of the cornea, 166
for chronic constipation in dogs, 287
for chronic eczema and pruritis, 374
for closing small wounds, 195
for colic in the horse, 222
for colic remedy, 239
for conjunctivitis, 254
for cough and bronchitis in dogs, 262
for cough in dogs, 276
for cough in horses, 276
for cough mixture for dogs with bronchitis, 122
for cough syrup for dogs, 340
for counterirritant, 188
for counterirritant and absorbent on exostoses, 168
for debility and anemia of horses, 176
for dermatitis, erythema and moist eczema, 146
for diarrhea in dogs, 151, 275, 410
for diarrhea in dogs and cats, 152
for diarrhea in foals and calves, 407, 410
for diarrhea in horses and cattle, 275
for diarrhea in horses, cattle calves and sheep, 423
for distemper in dogs, 251
for diuretic, 295
for Dobell's solution, 250
for dogs with convulsions, 186
for dogs with diarrhea, 125
for dogs with fever and restlessness, 122
for drastic cathartic for cattle, 413
for drastic cathartic for horses, 414
for dropsy in dogs, 415
for dusting powder, 135, 210, 211
in eczema, erythema and
scratches, 146
for eczema, 363, 373
of dogs, 249
for ergot preparation, 443
for erythematous eczema, 255
for eye lotion, 322
for febrile conditions in dogs, 235
for fevers in horses, 113, 343
for fits in puppies, 239
for flatulence in horse or cow, 369
coli in horses, 389
for foals and calves with diarrhea, 125
with intestinal indigestion,
tympanites and acid diarrhea, 133
for follicular mange, 251
for foot rot in sheep, 199
for Harrington's solution of corrosive sublimate, 167
for heart stimulant, 295
for hoof ointment, 373
for hookworm in dogs, 395
for horses with acute laminitis, 243
for horses with diarrhea, 125
with indigestion, 111
with pharyngitis, 153
with roundworms, 148
for impaction of the bowels, 309
for indigestion in horses, 175, 401
for itching in pruritus, prurigo and
urticaria, 167
for Lassar's paste, 146
for laxative physic ball, 404
pill for dogs, 418
for licking disease in cattle, 278
for liquid tonic, 397
for lotion for skin diseases, 139
for mange and ringworm, 254, 375
for nasal catarrh of dogs, 385
for ointment used in psoriasis, 411
for otorrhea in dogs, 428
for palpitation of heart in horses, 344
for pharyngitis in horses, 108
for pink ointment for scratches in
horses, 146
for pruritus, 249
ani and vulva, 363
for purgative for cow, 114
for purge for cattle, 416
for large dog, 407
for removal of malignant growths
or warts, 175
for removing cancer, 144
small skin tumors, 144
for resolvent, 189
for rheumatism, 365
in dogs, 363
for ringworm, 395
itching or mange, 199
round or tapeworm in horses, 369
worms in dogs, 369, 438, 439
in horses, 176
in puppies, 438
for scratches and cracked heels of
horses, 428
for skin diseases, 255
for sulphur ointment, 198
for sun cholera mixture, 394
for tapeworm in dog, 433
in horses, 434
for tape or round worms in dog, 434
for thrush and canker of the feet
in horses, 148
for tonic for dog, 303
for dogs in convalescence, 399
for horses, 157, 303
for horses and cattle, 158
powder, 397
for urticaria or pruritus, 385
for verminous bronchitis of calves
and lambs, 370
of foals and calves, 249
for vomiting and diarrhea in dogs, 250
for white liniment, 368
for worms in dog, 439
in lambs, 434
for wound dressing, 136
dusting powder, 151
for wounds, galls and chafes, 254
for yellow lotion to kill lice on the
skin, 201
for yellow wash in chronic eczema, 168
Fowler's solution, 171
Foxglove, 330
Frangula, 408
fluidextract of, 408
Friar's balsam. 376
Fungi of thrush or aphtha, parasiti-
cides against, 57

G

Galactagogues, 49
Galla, 418
Gallic acid, 421
Galls, 418
Gambir, 422
compound tincture of, 422
Gamboge, 415
Gastric sedatives, 23
Gaultheria, oil of, 364
Gelatin, purified, 128
Gelatium, 128
Gelsemina, 310
Gelsemine, 310
Gelsemium, 310
fluidextract of, 310
tincture of, 310
Genito-urinary tract, drugs acting on, 390
Gentian, 396
compound tincture of, 396
extract of, 396
fluidextract of, 396
Gentiana, 396
Germicides, 56, 505
Ginger, 383
fluidextract of, 384
Glacial acetic acid, 203
Glanders, diagnosis of, 558
intrapalpebral mallein test for, 559
ophthalmic mallein test for, 559
subcutaneous mallein test for, 558
Glands, pituitary, 451
suprarenal, 447
thyroid, 447
Glauber's salt, 112
Glucosidea, 59
Glucosides, 59
Glycerin, 427
suppositories of, 427
Glycerinum, 427
amyli, 445
pepsini, 459
Glycerita, 65
Glycerite of boroglycerin, 209
of carbolic acid, 244
of starch, 427
Glycerites, 65
Glyceritum acidi carbolici, 244
tannici, 419
amyli, 427, 445
boroglycerini, 209
hydrastis, 400
phenolis, 244
Glycerole, 427
Glycyrhrhiza, 429
compound power of, 197, 441
fluidextract of, 429
Golden seal, 400
Gossypium purificatum, 445
Goulard's extract, 137
Granatum, 436
Gray powder, 160
Green vitriol, 152
Guarane, 293
Gum arabic, 430
Gum-resinae, 60
Gummi, 60
Gums, 60
Gun cotton, 446

H
Habit influencing action of drugs, 16
Hamamelidis cortex, 424
folios et cortex, 424
Hamamelis bark, 424
leaves, 424
fluidextract of, 424
Haustus, 66
Heart, drugs acting on the, 30, 330
decreasing force and frequency of, 340
increasing force and decreasing frequency of, 330
Heat, 502
and cold, 497
bodily, drugs influencing, 50
 contrasted with cold, 505
dry, 504
modes of applying, 503
Heavy metals, 134
Hellebore, American, 344
Hematinics, 29
Hemlock fruit, 314
Hemorrhagic septicemia, 542
bacterin, 542
of cattle, 542
of hogs, 544
of sheep, 543
Hemostatics, 53
Henbane, 288
Heroin, 267
Hexamethylenamina, 257
Hexamethylenamine, 257
Hexamine, 257
Hive syrup, 177
Hoffman's anodyne, 220
Hogan's solution, 518
Hog cholera, 544
Homolle's digitalin, 331
Honey, 458
clarified, 458
Honeys, 65
Hookworms, drugs to expel, 439
Horses, action of drugs on, 15
Hot water bags, 504
Hydragogue purgatives, 24
Hydragryvi chloridum corrosivum, 161, 166
mite, 162, 168
iodidum rubrum, 162, 170
oxidum flavum, 161
rubrum, 161
et flavum, 166
Hydrastinum, 160
ammoniatum, 162
cum creta, 160
Hydrastin, 400
Hydrastina, 400
Hydrastine, 400
Hydrastinæ hydrochloridum, 400
Hydrastinine hydrochloride, 400
Hydrastis, 400
 fluidextract of, 400
 glycerite of, 400
 tincture of, 400
Hydrate of chloral, 236
Hydriodic acid, syrup of, 190
Hydrochloric acid, solution of arsenic, 171
Hydrocyanic acid, diluted, 258
Hydrogen dioxide, solution of, 100
Hydroxybenzene, 244
Hyoscine hydrobromide, 288
Hyoscyaminae hydrobromidum, 288
Hyoscyamine hydrobromide, 288
Hyoscyamus, 288
 extract of, 288
 fluidextract of, 288
 juice of, 288
 tincture of, 288
Hyponutrics, 35
Ichthyol, 462
Ichthyolum, 462
Idiosyncrasy influencing action of drugs, 16
Immunity, definition of, 525
 preparations used in production of, 529
Incineration, 62
Incompatibility, chemical, 68
 physical, 69
 physiological, 69
Indian poke root, 344
 tobacco, 315
 tumeric, 400
Infusa, 63
Infusion, saline, 517
Infusions, 63
Influenza bacterin, 541
 equine, 541
Infusum cinchonae acidum, 352
 digitalis, 331
Inhalation, 11
Inhalations, 505
Injectio apomorphinae hypodermica, 277
 cocainae hypodermica, 317
 ergotinæ hypodermica, 441
 morphinae hypodermica, 266
Injection, intramammary, 13
 intratracheal, 12
 intravenous, 11
 rectal, 13
 subcutaneous, 11
 of hot water, 504
Inorganic agents, 99
Insect powder, Persian, Caucasian or Dalmatian, 440
Intradermal test for tuberculosi s, 554
Intramammary injection, 13
Intratracheal injection, 12
Intravenous injection, 11
Inunction, 13
Iodine, 186
 compound solution of, 187
 ointment, 187
 tincture of, 187
Iodinum, 186
Iodoform, 194
 ointment of, 194
 suppositories, 194
Iodoformum, 194
Idol, 195
Iodol, 195
Iodolum, 195
Iodum, 186
Ipecac, 348
 and opium, powder of, 265
 tincture of, 265
 fluidextract of, 348
 syrup of, 348
Ipecacuanha, 348
Iron and ammonium citrate, 154
 potassium tartrate, 154
 quinine citrate, 154
 by hydrogen, 152
 perchloride, tincture of, 154
Irrigation, cold water, 501
Irritants, 52
Itch, parasiticides against mites of, 57
J
Jaborandi, 326
Jalap, 414
 resin of, 414
Jalapa, 414
Jessamine, yellow, 310
Juniper, compound spirit of, 213
 oil of, 390
 spirit of, 391
K
Kamala, 435
Kidneys, drugs acting on, 390
Kino, 423
 compound powder of, 424
 rhatany and catechu, 422
 tincture of, 423
Kousso, 435
 fluidextract of, 436
Kunsel’s treatment for milk fever, 521
Labarraque's solution, 182
Lactic acid, 204
Lactin, 458
Lactose, 458
Lanolin, anhydrous, 457
Lard, 456
Lassar's paste, 146
Latin adjectives, list of, 87
genitive, rules for, 80
nouns, list of, 83
Laudanum, 265
Lavage, 522
Laxatives, 23
Lead acetate, 137
carbonate, 137
iodide, 138
ointment of, 138
nitrate, 138
oxide, 137
plaster, 137
subacetate, diluted solution of, 137
solution of, 137
water, 137
Levigation, 61
Lice, drugs to destroy, 440
parasiticides against, 58
Licorice powder, compound, 411
root, 429
Lime, liniment, 126
slaked, 126
solution of, 125
syrup of, 126
water, 125
Linimentum aconiti, 340
ammonia, 118
belladonnae, 279
calcis, 126
camphora, 392
chloroformi, 223
saponis, 423
mollis, 426
sinapis, 378
terebinthinæ, 366
Linseed, oil, 405
Linum, 429
Liquefaction, 62
Liquid paraffine, 262
petrolatum, 262
Liquer acidi arsenosi, 171
ammonii acetatis, 122
calcis, 125
chlorinatae, 182
cresolis compositus, 253
ferri chloridi, 153
subsalphatis, 154
formaldehydi, 255
hydrogenii dioxidi, 100
hypophysis, 451
iodi compositus, 187
morphinæ acetatis, 266
hydrochloride, 266
picis carbonis, 372
plumbi subacetatis, 137
dilutus, 137
fortis, 137
potassii arsenitis, 171
hydroxidi, 103
quassiarum concentratus, 398
sodae chlorinatae, 182
sodii hydroxidi, 109
zinci chloridi, 144
Liquores, 63
Litharge, 137
Lithii bromidum, 184
carbonas, 123
citras, 123
Lithium, carbonate, 123
citrato, 123
Liver of sulphur, 200
Lixivation, 61
Lobelia, fluidextract of, 315
tincture of, 315
Lobeline, 315
Locke's solution, 518
sulphate, 315
Lugol's solution, 187
Lumpy jaw, parasiticides against ray fungi of, 57
Lunar caustic, 140
Lungworms, anthelmintics against, 57
Lysol, 253
Maceration, 62
Magnesia, heavy, 133
Magnesii carbonas, 132
oxidum, 132
ponderosum, 133
sulphas, 131
Magnesium, carbonate, 132
oxide, 132
heavy, 133
sulphate, 131
Male generative organs, drugs influencing, 48
Mallein, 558
test for glanders, 558
Mandrake root, 417
Manganum, 159
Mange, parasiticides against mites of, 57
Marshmallow root, 431
Massa ferri carbonatis, 153 hydrargyri, 161
Massae, 65
Masses, 65
Materia medica, definition of, 7
May apple, 417
Medicine, definition of, 7
Mel, 458 depuratum, 458
Melita, 65
Menstruum, 62
Mentha piperita, 384
Menthol, 384
Mercurial ointment, 161
Mercuric ammonium chloride, 162 bichloride, 161 chloride, corrosive, 161 iodide, 162 nitrate, ointment of, 162 oxide, 161 red, 161 ointment of, 161 yellow, 161 ointment of, 161
Mercurous chloride, 162
Mercury, 160 ammoniated, ointment of, 162 mass of, 161 olate of, 161 with chalk, 160
Metabolism, drug influencing, 50
Methyl blue, 254 salicylate, 364
Metric system, 75
Metrology, definition of, 7
Microorganisms, drugs destroying, 56
Milk, drugs eliminated in, 49 fever, Kunsel's treatment for, 521 of sulphur, 197 secretion, drugs influencing, 49 sugar, 458
Mint, 384
Mistura cretae, 124
Misturæ, 63
Mites of scab, itch or mange, parasiticides against, 57
Mixture, prescription for, 91
Mixtures, 63
Molasses, 432
Monohydrated sodium carbonate, 110
Monsel's solution, 154
Morphea, 266
Morphina, 266
Morphinæ hydrochloridum, 266 sulphas, 266
Morphine, 266 hydrochloride, 266 sulphate, 266
Mouth, drugs given by, 13
Mucilago acaciae, 430 tragacanthæ, 431
Muriate of ammonia, 121 soda, 114
Muriatic acid, 201
Muscle, unstriated, drugs stimulating, 440
Mustard, black, 377 volatile oil of, 378 white, 377
Mydriatics, 38
Myotics, 39
Myrrh, 382 and aloes, tincture of, 382 tincture of, 382
Myrrha, 382
Naphthol, 253
Narcotics, 35
Nativelle's digitalin, 331
Nerves, drugs acting on the, 37 motor, drugs acting on the, 312 drugs depressing, 312 secretory, drugs acting on, 326 sensory, drugs acting on, 317 drugs depressing, 317
Nervous system, drugs acting on the, 34 drugs stimulating, 387
Nicot ine, 312
Nightshade, deadly, 278
Nitre, 106
Nitric acid, 202
Nitrites, 232
Nitrite, amyl, 232
Nitroglycerin, solution of, 232 Nitrohydrochloric acid, 202 Nitromuriatic acid, 202 Nitrous ether, spirit of, 232 Novocaine, 323 Nutgall, 418 ointment, 418
Nux vomica, 296 extract of, 296 fluidextract of, 297 tincture of, 297
Oak, white, 422
Oakum, 446
Oil of vitriol, 202
Oils, 60, 65 distilled, 60 solid volatile, 392 volatile, 365
Ointment, 456
prescription for, 95
Ointments, 65
Ole, 69, 65
destillata, 60
Oleata, 65
Oleate of mercury, 161
Oleates, 65
Oleatum cocainse, 317
hydrargryi, 161
Oleoresina aspidii, 433
capici, 383
zingiberis, 384
Oleo-resinae, 60, 64
Oleo-resins, 60, 64
Oleum anisi, 386
cadinum, 372
eucalypti, 380
gaultheriae, 384
Oleo-rum, 65
Oleum of mercury, 161
Oleum cachrys, 407
camphorated tincture of, 265
denarcotizatum, 265
deo-odoratum, 265
deo-odorized, 265
tincture of, 265
extract of, 265
granulated, 265
granulatum, 265
powdered, 264
oile of, 265
Orange root, 400
Ordeal bean, 304
Orthoform, 196
Oxgall, 460
powdered extract of, 460
Oxytocics, 49

P
Pack, wet, 499
Pancreatin, 459
Pancreatinum, 459
Papain, 461
Papayotine, 461
Papers, 65
Para-acetphenetidin, 241
Paraffine oil, 262
Parasites, drugs destroying, 56
vegetable drug killing, 432
Parasiticides, 57
against fungi, 58
fungi of ringworm and favus, 57
thrush or aphtha, aphthous stomatitis, 57
lice, 58
mites of scab, itch or mange, 57
ray fungi of lumpy jaw, 57
Para-toluene-sodium-sulpho-chloramide, 511
Paregoric, 265
Paricina, 351
Pasteur method of rabies prevention, 547
Pelletierinae tannas, 436
Pelletierine, 436
Pepo, 437
Pepper, red, 383
Peppermint, 384
- camphor, 384
oil of, 384
water, 384
Pepsin, 458
Pepsinum, 458
Percchloride of iron, 153
mercury, 161
Percollation, 61
Permanganate of potash, 159
Persian insect powder, 440
Persulfate of iron, solution of, 154
Petrolatum, 262
album, 262
liquidum, 262
Pharmaceutical preparations, 63
processes, 60
Pharmacology, definition of, 7
Pharmacopeia, United States, 63
Pharmacopoeial preparations, 63
Pharmacy, 59
definition of, 7
Phenacetin, 241
Phenic acid, 244
Phenol, 244
liquefactum, 244
salicylic ether of, 360
Phenolphthalein, 408
Phenolphthaleinum, 408
Phenylacetamide, 240
Phenyl-dimethyl-pyrazolon, 241
Phenyl salicylate, 360
Phenylis salicylas, 360
Phosphate of lime, precipitated, 127
soda, 116
Phosphorated oil, 180
Phosphoric acid, 203
Phosphorus, 179
Physiology and anatomy, 15
Physostigma, 304
Physostigminae salicylas, 304
sulphas, 304
salicylate, 304
sulphate, 304
Picric acid, 207
Pigs, action of drugs on, 16
Pil. ipecachuanæ cum scilla, 339
Pill, prescription for, 89
Pills, 65
Pilocarpine hydrochloridum, 327
nitras, 327
Pilocarpine, 326
hydrochloride, 327
nitrate, 327
Pilocarpus, 326
fluidextract of, 326
Pilulae, 65
aloes, 382
asafcetidaæ, 389
catharticae compositæ, 162
ferri carbonatis, 153
laxativa compositae, 403
phosphori, 180
Pinkroot, 439
Pinworms, anthelmintics removing, 57
Pitch, 372
Burgundy, 371
plaster, 371
Pituitrin, 451
Pix Burgundica, 371
carbonis preparata, 372
liquida, 372
nigra, 372
Plaster of Paris, 129
Plasters, 65
Plumbi acetas, 137
carbonas, 137
iodidum, 138
nitrás, 138
oxidum, 137
Plumbum, 137
Podophyllin, 417
Podophyllotoxin, 417
Podophyllum, 417
resin of, 417
Poison nut, 296
and antidotes, 475
Poke root, Indian, 344
Pomegranate, 436
Posology, 14
Potassa cum calce, 103
sulphurata, 200
with lime, 103
Potassii acetas, 104
bicarbonas, 104
bitartras, 108
bromidum, 184
carbonas, 104
chloras, 107
citras, 105
cyanidum, 261
hydroxidum, 103
iodidum, 190
nitrás, 106
permanganas, 159
Potassio-ferric tartrate, 154
Potassium, 102
acetate, 104
Potassium alum, 134
arsenite, solution of, 171
bicarbonate, 104
bitartrate, 108
bromide, 184
carbonate, 104
chlorate, 107
citrate, 105
cyanide, 261
hydroxide, 103
solution of, 103
iodide, 190
nitrate, 106
oleate, 426
permanganate, 159
Poulence, Priessnitz, 500
Poulpcnces, 503
Powders, 65
prescription for, 93
Preparations, non-official, 65
official, 63
Prescription, definition of, 72
for drench, 92
electuary, 94
liniments, 96
mixture, 91
ointment, 95
pill, 89
powders, 93
suppositories, 95
writing, 70
Latin words and phrases used in, 70
examples of, 89
Priessnitz poultice, 500
Procaine, 323
Protargol, 142
Protochloride of mercury, 162
Prunus Virginiana, 261
Prussic acid, 258
Pulveres, 65
Pulvis catechu compositus, 422
cretae aromaticus, 124
cum opio, 124
compositus, 124
glycyrrhizae compositus, 197, 411, 429
ipecauchuanæ et opii, 265, 348
japæ compositus, 424
kino compositus, 424
rhei compositus, 409
Pumpkin seed, 437
Rectified spirit, 212
Red mercuric iodide, 162
Red oxide, 161
Red precipitate, 161
Reduced iron, 152
Reduction, 62
Rheum, 409
Rhubarb, 409
compound powder of, 409
extract of, 409
fluidextract of, 409
Ringworm, parasiticides against fungi of, 57
Rosin, 371
Roundworms, drugs used to destroy, 437
Rubber, adhesive plaster, 371
Rue, 351
Ruminants, action of drugs on, 15
Saccharum, 431
lactis, 458
Sacred bark, 407
Sal ammoniac, 121

Rabies, 546
prevention by Pasteur method, 547
treatment with Hogyes method, 548
vaccine, 547
Ray fungi of lumpy jaw, parasiticides against, 57
Rectal injection, 13
Rectified spirit, 212
Red mercuric iodide, 162
Red oxide, 161
Red precipitate, 161
Reduced iron, 152
Reduction, 62
Refrigerants, 501
Resin, 371
cerate, 371
plaster, 371
Resina, 371
Resine, 60
Resina jalapæ, 414
podophylli, 417
scammonii, 414
Resins, 60
Resorcin, 254
Resorcinol, 254
Respiratory centers, drugs depressing, 42
drugs stimulating, 42
mucous membrane, drugs acting on the, 39
organs, drugs acting on, 39, 348
Rhamuns purshiana, 407
Rhatany, kino and catechu, 422
Rheum, 409
Rhubarb, 409
compound powder of, 409
extract of, 409
fluidextract of, 409
Ringworm, parasiticides against fungi of, 57
Rosin, 371
Roundworms, drugs used to destroy, 437
Rubber, adhesive plaster, 371
Rue, 351
Ruminants, action of drugs on, 15
Rye, ergot of, 440

S
Saccharum, 431
lactis, 458
Sacred bark, 407
Sal ammoniac, 121
carolinum factitium, 113
carolina, 110
Salicin, 360
Salicinum, 360
Salicylic acid, 359
Saline infusion, 517
purgatives, 24
Salt, Carlsbad, 113
common, 114
Epsom, 131
Glauber's, 112
volatile, 120
Saltpetre, 106
Salt, Carlsbad, 113
common, 114
Epsom, 131
Glauber's, 112
volatile, 120
Salol, 360
Salt, Carlsbad, 113
common, 114
Epsom, 131
Glauber's, 112
volatile, 120
Salvarsan, 171
Santonica, 437
Santonin, 437
Santoninum, 437
Sapo, 425
mollis, 426
Scab, parasiticides against mites of, 57
Scammonia, radix, 414
Scammony, resin of, 414
root, 414
Scarification, 516
Scarlet red, 350
Schmiedeberg's digitalin, 331
Scilla, 338
Scill, 339
Scillipicrin, 339
Scillitoxin, 339
Scopolamine hydrobromidum, 288
Scopolamine hydrobromide, 288
Sedatives, gastric, 23
urinary, 47
Senna, 411
fluid extract of, 411
syrup of, 411
Sera, definition of, 529
Scopolamine hydrobromidum, 288
Sedatives, gastric, 23
urinary, 47
Sodium, 109
arseniate, 171
benzoate, 376
bicarbonate, 110
bisulphite, 117
borate, 209
cacodylate, 171
carbonate, 110
chloride, 114
hydrate, solution of, 109
hydrocarbonate, 110
hydroxide, 109
solution of, 109
hyposulphite, 117
iodide, 190
perborate, 102
phosphate, 116
salicylate, 360
sulphate, 112
sulphite, exsiccated, 117
thiosulphate, 117
Spermaceti, 457
Spanish flies, 453
Spasm of bronchial muscular tunic, drugs relieving, 43
Special sense, drugs acting on, 38
Spermaceti, 457
Spigelia, 439
Spinal cord, drugs acting on the, 36, 296
Spirits, 64
Spiritus, 64
aetheris, 220
ammoniæ, 118
aromaticus, 120
anisi, 386
camphoræ, 392
chloroformi, 223
frumenti, 212
glycerilis nitratis, 232
juniperi, 391
compositus, 213

Spleenic fever, 533
Squill, 338
compound syrup of, 177, 339
fluidextract of, 339
syrup of, 339
tincture of, 339
Staphisagria, 440
Starch, 445
Stavesacre, 440
Stearoptens, 392
Stomachics, 18
Stovaine, 324
Strongyles, anthelmintics removing, 57
Strontii bromidum, 184
saliclys, 360
Strontium salicylate, 360
Strophanthin, 337
Strophanthinum, 337
Strophanthus, 337
tincture of, 337
Strychninae, 297
Strychninæ hydrochloridum, 297
nitræs, 297
sulphas, 297
Strychnine, 297
nitræ, 297
sulphatæ, 297

Stupes, 504
Styptics, 53
Subchloride of mercury, 152
Subcutaneous injection, 11
test for tuberculosiæ, 533
Sublimation, 62
Succus hyoscyami, 288
Sucrose, 431
Suet, mutton, 456
Sugar, 431
of lead, 137
milk, 458
Sulphate of quinia, 353
soda, 112
Sulphite of soda, 117
Sulphur, 197
lotum, 197
ointment, 197
præcipitatum, 197
sublimatum, 197
sublimed, 197
washed, 197
Sulphurated potassa, 200
Sulphuric acid, 202
Suppositoria, 65
glycerini, 427
iodoformi, 194
morphiæ, 266
Suppositories, 65
prescription for, 95
Suppurants, 496
Suprarenals, dried, 447
Suprarenalum siccum, 447
Sweat, drugs influencing secretions of, 54
Sweet oil, 425
spirit of nitre, 232
Swine plague, 544
Syrup, 432
of Tolu, 375
Syrupi, 64
Syrups, 64
Syrupus, 432
acaciæ, 430
acidii citrici, 204
hydriodici, 190
calcii lactophosphatis, 127
calciæ, 126
cascarae sagradæ aromaticus, 408
ferri iodidi, 153
phosphatis cum quinia et strychnina, 354
fuscus, 432
ipecacuanæ, 348
scilliæ, 339
compositus, 177, 339
sennæ, 411
Tolutanus, 375

T

Tabacum, 312
Tables of weights and measures, 78, 79
Tannic acid, 419
glycerite of, 419
ointment of, 419
Tannigen, 421
Tannin, 419
Tannyl acetate, 421
Tapeworms, anthelmintics removing, 56
drugs used to destroy, 432
Tar, 372
c coal, prepared, 372
solution of, 372
ointment, 372
rectified oil of, 372
Taraxacum, 399
e xtract of, 399
fluid extract of, 399
Tartar emetic, 177
Tartarated antimony, 177
Tartaric acid, 203
Terebene, 367
Terebennum, 367
Terebinthina, 366
Canadensis, 371
Terpin hydrate, 367
Terpini hydras, 367
Tetanus, 548
antitoxin, 548
Tetraiodopyrrol, 195
Theine, 293
Theobroma, oil of, 445
Therapeutics, biological, 525
definition of, 7
Thiol, 463
Thiosinamina, 379
Thiosinamine, 379
Thrash, parasiticides against fungi of, 57
Thymic acid, 394
Thymol, 394
iodide, 196
Thymol is iodidum, 196
Thyroid glands, 192
dried, 447
Thyroideum siccum, 192
Tinctura asaefetidae, 389
aconiti, 340
aloes et myrrhæ, 382, 403
belladonnae foliorum, 279
benzoini, 376
composita, 376
buchu, 390
calumbæ, 399
camphoræ composita, 392
cannabis indicæ, 291
cantharidis, 453
capsici, 383
catechu, 422
cinchonæ, 352
compositus, 352
digitalis, 331
ergæ ammoniata, 441
ferri chloridi, 153
perchloridi, 154
gambir composita, 422
gelsemii, 310
gentianæ composita, 396
hydrastis, 400
hyoscyamæ, 288
iodi, 187
ipecacuanhæ et opii, 265, 348
kino, 423
lobelæ, 315
myrrhæ, 382
.ncbi vomicæ, 297
opi, 265
camphorata, 265
deodorata, 265
quassie, 398
quinine, 353
ammoniata, 353
scille, 339
strophanthi, 337
valerianæ ammoniata, 388
veratri viridis, 344
Tinctura, 64
Tinctures, 64
Tobacco, 312
Indian or wild, 315
Tonics, 50
Tow, 446
Toxicology, definition of, 7
Traganacanth, 431
mucilage of, 431
Traganacantha, 431
Transfusio, 517
Treat, 432
Treatment, epitome of, 564
Trikresol, 251
Triturates, 65
Trituration, 60
Triturationes, 65
Troy system, relative value of units in, 74
weight, 73
Tuberculin, 552
Tuberculosis, diagnosis of, 552
intradermal test for, 554
ophthalmic test for, 556
subcutaneous test for, 553
Turpentine, 366
Canada, 371
liniment, 366
oil of, 366
rectified oil of, 366
spirit of, 366
Tyramine, 441

U
Unguenta, 65
Unguentum, 456
acidi boricæ, 209
carbolicæ, 244
salicylicæ, 360
tannici, 419
aconitine, 340
belladonnae, 279
cantharidis, 453
capsici, 383
cetacei, 458
chrysarobini, 410
cocainæ, 317
eucalypti, 380
gallae, 418
cum opio, 419
hamamelidis, 424
hydrargyri, 161
hydrargyri ammoniati, 162
oxidi flavi, 161
nitratis, 162
oxidi rubri, 161
iodi, 187
idoformi, 194
phenolis, 244
plumbi iodidi, 138
resinæ, 371
sulphuris, 197
veratrinæ, 346
zinci oxidi, 145
United States Pharmacopeia, 63
Urinary antiseptics, 47
sedatives, 47
organs, drugs acting on the, 44
Urine, drugs influencing composition of, 47
reaction of 46,
Urotropin, 257

V
Vaccine, anthrax spore, 535
blackleg, 537
canine distemper, 539
rabies, 547
Vaccines, definition of, 529
Valerian, 387
fluid extract of, 387
Valeriana, 387
Vaseline, 262
Vegetable bitters, 396
cathartics, 402
demulcents, 425
drugs, 264
Venesection, 514
Veratrina, 346
Veratrine, 346
Veratrum album, 345
viride, 344
fluidextract of, 344
tincture of, 344
Verdigris, 149
Vermicides, 56
Vermifuges, 56, 57
Vesicants, 52
and the actual cautery, 495
Vetol, 325
Vina, 64
Vinegars, 64
Vinum opii, 266
Volatile oils, 365
salt, 120

W
Water, 99
distilled, 99
Waters, 63
Wax, white, 457
yellow, 457
Weight, troy or apothecaries', 73
Weights and measures, tables of, 78, 79
Wet pack, 499
Whisky, 212
White arsenic, 170
lead, 137
lotion, 140
mustard, 377
oak, 422
petrolatum, 262
precipitate, 162
ointment, 162
scours in calves, 549
vitriol, 144
Wild cherry, 261
Wine measure, 74
relative value of units in, 74
units, equivalents of, in domestic measures, 75
Wines, 64
Wintergreen, oil of, 364
Witch-hazel, 424
Wool fat, anhydrous, 457
hydrous, 456
Wormseed, American, 439
levant, 437

Y
Yellow jessamine, 310
mercuric jessamine, 161
ointment of, 161
Yohimbine hydrochloride, 324

Z
Zinc acetate, 145
carbonate, precipitated, 145
chloride, 143
solution of, 144
oxide, 145
ointment of, 145
peroxide, 102
sulphate, 144
valerate, 388
Zinci acetas, 145
carbonas Præcipitatus, 145
chloridum, 143
oxidum, 145
sulphas, 144
valeras, 388
Zingiber, 383